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Deflectors offer a cost-effective solution for enhancing airflow distribution. The
purpose of this paper is to investigate the effect of the deflector on the indoor
airflow velocity distribution under natural ventilation conditions. The results
obtained from numerical simulations are validated through experimental
measurements using a reduced-scale model. Subsequently, the validated
reduced-scale numerical model was extended to full-size rooms. A full-size
numerical simulation method is used to analyze the effect of no deflector,
deflectors with different opening width-to-height ratios and deflectors with
different opening shapes on the percentage of indoor velocity partitions
under natural ventilation conditions. The findings reveal that the judicious
installation of deflectors can enhance indoor airflow velocity distribution and
increase the percentage of the indoor comfort zone. Deflectors with different
opening width-to-height ratios exert distinct influences on indoor airflow
velocity distribution. When the deflector opening width-to-height ratio is set
at 7/6, the indoor comfort zone percentage reaches its maximum at 75.98%.
Furthermore, the shape of the deflector’s opening significantly affects indoor
airflow velocity distribution, and when the opening shape is a rhombus shape of
4.00 cm × 9.00 cm, the proportion of indoor velocity comfort zone is the largest,
which is 75.56%. This study provides a reference for the design and practice of
natural ventilation in buildings.
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1 Introduction

Reducing carbon emissions in the construction sector is crucial for China’s strategic
goals of achieving carbon peaking and carbon neutrality. The substantial use of non-
renewable energy in the construction industry has emerged as a significant contributor to
global warming and environmental degradation (Alhamami et al., 2023; Nie et al., 2023).
Hence, the prevailing global trend is to develop clean energy technologies like wind energy
to mitigate greenhouse gas emissions. Natural ventilation, as a passive green building
technology measure (Wang and Malkawi, 2019), can improve the building environment by
increasing the level of indoor thermal comfort, which aids in preventing the development of
“sick building syndrome” and reducing the risk of epidemic transmission (Fantozzi et al.,
2022; Ren et al., 2022). Buildings incorporating natural ventilation often exhibit energy costs
that are 40% lower than those relying on air conditioning. In regions with comfortable
outdoor climates, natural ventilation serves as a cost-free cooling resource (Ayata and
Yıldız, 2006; Odi et al., 2022; Qin et al., 2022). Beyond delivering fresh air to interior spaces,
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promoting indoor air circulation, and eliminating indoor air
pollutants to enhance indoor air quality (Lei et al., 2017),
effective use of natural ventilation can curtail the demand for air
conditioning, reduce indoor temperatures, ameliorate indoor heat
and humidity conditions (Liping and Hien, 2007), and enhance
thermal comfort (Wong et al., 2002; Costanzo and Donn, 2017).

Understanding how natural ventilation affects the indoor
environment of a building, primarily ventilation rates and indoor
air temperatures, is crucial for evaluating the design of these low-
energy buildings. Various methods are employed to forecast and
assess ventilation performance, including full-size model
experiments, empirical formulas, scale model experiments, and
CFD numerical simulations (Chen, 2009). Field measurements of
the indoor thermal environment in full-size buildings are, however,
more challenging to conduct inmuch research. This is due to the fact
that external climatic conditions are often complicated, ever-
changing, and uncontrollable during field tests in prototype
buildings (Omrani et al., 2017a), particularly for ventilation that
is solely buoyancy-driven. Consequently, there is a growing interest
in investigating the indoor thermal environment using reduced-
scale models. In order for the reduced-scale model results to be
applicable to full-size buildings, the primary similarity criterion
should be satisfied with equal values. Many scholars have employed
reduced-scale model experiments in their research. For instance,
Guo et al. (2018) developed a reliable and effective methodology to
evaluate the performance of buoyancy-driven ventilation in large-
space buildings, using reduced-scale experimental models and
numerical simulations of full-size prototypes. Liu et al. (2009)
used scaled-down modeling tests to predict the performance of
buoyancy-driven ventilation for atrium buildings and used internal
heat loads to simulate as a heat source for building-driven buoyancy;
furthermore, it evaluated the efficiency of buoyancy-driven
ventilation under hot and humid climatic conditions. Le Roux
et al. (2012) highlighted the significance of accounting for the
effect of wind on airflow in mechanically ventilated buildings
through scaled-down model experiments. They developed a new
methodology to study steady-state and transient isothermal flows in
buildings equipped with ventilation systems.

Computational Fluid Dynamics (CFD) is another method for
examining the impact of natural ventilation on a building’s indoor
environment. The benefits of CFD include low cost, high efficiency
(Yang et al., 2015; Tian et al., 2018; Zhang and Ryu, 2021), and the
capacity to compute pertinent non-measurable parameters (Liu
et al., 2009). CFD technology has rapidly advanced alongside
computer science and technology. Through CFD analysis of the
wind environment within buildings, it becomes possible to predict
indoor airflow distribution (Zou et al., 2021), assess indoor air
quality, and evaluate comfort levels. In 1974, Nielsen of Denmark
pioneered the application of CFD technology for airflow
simulation in ventilated rooms (NIELSEN, 1974). Wang Y.
et al. (2021) systematically compared the ventilation
characteristics of different window opening configurations using
computational fluid dynamics (CFD) simulations, combining
ventilation rates and thermal comfort to provide a
comprehensive evaluation of window ventilation performance.
Yang et al. (2015) numerically simulated the transient
development of buoyancy-driven natural ventilation by
modeling. And numerical simulation was used to analyze the

airflow characteristics in three cases where the initial indoor
temperature is equal to, higher than and lower than the
outdoor temperature. Asfour and Gadi (2008) used
Computational Fluid Dynamics (CFD) to study the effect of a
vaulted roof as a wind inducing device in a building on the
performance of natural ventilation, and evaluated the
performance of the natural ventilation based on the value of the
airflow rate and the quality of the internal airflow distribution.

In contemporary urban planning and building design, natural
ventilation is often disregarded as a passive green building
technology. Typically, local seasonal wind directions are not
considered when planning and designing residential and
workplace environments. While it is relatively simple to
introduce fresh outdoor air into a building’s interior through
doors and windows to enhance indoor air quality (Prueksakorn
et al., 2015; Wen and Hiyama, 2018), this approach can lead to
excessive wind speeds in localized indoor areas and result in uneven
indoor airflow distribution. In fact, for maintaining thermally
comfortable environments, the recommended upper limit for
indoor airflow velocity is 1 m/s. When the wind speed exceeds
1 m/s, this is when the airflow begins to pick up light weight objects
(ASHRAE, 2020). Therefore, there is an urgent need to implement
effective and practical methods for directing airflow to enhance
indoor airflow distribution.

Currently, numerous scholars have conducted research on
air deflectors. The working principle of airflow deflectors relies
on utilizing the pressure differential created by their physical
structure to induce directional changes in airflow. Consequently,
the reasonable installation of deflectors can significantly
enhance indoor airflow distribution. Che et al. (2022) have
conducted an investigation into the impact of airflow
deflector designs installed in external windows on airflow
distribution performance and the risk of infection in a wind-
driven naturally ventilated classroom. Different sizes of airflow
deflectors were designed based on four external window
openings, and the performance was compared to obtain the
best deflector. Liu et al. conducted a study examining the
influence of deflector adjustments on diffusers, with
performance assessed using air diffusion performance index
values. The findings revealed that the upward blade deflector
significantly enhances the air diffusion performance index value
of the blade grille. In general, downward jets reduce the air
diffusion performance index value for each adjustable diffuser
type when operating under cooling conditions (Liu and
Novoselac, 2016). Song et al. (2021) improved the trajectory
of cold airflow from perforated bricks to the rack by
implementing deflectors in the cold aisle. This optimization
enhanced the uniformity of airflow distribution vertically and
overall thermal environment around the rack. Cheng et al.
(2023) have conducted experiments on deflection ventilation
for winter heating. The effects of different air supply speeds, air
supply temperatures and deflection angles on air distribution
were analyzed, and the thermal comfort and energy efficiency
were comprehensively evaluated.

Most of the aforementioned studies have focused on air-
conditioning air supply outlets, exploring various deflector forms
such as louvers and grille types, as well as the application of
deflectors in internal equipment like fans and ducts. However,
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there is a paucity of research regarding the implementation of
deflectors in buildings operating under natural ventilation
conditions. Therefore, the purpose of this study is to analyze the
effects of setting different opening width-to-height ratios and
different opening shapes of deflector panels on the indoor airflow
velocity distribution in a room under natural ventilation conditions.
An office in Hefei area is used as a research object for experiment
and simulation. Numerical simulations and experiments employ a
reduced-scale model, with experimental results used to validate
numerical findings. The validated reduced-scale numerical model
is extended to the full-size room, and then full-size numerical
simulation is used to analyze the effects of no deflector, deflector
with different opening width-to-height ratios, and deflector with
different opening shapes on the percentage of indoor velocity
comfort zones under natural ventilation conditions, reflecting the
indoor airflow distribution of the actual building. This study helps to
set up indoor deflectors more scientifically and rationally under
specific conditions to improve indoor airflow distribution and
increase the proportion of indoor velocity comfort zone in order
to avoid excessive indoor air velocity caused by cross ventilation.
Moreover, the findings of this study provide a reference for the
design and practice of natural ventilation in buildings.

2 Methods

2.1 Experimental methods

2.1.1 Experimental site and apparatus
This study focuses on an office space situated in the Hefei area.

The office has dimensions of 3.6 m in length, 4.0 m in width, and
3.0 m in height. It features a south-facing opening measuring
0.6 m × 1.2 m and a north-facing opening measuring 0.9 m ×
2.1 m. Notably, the north-south opening is situated directly
opposite. During the transitional season and summer in Hefei,
the prevailing natural ventilation wind direction is from the
southeast, with an average wind speed of 3.2 m/s in the
southern direction.

The apparatus used in the experiment included a 5 mm thick
acrylic plate model, an electric fan and a thermosensitive
anemometer, as shown in Figure 1. The thermosensitive
anemometer used is the SMART SENSOR AR866A model, with
a measurement accuracy of ±1% and a resolution of 0.01 m/s. The
probe diameter is 11 mm, which can be stretched to 920 mm, and
the instrument and the line are about 2.1 m long. Additionally, the
instrument featured a USB interface enabling real-time

FIGURE 1
Experimental apparatus: (A) Acrylic plate model; (B) Electric fan; (C) Thermosensitive anemometer; (D) Schematic diagram of thermosensitive
anemometer probe.
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measurement and data recording on a computer. It also had the
capacity to store data for up to 500 sets.

2.1.2 Similarity analysis
In this test, the medium used in the model and the prototype is

air, and the air flow is turbulent, non-isothermal, incompressible,

viscous three-dimensional steady flow, and the basic differential
equations of the viscous fluid are dimensionally-processed to obtain
the following functional equations.

F Pr, Re, Fr, Eu( ) � 0 (1)
Where Pr is the Prandtl number; Re is the Reynolds number; Fr is
the Froude number; Eu is the Euler number.

Since the medium used in both the model and the prototype is
air (Xie et al., 2021), i.e., Pr � 0.73, Eu is a non-qualitative
characteristic number, Eu � f(Pr , Re), thus, Eq. 1 can be
rewritten as.

F Re, Fr( ) � 0 (2)

In practical engineering and modeling tests, air flow is generally
in the drag square region, the Reynolds number Re is generally
greater than 4,000. The air flow along the drag coefficient λ is only
related to the equivalent roughness k, but not related to Re, that is,
the flow into the Reynolds self-simulating region (Walker et al.,
2011). The reduced-scale model experiments in this paper satisfy
this condition, and the Re number need not be considered in the
simulation process. Therefore Eq. 2 can be transformed into.

F Fr( ) � 0 (3)

The Froude number (Fr) in Eq. 3 is defined as:

Fr � v2

gl
(4)

Where v is the air supply velocity, m/s; g is the free fall acceleration,
m/s2; l is the characteristic length, m.

When designing using the Froude criterion, it is required that
the rooms and models have equal Froude numbers, which can be
expressed according to Eq. 4 as follows: (Xie et al., 2021).

v2

gl
� v′2

g′l′ (5)

where the mark "′" is added to indicate the corresponding parameter
of the prototype. Let the free-fall acceleration scale Cg � g/g′,
geometric scale Cl � l/l′, and velocity scale Cv � v/v′.

When the model test conditions are basically similar to the
prototype conditions, Cg � 1 can be assumed, and the velocity scale
can be derived from Eq. 5 as follows.

Cv � Cl
1
2 (6)

In the experiment of this paper, the geometric scale Cl � 1/10,
and the actual incoming wind speed is 3.2 m/s. According to Eq. 6,
the inlet wind speed can be calculated as v � v′C1/2

l . Therefore, the
southward inlet wind speed in this reduced-scale model experiment
is 1.0 m/s.

2.1.3 Experimental model
The reduced-scale model experiment employs a room model

with dimensions of 36 cm in length, 40 cm in width, and 30 cm in
height, as depicted in Figure 2. The size of the south-facing opening
of the model is 6 cm × 12 cm, the height from the bottom is 9 cm,
the size of the north-facing opening is 9 cm × 21 cm, and the size of
the indoor set deflector is 12 cm × 12 cm, the height from the

FIGURE 2
Reduced scale experimental model.

FIGURE 3
Schematic diagram of measurement point layout.
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bottom is 9 cm, and the distance from the south-facing opening is
14 cm, which is scaled down by 10 times. Geometric similarity
between the model and the prototype is upheld, with the model
crafted from specially treated plexiglass acrylic plate of 5 mm
thickness. The chosen acrylic plate boasts notable advantages,
including robust impact resistance, high recyclability, ample
rigidity and strength, ease of processing and molding, and
simple maintenance. Importantly, the acrylic plate remains
resilient against significant vibrations and deformations
throughout the experimental course.

The arrangement of measurement points for the experimental
model is illustrated in Figure 2. At the top of the model, a circular
hole with a diameter of 15 mm (11 mm diameter of the
thermosensitive anemometer probe) serves as the designated
measurement point. These measurement points are
symmetrically positioned along the centerline of the building

model, as depicted in Figure 3. The total count of measurement
points corresponds to 14.

2.1.4 Experimental scheme design
To investigate the impact of varying width-to-height ratios

and distinct shapes of deflector plate openings on the indoor
velocity partitioning ratio within the context of natural
ventilation, this paper introduces the subsequent experimental
plan: 1) a hole was opened in the deflector plate, and eight
deflector plates with different width to height ratio openings
were set, the opening sizes of the deflector plates were shown in
Table 1, and the schematic diagram of the openings was shown in
Figure 4; 2) A hole is opened in the deflector plate with the same
opening area, and the opening shapes are circular, 4.00 cm ×
9.00 cm rhombic, square and 9.00 cm × 4.00 cm rhombic. The
shape and size of the specific deflector opening is shown in

TABLE 1 Table of deflector opening dimensions.

Deflector
number

Deflector
W1

Deflector
W2

Deflector
W3

Deflector
W4

Deflector
W5

Deflector
W6

Deflector
W7

Deflector
W8

Opening width to
height ratio

3/6 4/6 5/6 6/6 7/6 8/6 9/6 10/6

Opening size 3.00 cm ×
6.00 cm

4.00 cm ×
6.00 cm

5.00 cm ×
6.00 cm

6.00 cm ×
6.00 cm

7.00 cm ×
6.00 cm

8.00 cm ×
6.00 cm

9.00 cm ×
6.00 cm

10.00 cm ×
6.00 cm

FIGURE 4
Schematic diagram of the different width to height ratio openings of the deflector: (A) Width to height ratio 3/6; (B) Width to height ratio 4/6; (C)
Width to height ratio 5/6; (D)Width to height ratio 6/6; (E)Width to height ratio 7/6; (F)Width to height ratio 8/6; (G)Width to height ratio 9/6; (H)Width to
height ratio 10/6.

TABLE 2 Different shape opening size table.

Deflector number Deflector S1 Deflector S2 Deflector S3 Deflector S4

Opening shape Circular Rhombus Square Rhombus

Opening size d = 4.78 cm 4.00 cm × 9.00 cm 6.00 cm × 6.00 cm 9.00 cm × 4.00 cm
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FIGURE 5
Schematic diagram of different shapes of deflector openings: (A) Circular; (B) 4.00 cm × 9.00 cm Rhombus; (C) Square; (D) 9.00 cm ×
4.00 cm Rhombus.

FIGURE 6
Experimental measurement diagram.

FIGURE 7
Schematic diagram of the room geometry model.
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Table 2, and the schematic diagram of the opening is shown
in Figure 5.

2.1.5 Experimental steps
The experimental protocol commenced by establishing the

model’s fixed position, followed by meticulous adjustments to
both the distance and height between the fan and the window
opening. Drawing from similarity theory (Han and Li, 2021), a hot-
wire anemometer was deployed to gauge the wind speed at the
entrance, thereby maintaining a constant inflow velocity of 1.0 m/s.
The experiment aims to measure the wind speed at a 15 cm height
within the model. To minimize experimental errors, it is essential to
maintain the thermal probe of the thermosensitive anemometer
perpendicular to the incoming flow direction. The experimental
measurement diagram is shown in Figure 6. Then, use the
anemometer to test the wind speed at 14 measurement points.
To ensure the accuracy of the measurement results, take
10 consecutive instantaneous velocity values for each
measurement point and calculate the average value as the final
velocity value at each measurement point.

2.2 Simulation methods

2.2.1 Geometric model and numerical methods
Airpak software is now widely used to simulate indoor and

airflow organization distribution (Zhang and Ryu, 2021; Zhang
et al., 2023). In this study, we employed the Airpak software to
construct a scaled-down numerical model of a room, measuring
36 cm in length, 40 cm in width, and 30 cm in height. During the
simulation, all doors and windows remained open. The room model
is depicted in Figure 7, with the x-axis denoting the depth direction,
the y-axis representing height, and the z-axis indicating width. The
arrangement of numerical simulation measurement points is the
same as that of the reduced-scale model experiment. The velocity
values of each measurement point were calculated directly by Airpak
software when the deflectors with different opening width to height
ratio and different opening shapes were set in the room.

In order to study the flow of indoor air in the real state, a 1:1 full-
scale modeling was conducted, and the roommodel size was 3.6 m ×
4.0 m × 3.0 m (length × width × height). The natural ventilation of
the room with all windows and doors open is simulated. The airflow
distribution in the cross-section at the height of y = 1.5 m (height of
human activity) was investigated by numerical simulation of the
room without deflector, with deflectors with different opening
width-to-height ratios and deflectors with different opening shapes.

TABLE 3 Boundary condition settings.

Full-size model Reduced-scale model

Southward inlet wind speed (m/s) 3.2 1.0

Southward opening wind pressure (pa) 6.60 0.65

Northward opening wind pressure (pa) 0 0

FIGURE 8
Grid independence analysis.

FIGURE 9
Mesh division.
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FIGURE 10
(A)Measured speed diagram of different width-to-height ratio openings; (B) Simulated speed diagram of different width-to-height ratio openings;
(C) Measured speed diagram of different shapes of openings; (D) Simulated speed diagram of different shapes of openings.

TABLE 4 Comparison of numerical simulation results with experimental measurements.

Deflector number Mean absolute error (m/s) Root mean square error (m/s)

Deflector W1 0.0486 0.0578

Deflector W2 0.0650 0.0834

Deflector W3 0.0721 0.0797

Deflector W4 0.0507 0.0663

Deflector W5 0.0614 0.0683

Deflector W6 0.0571 0.0727

Deflector W7 0.0479 0.0582

Deflector W8 0.0407 0.0482

Deflector S1 0.0464 0.0515

Deflector S2 0.0379 0.0451

Deflector S3 0.0507 0.0663

Deflector S4 0.0479 0.0582
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Indoor air flow is incompressible and low-speed turbulent.
This paper employs the indoor zero-equation model for its
extensive validation, characterized by rapid computational
speed and stable convergence when predicting various airflow
scenarios, including natural convection (Vera et al., 2010), forced
convection, mixed convection, and displacement ventilation
within a room. This model is well-suited for forecasting
indoor airflow distribution and has demonstrated its
effectiveness, particularly under mixed convection conditions
(Ling et al., 2015). In this study, the SIMPLE (semi-implicit
method for pressure dependent equations) pressure-velocity
coupling algorithm is used (Fan et al., 2022; Liu et al., 2022;
Mohamed et al., 2022).

2.2.2 Boundary conditions
The boundary conditions of the reduced-scale model

are determined based on the full-size working conditions as
well as similar scales. The boundary conditions of this
simulation are as follows: the pressure boundary is chosen,

and the southward inlet wind pressure of the room is
determined according to Δp � ρv2/2. The wind pressure at
the northward opening is negligible. The boundary
conditions of the full-size and reduced-scale models are set
as shown in Table 3.

2.2.3 Mesh generation
The simulation was conducted using the Airpak software to

mesh the computational region with a hexahedral unstructured
grid. As an example, five different grid schemes were selected for
the simulation when a circular hole was opened in the deflector of
the reduced-scale model. The number of divisions for these
schemes was 14,520, 17,664, 22,818, 34,210, and 44,404 grid
cells, respectively. To investigate the grid independence
(Strasszer and Xydis, 2020; Yuan et al., 2020; Wang Z. et al.,
2021), the measurement point was chosen at the center of the
deflector opening. Figure 8 illustrates the wind speed variations at
the measurement point for different grid numbers. When the
number of grids is less than 22,818, there is a noticeable
difference in air velocity at the measurement point. However,
when the number of grids is equal to or greater than 22,818, the
air velocity at the measurement point remains relatively stable.
The air velocities at the measurement point for grid counts of
22,818, 34,210, and 44,404 are recorded as 0.66 m/s, 0.66 m/s, and
0.67 m/s, respectively. The air velocity deviation among the three
grid schemes is within 5%. Therefore, 22,818 grid cells were
selected as the meshing scheme for this study, as shown in
Figure 9. The meshing quality is good and meets the
requirements for the simulation.

FIGURE 11
Velocity cloud at y = 1.5 m height without deflector.

TABLE 5 Distribution of each velocity partition in numerical simulation
without deflector.

Wind speed range (m/s) No deflectors (%)

0.00 < v ≤ 0.25 3.06

0.25 < v ≤ 1.00 62.11

v > 1.00 34.83
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FIGURE 12
Velocity cloud at y = 1.5 m height when the deflector is openedwith different width-to-height ratio openings: (A)Width to height ratio 3/6; (B)Width
to height ratio 4/6; (C)Width to height ratio 5/6; (D)Width to height ratio 6/6; (E)Width to height ratio 7/6; (F)Width to height ratio 8/6; (G)Width to height
ratio 9/6; (H) Width to height ratio 10/6.
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2.3 Indoor air velocity interval division

Indoor air velocity significantly influences indoor airflow
distribution and is intricately linked to human thermal comfort
(Prianto and Depecker, 2002; Omrani et al., 2017b). This study,
considering existing research findings along with regional and
indoor work characteristics, adopts a range of 0.25 m/s to
1.00 m/s as the benchmark for evaluating indoor wind speed
comfort. Below 0.25 m/s, indoor wind speeds are too low for
occupants to readily perceive, while wind speeds above 1.00 m/s
cause discomfort to the occupants. Wind speeds in the range of
0.25 m/s to 1.00 m/s provide for human comfort. Consequently, this
paper classifies indoor wind speed intervals under natural
ventilation conditions as follows: the low wind speed zone ranges
from 0.00 m/s to 0.25 m/s, the comfortable speed zone ranges from
0.25 m/s to 1.00 m/s, and wind speeds exceeding 1.00 m/s fall into
the high wind speed zone.

3 Results and discussion

3.1 Experimental results and discussion

The measured and simulated outcomes from the reduced-
scale model experiments are compared and analyzed to validate
the reasonableness and effectiveness of the simulation approach.
The following is a comparison between the measured results
and simulated results for the deflector plate with different
opening width to height ratio and different opening shape
respectively.

Velocity measurements were taken at 14 specific points
located at a cross-sectional height of y = 15 cm, while varying
the opening width-to-height ratios and shapes of holes within the
deflector’s center. The measured velocity values at each
measurement point of the reduced-scale model and numerical
simulation are shown in Figures 10A, B when the holes with

different width-to-height ratios are opened in the middle of the
deflector. The measured and numerical simulation values of
velocity at each measurement point of the reduced-scale model
are shown in Figures 10C, D when a hole of different shapes is
opened in the middle of the deflector. As can be seen from the
figure, as the width-to-height ratio of the deflector opening and
the shape of the opening change, the velocity values at each
measurement point change accordingly, but the overall trend
remains consistent. The flow of outdoor air enters through
windows, passes through the room’s deflector opening, and
exits through the opposite door, creating cross-ventilation.
Consequently, measurement points 1, 5, 11, and 14 exhibit
higher velocity values. As air velocity decreases from the
room’s entrance to the exit of the incoming flow, airflow
velocity gradually diminishes. Obstructions in airflow occur at
unopened holes of the deflector plate, generating vortices in the
area behind the deflector plate, leading to near-zero velocity
values at measurement points 4 and 6. With decreasing air
velocity, measurement points 7, 8, 9, 10, 12, and 13, situated
farther from the entry point, also exhibit lower and near-zero
velocity values.

The numerical simulation data at 14 measurement points in
this experiment were compared with the measured data of the
reduced-scale model. As shown in Figure 10, the experimental
measurements of the reduced-scale model are slightly larger than
those of the numerical simulation, but the overall trend remains
consistent. Table 4 lists the mean absolute error and root mean
square error between the experimental and simulated results for
the deflectors with different opening width to height ratio and
deflectors with different opening shapes. After analysis, it was
found that the maximum value of the mean absolute error
between the simulated and measured values of wind speed is
0.0721 m/s, and the maximum value of the root mean square
error is 0.0834 m/s, and these errors are within the acceptable
range. Therefore, the results of the numerical simulation can
better reflect the experimental results. The validated numerical
model can be used for full-size working condition expansion, and
the results can truly reflect the airflow distribution inside
the building.

3.2 Full-scale simulation results and analysis

The full-size simulation comprises three cases: under natural
ventilation conditions, the indoor airflow velocity distribution is
simulated and analyzed in scenarios with no deflectors, with
deflectors of varying opening width-to-height ratios, and with
deflectors of different shapes. The role of the deflector is to
increase the wind pressure of the environment or guide its flow
direction to change through some way and equipment construction,
the windward side of the deflector is the positive pressure area, and
the backward side of the deflector is the negative pressure area.

3.2.1 No deflector
As depicted in Figure 11, the velocity distribution at a height of

y = 1.5 m in the absence of a deflector is illustrated. Outdoor air
enters the room through the southern entrance and exits through the
northern air vent, establishing cross-ventilation. The air velocity is

FIGURE 13
The percentage of each velocity zone when the width-to-height
ratio of the deflector opening is varied.
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highest at the south side inlet, and localized areas in the middle
section have higher air velocities due to cross ventilation.

As indicated in Table 5, in the absence of a deflector within the
room, the velocity cloud diagram of the cross-section at a height of
y = 1.5 m comprises 3.06% in the low wind speed zone, 62.11% in the
comfort speed zone, and 34.83% in the high wind speed zone.

3.2.2 Deflectors with different width-to-height
ratio openings

Illustrated in Figure 12, outdoor air flows into the room through
the southern entrance, with the highest wind speed observed at this
inlet. Encountering the obstruction at the unopened place of the
deflector plate, vortex will be generated at the back of the deflector
plate, resulting in the value of the air velocity at the back of the
deflector plate in a large area close to zero. Through the openings in
the room deflector, air flows from one side of the room to the other,
creating cross ventilation and resulting in higher air velocities in

localized areas. As the width-to-height ratio of the deflector opening
increases, the percentage of the low-wind-speed zone in the velocity
cloud diagram at the cross-section of y = 1.5 m height decreases,
while the proportion of the comfortable-speed zone and high-wind-
speed zone increases.

Figure 13 illustrates the effect of variations in the width-to-
height ratio of the deflector openings on the percentage of indoor
velocity partitioning. As the width-to-height ratio increases from 3/
6 to 7/6, there is a continuous reduction in the proportion of the low
wind speed zone, decreasing from 11.79% to 3.75%, representing an
8.04% decrease. Concurrently, there is an increase in the proportion
of the speed comfort zone, rising from 72.38% to 75.98%, indicating
a 3.60% increase. Additionally, the proportion of the high wind
speed zone rises from 15.83% to 20.27%, reflecting a 4.44% increase.
Subsequently, when the width-to-height ratio of the deflector
opening increases from 7/6 to 8/6, the percentage of the low
wind speed zone experiences an increase from 3.75% to 7.33%, a

FIGURE 14
Velocity cloud at y = 1.5 m height when the deflector plate is opened with different shapes of openings: (A) Circular; (B) 4.00 cm × 9.00 cm
Rhombus; (C) Square; (D) 9.00 cm × 4.00 cm Rhombus.
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growth of 3.58%. Simultaneously, the percentage of the speed
comfort zone decreases from 75.98% to 71.38%, representing a
4.60% decrease. Additionally, the percentage of the high wind
speed zone increases from 20.27% to 21.29%, signifying a 1.02%
increase. Lastly, when the width-to-height ratio of the deflector
opening is increased from 8/6 to 10/6, the percentage of the low wind
speed zone decreases from 7.33% to 2.98%, indicating a 4.35%
decrease. Correspondingly, the percentage of the speed comfort
zone increases from 71.38% to 73.01%, reflecting a 1.63% increase.
Furthermore, the percentage of the high wind speed zone increases
from 21.29% to 24.01%, representing a 2.72% increase.

3.2.3 Deflectors with differently shaped openings
As shown in Figure 14, the flow state and the reason for its

formation are in general agreement with Figure 12. The different
shapes of the deflector opening have a greater influence on the
proportion of each wind speed zone in the velocity cloud map of the
cross-section at the height of y = 1.5 m.

In Figure 15, we observe changes in wind speed zones related to
different deflector opening shapes. When the deflector opening has a
9.00 cm × 4.00 cm rhombus shape, the percentage of the low wind
speed zone measures 13.78%, while with a square deflector opening,
it decreases to 6.04%. The highest percentage of the speed comfort
zone, at 75.56%, is recorded when the deflector opening takes the
form of a 4.00 cm × 9.00 cm rhombus, and the lowest percentage,
66.83%, is observed when the deflector opening is in the shape of a
9.00 cm × 4.00 cm rhombus. The percentage of the high wind speed
zone shows relatively little variation.

The effects of the above three scenarios on the indoor airflow
distribution under natural ventilation conditions are simulated
and analyzed, keeping the wind pressure at the entrances and
exits constant and the position of the deflector plate constant. In
the absence of a deflector plate in the room, the indoor speed
comfort zone occupies the smallest proportion, accounting for
62.11%. The percentage of indoor speed comfort zone increased

significantly when deflectors with different opening width-to-
height ratios and deflectors with different opening shapes were
installed indoors. The percentage of the indoor speed comfort
zone varied with changes in the opening width-to-height ratio of
the deflector plate. When the deflector plate had an opening
width-to-height ratio of 7/6, it reached its highest value at
75.98%, marking a significant increase of 13.87%. The shape of
the deflector opening had a more pronounced effect on the indoor
speed comfort zone percentage. When the deflector opening took
on a rhombus shape measuring 4.00 cm × 9.00 cm, it reached its
highest value at 75.56%, reflecting a substantial increase
of 13.45%.

4 Conclusion

In this study, a 1:10 scale experimental model and a numerical
model were established based on similarity theory. The experimental
measurements from the reduced-scale model were compared and
analyzed alongside the simulation results, confirming the rationality
and effectiveness of numerical simulations. Subsequently, the
validated reduced-scale numerical model was extended to a full-
size room. The study investigated the impact of deflectors, including
different opening width-to-height ratios and shapes, as well as the
absence of deflectors, on the percentage of indoor velocity partitions
under natural ventilation conditions using full-scale numerical
simulations. Based on the aforementioned findings, the following
conclusions can be drawn:

1) A comparative analysis of the experimental measurements
from the reduced-scale model and the simulation results
indicates that the experimental results obtained from the
reduced-scale model are slightly greater than the numerical
simulation results, while the overall speed trend remains
consistent. Consequently, the CFD numerical simulation
better mirrors the experimental results, and the validated
numerical model can be applied to extend to full-size
working conditions. The results of the full-scale numerical
simulation accurately portray the indoor airflow velocity
distribution within the building.

2) In the context of natural ventilation, the judicious installation
of indoor deflectors can effectively augment the percentage of
the indoor speed comfort zone, mitigating excessive indoor
wind speeds resulting from cross-ventilation and thereby
enhancing human comfort and improving the distribution
of indoor airflow velocity.

3) Various deflector plate opening width-to-height ratios yield
distinct impacts on both the indoor speed comfort zone
percentage and indoor airflow velocity distribution. The
maximum percentage of the indoor speed comfort zone, at
75.98%, is achieved when the width-to-height ratio of the
deflector opening stands at 7/6.

4) Different shapes of deflector openings exert a more significant
influence on the percentage of the indoor speed comfort zone
and indoor airflow velocity distribution. The largest
percentage of the indoor speed comfort zone, amounting to
75.56%, is observed when the deflector opening takes the form
of a rhombus measuring 4.00 cm × 9.00 cm.

FIGURE 15
Percentage of each velocity zone when the deflector plate is
opened with different shaped openings.
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