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1 Introduction

Agriculture has always been the cornerstone of the global economy, ensuring the
essential livelihoods of people (Pang et al., 2021). Advancements in science and technology
have facilitated substantial growth in agriculture (Yu and Wu, 2018; Wang et al., 2020).
However, this progress has also caused environmental challenges (Shen et al., 2018).
Agricultural groundwater pollution refers to the contamination of groundwater due to the
release of detrimental substances stemming from agricultural activities, including nitrogen,
phosphorus, veterinary drug residues, and bacteria (Baddam et al., 2016; Zhang et al., 2020).
Agricultural wastewater, containing elevated levels of nitrogen and phosphorus, can readily
induce water body eutrophication, posing a threat to aquatic life and health. When these
substances seep into groundwater, they can damage groundwater quality (Li and Zhang,
1999; Baweja et al., 2020). Additionally, agricultural underground wastewater can easily
contaminate drinking water sources and endanger the well-being of residents (Baba and
Tayfur, 2011; Jiang et al., 2020). Persistent groundwater pollution undermines the
sustainable management of groundwater reservoirs, inflicting irreversible harm on
groundwater resources. Consequently, it is imperative to establish a robust system for
assessing and monitoring environmental quality. Establishing suitable waste monitoring
and treatment systems in remote areas is crucial to ensuring the health of residents and the
stability of ecosystems.

Currently, environmental monitoring and pollutant treatment technologies have
reached a relatively advanced stage. Various methods for environmental monitoring
and waste treatment are continuously being introduced and refined. However, it is
worth noting that sewage treatment facilities often come with high construction costs
and tend to be concentrated near economically developed areas (Berthouex et al., 1978;
Molinos-Senante et al., 2010; Jafarinejad, 2017). Furthermore, these monitoring and
treatment technologies rely on a continuous supply of electrical energy. In remote
mountainous regions, maintaining a consistent power supply is difficult, which, in turn,
hampers the real-time monitoring and treatment of waste and put the health of residents at
risk. Therefore, the imperative lies in the development of cost-effective, environmentally
friendly, and self-powered wastewater monitoring and treatment systems, which hold
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significant importance in mitigating groundwater pollution in
remote agricultural areas and ensuring the well-being of residents.

In 2012, Wang introduced triboelectric nanogenerator (TENG)
technology, which harvest mechanical energy from the
environment, and converting it into electrical energy through
electrostatic induction and triboelectric electrification principles
(Niu and Wang, 2015; Zi et al., 2015; Tinghai et al., 2023).
TENG generates charge transfer via friction and the contact
separation of dissimilar materials, resulting in electric current
generation. TENG possesses advantages such as cost-
effectiveness, portability, environmental sustainability, and
excellent flexibility (Zhu et al., 2015; Cheng et al., 2019;
Dharmasena and Silva, 2019; Wu et al., 2019; Wang, 2020; Zhou
et al., 2020; Kim et al., 2021). TENG has demonstrated a diverse
array of potential applications encompassing wearable devices (Zou
et al., 2020; Wang et al., 2021; Dassanayaka et al., 2022), self-
powered sensors (Wang, 2014; Wang S. et al., 2015; Wang Z. L.
et al., 2015), smart medicine (Jiang et al., 2021; Parandeh et al., 2021;
Chen et al., 2022), environmental monitoring (Chen et al., 2020;
Zhao et al., 2020; Chang et al., 2022), and wastewater treatment
(Chen et al., 2016; Li et al., 2016; Mo et al., 2022). It is also
demonstrated that TENG can be integrated into wearable devices
to harvest mechanical energy from the human body, thereby
powering small electronic devices. TENG’s environmental
sustainability and exceptional flexibility position it as a significant
asset in the realm of environmental monitoring. In addition, TENG
can detect environmental parameters such as water flow and wind
speed, relaying this information through electrical signals.
Leveraging TENG’s electrical output enables the degradation of
various pollutant types. For instance, electrocatalysis can
effectively degrade organic water pollutants, while electrospinning
membranes excel at adsorbing particulate matter.

In this paper, we firstly summarized the environmental
challenges posed by contemporary agricultural production. Then,
we introduced the existing environmental monitoring and sewage
treatment technologies and discussed their limitations. Besides, we
summarized the working principles and application prospects of
TENG and introduced the research about TENG in the realms of
environmental monitoring and sewage treatment. Further, we
examine the crucial issues and prospects of in the realm of
environmental engineering.

2 Principles and applications of
triboelectric nanogenerator

TENG primarily relies on the contact separation or friction
between two dissimilar materials. In general, materials exhibit
varying abilities to gain or lose electrons, which is the basis for
TENG’s operation. Electron transfer that driven by differences in
electronegativity takes place when two dissimilar materials come
into contact or move in relation to each other. After separation of the
two materials, an electrical potential difference arises between them.
The material is linked to an external circuit via electrodes. To
equalize the potential difference, electrons traverse the external
circuit, thereby generating an electric current (Luo et al., 2021).
Consequently, if the two materials maintain constant contact,
separation, or relative motion, the TENG can sustain the

generation of current. TENG boasts remarkable energy
conversion efficiency, accommodates a broad spectrum of
materials, and can be applied in diverse sizes and configurations.
Its high sensitivity enables it to detect minor environmental changes
(Zhou et al., 2020; Mo et al., 2022; Tinghai et al., 2023). Furthermore,
the production process for TENG is exceptionally straightforward,
resulting in minimal cost consumption. TENG operates in four
distinct modes: contact separation mode, sliding friction mode,
single electrode mode, and independent layer mode (Cao
et al., 2016).

TENG’s environmental friendliness, cost-effectiveness, and
exceptional flexibility confer substantial advantages in
environmental monitoring, pollutant treatment, and related
domains (Cheng et al., 2019). Firstly, TENG serves as a power
source for powering environmental monitoring sensors, enabling
their operation in remote regions (Zhang et al., 2019; Liang et al.,
2022). Moreover, TENG can construct sensor systems for real-time
environmental quality assessment, presenting monitoring results via
electrical signals (Chang et al., 2022; Liang et al., 2022). TENG can
achieve real-time water quality monitoring by capturing
environmental water wave energy. Secondly, the electricity
produced by TENG can be employed in electrochemical
processes for the degradation of organic wastewater pollutants
(Chen et al., 2016). Additionally, it can be integrated with
electrospinning membranes to absorb environmental particulate
matter. Furthermore, TENG can be seamlessly integrated into
wearable devices like masks to provide real-time monitoring of
the user’s working environment’s environmental quality (Zou
et al., 2020).

3 Self-powered system based on TENG
for environmental engineering

3.1 Wastewater pollutant monitoring based
on TENG

The operational principle of TENG demonstrates significant
potential for environment quality monitoring. It is important to note
that TENG operates based on differing electronegativities between
two materials, which can include solids, liquids, and gas.
Consequently, solid-liquid TENGs can be engineered to utilize
the movement of liquids, inducing friction between materials,
and thereby generating electrical signals. Solid-liquid TENG are
suitable for monitoring water quality parameters, including water
level and ion concentration. In addition, the use of gas-sensitive
materials to produce TENGs can enable real-time monitoring of gas
concentrations in the environment. The significant advantage of
TENG in environmental sustainability enable prolonged monitoring
of environmental parameters.

Pollution in aquatic environments poses a severe threat to
ecological stability and human health. Due to the rapid
expansion of agriculture, the utilization of chemical fertilizers,
pesticides, and similar substances has surged, significantly
heightening the potential for harm to surface water and
groundwater ecosystems. TENG, recognized for its high
sensitivity and environmental friendliness, has demonstrated
substantial advantages in water quality assessment. Wang et al.
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developed a direct-current rotating tubular TENG (DC-rTENG)
utilizing liquid dielectric contact for sustainable energy harvesting
and chemical composition analysis. Figure 1A depicts its structure.
They investigated the design, working mechanism, electrical output

performance, and potential applications of this new nanogenerator
for detecting the chemical composition of liquid dielectrics. Key
findings reveal that DC-rTENG can efficiently harvest low-
frequency mechanical energy and is capable of analyzing changes

FIGURE 1
(A) Structure diagram of DC-rTENG (Wang et al., 2019). (B) Results of DC-rTENG detecting different liquids (Wang et al., 2019). (C) Structural diagram
of liquid-solid contact TENG (Jiang et al., 2019). (D) Results of liquid-solid contact TENG detection of different liquids (Jiang et al., 2019). (E) Structure
diagram of microfluidic assay (Chen et al., 2018). (F) Standard ion solution test results (Chen et al., 2018). (G) Schematic diagram of TENG-driven electro-
Fenton system (Zhu et al., 2021). (H) Result diagram of pollutant degradation by TENG-driven electro-Fenton system (Zhu et al., 2021). (I) Schematic
diagram of a self-powered electrocatalytic system (Dong et al., 2022). (J) New material synthesis and system working principle (Wang et al., 2022).
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in the chemical composition of liquid dielectrics by monitoring its
electrical output. Figure 1B illustrates the electrical output of DC-
rTENG when detecting different liquids such as hexane, ethanol,
and deionized water. This research presents a new method for
energy harvesting and chemical composition analysis, and has
the potential to significantly affect environmental monitoring,
health diagnostics, and additional fields (Wang et al., 2019). Jiang
et al. designed a liquid sensor based on liquid-solid basic mode
TENG. The specific structure is shown in Figure 1C. Through this
sensor, they successfully identified different types of solutions such
as HCl aqueous solution, deionized water, and NaOH. The
identification signals are shown in Figure 1D (Jiang et al., 2019).
Chen et al. introduced a highly flexible capillary TENG (ct-TENG), a
microfluidic sensor with the unique ability to perform non-
destructive and highly flexible microliter sampling (with a
sampling volume of 0.5 µL). The ct-TENG comprises an ultra-
fine tubular sandwich structure involving polytetrafluoroethylene
capillary tubes, double-helical aluminum foil, and silicone rubber-
sealed tubes (Figure 1E). The generator maintains a stable open-
circuit voltage of 1.1V, enabling the detection of 0.5 µL of
microliquid. The system can differentiate between bottled water,
tap water, and deionized water based on the output electrical signal.
Furthermore, it is capable of detecting various ion standard
solutions (Figure 1F) (Chen et al., 2018).

The output of TENG has been shown to drive the normal
operation of water quality monitoring sensors. Rui et al. designed
a cylindrical TENG with a gate electrode installed inside that can
collect water wave energy. The TENG consists of a stator and a
rotor. When the TENG is working, there is relative movement
between the stator and the rotor, causing friction. They added an
arched FEP film to the rotor to improve the output performance
of the TENG. The results show that the TENG can successfully
drive hydrological monitoring and wireless data transmission
systems. This system design is of great significance to the
development of water quality monitoring sensors (Rui et al.,
2020). Additionally, TENG can also monitor water levels. Li
et al. designed a new type of bubble TENG by moving bubbles
in a PTFE tube filled with liquid. The steady movement of bubbles
in the tube can continuously generate a stable voltage of 17.5V.
They studied the effects of motor parameters and bubble
parameters on TENG output performance. Integrating this
TENG into a water level monitoring system can successfully
monitor water level height (Li et al., 2022). Tao et al. used
two-dimensional materials with excellent conductivity to
fabricate a high-performance TENG and designed a unique
multi-layer spring structure. Research shows that the output
performance of this TENG is improved by 300% compared
with simply using PVDF as a material. They also used the
TENG to successfully collect the flow energy of drinking water
and realize water level monitoring. This self-powered water level
and water quality monitoring system based on TENG is of great
significance to the optimization of traditional sensors (Tao et al.,
2024). Xuan et al. designed a low-resistance rotating TENG using
rabbit hair and FEP brushes and combined it with a memory
alloy. Research results show that the TENG can still ensure
output stability after 100,000 cycles of operation. They also
designed a water temperature monitoring system (Xuan
et al., 2023).

3.2 Wastewater pollutant treatment based
on TENG

In agriculture, the use of pesticides and fertilizers often produces
wastewater containing nitrogen, phosphorus, heavy metals, and
other toxic substances. In some remote areas, the treatment of
such wastewater has become a difficult task because it can easily
contaminate drinking water sources and pose a serious threat to
human life and health. TENG has shown significant advantages in
wastewater monitoring and pollutant treatment due to its remark-
able output characteristics and environmental friendliness.

Zhu et al. designed a flexible corrugated TENG to drive an
electro-Fenton system for methyl blue degradation. The open-circuit
voltage and short-circuit current of this system can reach 610V and
1.93 mA respectively, providing the electric Fenton system with
powerful reaction power (Figure 1G). The results showed that the
system’s degradation efficiency of methyl blue could reach 98%
within 58 min, The degradation results are shown in Figure 1H. This
new self-powered electrocatalytic system provides new ideas for the
large-scale application of electro-Fenton (Zhu et al., 2021). Dong
et al. designed a spherical TENG to increase the generation of free
radicals during the electrocatalytic process (Figure 1I). They
established a self-powered electrocatalytic system using the DC
pulse output of the TENG. The results showed that the ATZ
removal rate of this system increased by 8% within 30 min
(Dong et al., 2022). Tian et al. designed a spiral spring-type
TENG and established a self-powered Fenton system based on it
to degrade organic pollutants. The output current of this TENG can
reach 700 μA. The results show that the degradation efficiency of
malachite green and methylene blue by this system can reach 98%
within 80 min (Tian et al., 2021). Wang et al. synthesized a new type
of ZnO nanorod array through a hydrothermal method. Using this
material to manufacture TENG can greatly increase its output
current density (Figure 1J). They used this system to degrade the
wastewater pollutant rhodamine, and the results showed that the
degradation efficiency was as high as 100%, and it also showed
excellent reusability (Wang et al., 2022).

In many remote areas, it is difficult to establish a complete
wastewater treatment system and there is not enough electricity
supply. TENG can collect and utilize mechanical energy in the
environment to realize a self-powered system, which provides a new
development direction for wastewater purification in remote areas.
Jeon et al. designed a TENG that can collect wind energy and built a
self-powered electrocoagulation system based on it. Research results
show that this system can effectively remove algae and organic
pollutants in water. This system is easy to operate, has a simple
structure and is small in scale. It is of extremely important
significance for wastewater purification in remote areas (Jeon
et al., 2016). In the process of wastewater purification, the most
easily collected mechanical energy must be the mechanical energy of
water flow. Zhou et al. designed a rotating TENG that can collect
water flow energy and achieved efficient removal of hexavalent
chromium through the pulse output of the TENG. This also
proves the feasibility and effectiveness of self-powered
electrochemistry to use harvested energy to clean environmental
pollution (Zhou et al., 2019). Furthermore, Li et al. introduced a β-
cyclodextrin-based TENG in 2015 (Li et al., 2015), which is capable
of harnessing the water wave energy from wastewater and
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converting it into electricity for the degradation of phenol. The
research showed that phenol was ultimately transformed into
carbon dioxide and water molecules. Yu et al. proposed a TENG
based on graphite microfibers to harvest wind energy and
constructed a complete photoelectrocatalytic system (Yu et al.,
2015). Similarly, Chen et al. designed a rotating TENG to harvest
the mechanical energy from water flow (Chen et al., 2016). This
system, connected to an electrode through a rectifier bridge, was
used to create a sustainable wastewater treatment device.
Experiments with rhodamine solution and copper ion solution
demonstrated that the system could completely degrade the
rhodamine solution within 15 min, while achieving a 97.3%
degradation efficiency of the copper ion solution within 3 h.
Moreover, Gao et al. designed a self-contained rotating TENG
comprising a stator and a rotor (Gao et al., 2017). By
incorporating a rectifier, they established an electrocatalytic
system that effectively treated 4-aminoazobenzene. The results
revealed that the pollutants were completely mineralized into
carbon dioxide during the process.

On the other hand, piezoelectric nanogenerators (PENG) are
based on the piezoelectric effect, where certain materials produce
charge separation when subjected to external pressure or strain. At
the nanoscale, this effect is used to generate electrical energy from
pressure or vibration. Piezoelectric nanogenerators are often used
for energy harvesting from environmental vibrations or mechanical
vibrations. For example, they can be embedded in structures or
devices and use surrounding vibrations to generate electrical energy
for use in wireless sensors, smart structures, and other fields. PENG
has also made great progress in research in the fields of
environmental monitoring and pollutant treatment. Mishra et al.
designed a piezoelectric catalytic fabric that eliminates the
dependence on ultrasonic waves and greatly promotes the
application of piezoelectric catalysis in the field of water
treatment (Mishra et al., 2019). Tang et al. prepared piezoelectric
materials with excellent performance and achieved efficient
degradation of TC (Tang et al., 2022). Bagchi et al. prepared
NaNbO3 powder through a hydrothermal method, which greatly
improved the piezocatalytic efficiency (Bagchi et al., 2020). It is
noted that TENG is well-suited for micro-devices and scenarios
characterized by frequent frictional motion. On the other hand,
PENG excels in vibration environments and demonstrates the
capability to deliver relatively high energy density.

4 Discussion

Recently, TENG research in environmental engineering has
proliferated and advanced rapidly. TENG’s environmental
sustainability and cost-effectiveness offer significant advantages in
environmental monitoring and pollutant treatment. Nevertheless,
certain pivotal issues remain unresolved. In environmental
monitoring, the long-term stability of TENG is of paramount
importance. Furthermore, extended operation of equipment in
challenging aquatic environments, a common requirement for
water quality testing, places substantial demands on TENG
durability. Additionally, ultra-high-precision parameter
monitoring is occasionally required, necessitating enhanced
sensitivity and accuracy from TENG. While TENG’s sensitivity

offers significant benefits in responding to environmental
parameter changes, it is susceptible to environmental
interference. Consequently, developing TENG with robust anti-
interference capabilities remains a critical challenge for advancing
this technology.

Traditional environmental monitoring and waste treatment
methods often face challenges in remote areas. TENG’s self-
powering capability offers significant advantages in such locations.
Implementing a self-powered wastewater monitoring and treatment
system addresses the issue of limited power supply in remote regions.
Furthermore, TENG is anticipated to find applications in diverse
environmental monitoring areas, encompassing not only water
quality but also air and soil quality, among other parameters. It can
be integrated with compatible intelligent terminals to enable real-time
monitoring and transmission of environmental data. Simultaneously,
there is an expectation to deploy self-powered wastewater treatment
systems utilizing TENG in these regions to harness mechanical energy
from the environment for electrochemical pollutant treatment. The
discovery of TENG introduces a fresh approach to sewage treatment in
remote regions, aligning with the principles of environmental
sustainability. TENG exhibits significant potential in wastewater
treatment. As technology continues to advance, TENG is anticipated
to assume an even more prominent role in wastewater treatment.
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