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The forecasting of home energy consumption is a crucial and challenging topic
within the realm of artificial intelligence (AI)-enhanced energy management
in smart grids (SGs). The primary goal of this study is to provide accurate
energy consumption forecasts for a smart home. Two deep learning models
are implemented: ConvLSTM, which combines convolutional operations with
Long Short-Term Memory (LSTM), and the CNN-LSTM model, which synergizes
Convolutional Neural Networks (CNN) and LSTM networks. Both hybrid models
offer a comprehensive approach to modeling complex relationships in spatial
and temporal patterns. Additionally, two baseline models—LSTM and CNN—are
employed for comparative analysis. Utilizing real data from a smart home in
Houston, Texas, the results demonstrate that both the hybrid models deliver
highly accurate predictions for energy consumption. However, the ConvLSTM
model outperforms all proposed models, improving predictions in terms of
mean absolute percentage error by 4.52%, 9.59%, and 10.53% for 1 day, 3 days,
and 6 days in advance, respectively.
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1 Introduction

As energy consumption around the world increases more rapidly, developing an
intelligent and reliable power grid has become a necessity. Smart grids (SGs) appear to be
the most effective tool for minimizing the energy gap between generation and demand.
A research field that has emerged as an indispensable tool of SGs is energy consumption
forecasting. Accurate energy forecasting is crucial for providing relevant energy, income
analysis, capital expenditure, and market control (Raza and Khosravi, 2015; Wei et al.,
2019; Kaur et al., 2020). Although prediction uncertainties have impaired the attention
of some researchers, new techniques with more precise and reliable energy consumption
predictions are still in development.

In the literature, energy consumption prediction is split into three categories based
on the time interval of the forecast. The three classes are short-, medium-, and long-term
energy consumption forecasting (Ghalehkhondabi et al., 2017). The first aims to estimate
energy forecasting for the next half hour up to the following 2 weeks. It helps energy system
managers to make several decisions, including supply planning, demand-side management,
and security systems (Gerwig, 2017). Medium-term energy consumption deals with a
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horizon prediction of weeks to months. It is usually used to plan
power grid capacity, schedule maintenance, and manage energy
resources (Shirzadi et al., 2021). Long-term energy prediction
generally covers forecasting timeframes from 1 to 10 years and can
extend for several decades. This kind of prediction is fundamental
for strategic decisions, infrastructure planning, and internal
resources (Carvallo et al., 2018). Thus, electricity consumption
forecasting must carefully avoid mistaken planning or financial
burden.

Many studies have examined forecasting at high aggregated
levels. Few, however, deal with residential energy consumption
forecasting due to the great uncertainties resulting from
the varied lifestyles and behavior of householders. Energy
consumption forecasting represents a time series problem.
Due to the seasonal variation and irregular trends in time
series data, traditional machine learning techniques fail to
accurately forecast energy consumption (Ahmad, 2017). Traditional
machine learning (ML) is thus defective for complex systems.
However, deep learning (DL) methods have been widely studied
in energy forecasting and have achieved higher accuracy
(Kaur and Ahuja, 2017).

Several studies have been made of energy consumption
forecasting. Generally, there are three types of forecasting models:
ML, DL, and hybridmodels (HM) (Sun et al., 2020; Sun et al., 2021).

Artificial neural networks (ANNs), support vector regression
(SVR), and other statisticalmodels, such as autoregressive integrated
moving average (ARIMA) and multiple linear regression (MLR),
are commonly used algorithms applied in energy consumption
forecasting (Amasyali and El-Gohary, 2018). Deb et al. (2015)
compare the performance of ANNs to the those of Adaptive
Neuro-Fuzzy Interface System (ANFIS) for predicting the cooling
load energy of three institutional constructions in Singapore.
The simulation outcomes reveal that both methods can predict
energy consumption with good accuracy. ANNs are also used in
Elbeltagi and Wefki (2021) to predict energy usage in household
construction. The advanced ANN model is tested and validated
to accurately forecast energy use. Similarly, Li et al. (2021) suggest
an ANN model to accurately predict electrical loads. Compared
to LSTM and the Random Forest approach, the proposed model
proved more accurate, with an MSE of 4.486, and can be used
for long-term prediction. ANNs were also used in Ahmad et al.
(2016) for short-term industrial energy prediction. Simulation

FIGURE 1
CNN-LSTM framework.
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TABLE 1 Related works synthesis.

Reference Method Field of
application

Temporal
granularity

Performance Methods
compared to

Elbeltagi and Wefki (2021) ANN
Energy

consumption
in buildings

Sub-hourly
MAPE of
5.36%

-

-

-

Al-Musaylh et al. (2018) SVM
MARS

Electricity
demand

Hourly MAE of
45.363 for 0.5 h
86.502 for 1 h
162.363 for 24 h

ARIMA

Amber et al. (2017) MR Electricity
consumption
in university
buildings

Daily NRMSE of 12%
for administrative
13% for academic

building

-

Amarasinghe et al. (2017) CNN Electricity
consumption of
a residential
building

Hourly RMSE of
0.732

LSTM, ANN
SVM

Khan et al. (2019) CNN Electricity
load consumption

in Victoria
(Australia)

Daily MAE of 138.771 RNN
ARIMA

Asri et al. (2021) LSTM Electricity
consumption

Hourly MSE of 10.23 -

Pooniwala and Sutar (2021) SARIMA-
LSTM

Power load
consumption

Daily Decrease the MAE
by 13.08%

SARIMA
LSTM

Kim and Cho (2019) CNN-LSTM Residential
electricity

consumption

Minutely,
hourly,
daily,

and weekly

MAPE of
34.84% for minutely,
32.83% for hourly,

31.83% for daily, and
31.84% for weekly

LSTM
LR

Rafi et al. (2021) CNN-LSTM Load
consumption

Monthly,
weekly,
48 h,

and 24 h

MAE of
387,39 for monthly,
348,26 for weekly,
281,62 for 48 h, and
232,08 for 24 h

LSTM

Agga et al. (2021) CNN-LSTM Electricity
load consumption

Daily Accuracy of
98,78%

LSTM and SVM
ARIMA and RF

outcomes indicate that the suggestedmodel provides 98.5% accurate
predictions compared to bi-level strategy. However, prediction
accuracy is enhanced by feeding the forecast module’s output
of the optimization module, which takes more time to execute.
Short-term load prediction is also performed in Al-Musaylh et al.
(2018), who compare the performance of SVR,Multivariate Adapter
Regression Spline (MARS), and ARIMA models in predicting
electricity usage inQueensland, Australia.The results obtained show
that for the forecasting horizon 0.5 h and 1.0 h, MARS outperforms
SVR and ARIMA with lowest mean absolute error. However,
for 24 h, the SVR model was superior. A multiple regression
(MR) technique was developed in Amber et al. (2017) to assess
daily energy usage in university buildings. Their findings show

that surrounding temperature, weekday index, and building type
significantly impact energy consumption. Furthermore, the error
obtained by adopting the proposed method is set between 12% for
administrative construction and 13% for academic construction.

Convolutional neural networks (CNNs) and long short-term
memory (LSTM) are two types of DL neural networks that
have recently received much attention. Amarasinghe et al. (2017)
investigated the effectiveness of the CNN model for electricity
forecasting of a residential building. The results achieved from the
CNNs were compared with LSTM, ANNs, and SVM. The CNN
model outperforms SVM while having comparable results to ANNs
and LSTM. CNNs are further implemented in Khan et al. (2019) to
forecast the electricity consumption for every day of the week in

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1323357
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Ou Ali et al. 10.3389/fenrg.2024.1323357

FIGURE 2
1D-CNN model framework.

Victoria, Australia. To test the effectiveness of the suggested model,
a comparison was made with ARIMA, recurrent neural networks
(RNNs), and extreme learning machines (ELMs). Their outcomes
show that the suggested CNN records the lowest prediction error.
CNNs are also proposed in Tudose et al. (2020) to deal with day-
ahead power prediction.The testing and validation of the elaborated
model were performed based on a set of data from the Romanian
power system. A comparison between the results obtained and the
Romanian TSO’s forecasting demonstrates the suggested approach’s
great capability in precise forecasting and high generalization
potential. In Cai et al. (2019), CNNs and RNNs are suggested for

day-ahead commercial power consumption.The performance of the
suggested models is compared with the seasonal ARIMAX model.
The CNN model proved best, with an accuracy of 22.6% compared
to ARIMAX. Nazir et al. (2021) attempted to predict a month
forward of daily power usage considering four different household
daily datasets. Their experiment demonstrated that the ConvLSTM
model outperforms LSTM in respect of average forecasting accuracy
and efficiency. Mpawenimana et al. (2020) proposed a system for
forecasting the power consumption in a smart house under LSTM
and ARIMA. The exactness of these models was compared for the
short- and medium-terms, with the outcomes demonstrating that
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FIGURE 3
LSTM framework.

LSTM outperformed ARIMA. Kong et al. (2017) applied the LSTM
model to address the forecasting of domestic power usage. They
compared their results with K-Nearest Neighbor regression (KNN),
backpropagation neural networking (BPNN), and ELM to enhance
forecasting exactness by utilizing LSTM. It was also examined in
Cui et al. (2020) for load prediction. A comparison between real
and forecasted data demonstrated that the LSTM prediction model
greatly increased the accuracy of power forecasting for single- and
multi-point loads. LSTM was also adopted for predicting energy
consumption by Asri et al. (2021) to check the quality of forecasting
outcomes and evaluated accuracy; their results showed LSTM to be
very precise in its predictions. LTSM was also studied by Xu et al.
(2022) for probabilistic residential electrical load forecasting by
comparing Gated Recurrent Unit (GRU) and RNN models. Their
results once again demonstrated the efficiency of LSTM in making
predictions with the smallest error values over other methods.

Hybrid models have shown encouraging results in forecasting
household energy consumption. For instance, Nepal et al. (2020)
proposed a predicting method for energy usage in university
buildings based on a hybrid model that combined a clustering
technique with the ARIMA model. This blending was confirmed
to raise the efficiency of prediction more than using ARIMA
alone. Pooniwala and Sutar (2021) blended the seasonal ARIMA
and LSTM time-series forecasting techniques to predict power
load. The resulting hybrid network decreased the MAE by almost
13.08% compared to the two models separately. Peng et al. (2022)
applied enhanced LSTM prediction based on empirical wavelet
transform to predict monthly energy usage. Compared to basic
LSTM and other existing models, the outcomes demonstrated that
their suggested model had better forecasting accuracy. Memarzadeh
and Keynia (2021) investigated short-term energy and pricing using
a hybrid LSTM-NN model. The efficiency of this approach was
accurately validated on energy and price data gathered from the
Pennsylvania–New Jersey–Maryland (PJM) and Spanish electricity
markets. In Sulaiman et al. (2022), a hybrid blend of Empirical
Mode Decomposition (EMD) and ELM boosted the prediction
accuracy of residential loads. Compared to ANN, SVR, and ELM,

this model effectively predicted peaks in residential loads and
thus enhanced forecast accuracy. Sajjad et al. 2020) developed a
hybrid CNN and GRU for short-term domestic load prediction.
Their test evaluation revealed that their model had a lower error
rate than other baseline models. Kim and Cho (2019) hybridized
CNN with LSTM to predict electricity consumption. Compared
to other baseline methods, CNN-LSTM recorded the lowest error
rates because it learned from both spatial and temporal features.
CNN-LSTM was also deployed in Guo et al. (2020) for short-
term energy forecasting based on real time electricity price. The
results demonstrated that this method provides better prediction
than LSTM, SVM, ARIMA, and Random Forest (RF). CNN was
hybridized with the LSTM autoencoder model (LSTM-AE) in
Khan et al. (2020) to predict energy consumption in domestic and
commercial construction. Their findings showed that their hybrid
model outperformed other models such as CNN and LSTM. In
the same context, Shao et al. (2020) proposed a hybrid model that
blendedCNNand LSTM in order to analyze the dataset and improve
the strength of the conventional CNN-LSTM model. The CNN
and LSTM blend was used along with six statistical parameters
and three real datasets from American companies. Similarly, CNN-
LSTM was investigated in Rafi et al. (2021) for short-term electrical
load forecasting. Compared to LSTM, their method had the lowest
errors over all the study cases:monthly, weekly, 48 h, and 24 h. CNN-
LSTM was also assessed in (40) to successfully forecast household
electric power consumption based on real-time electricity prices.
This proposed approach reached an ideal prediction performance
that was previously difficult to forecast with the smallest error values
when compared using traditional forecasting methods. A synthesis
of all this research is presented in Table 1.

Motivated by such research, the present study proposed
two hybrid forecasting methods for smart home energy usage:
ConvLSTM and CNN-LSTM. These models were developed in
response to the growing need for accurate, scalable, and efficient
forecasting techniques, which are especially crucial given rising
energy demands and sustainability objectives. To demonstrate the
efficiency of the suggested models, LSTM and CNN were used
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TABLE 2 Configuration of CNN-LSTM layers.

Proposed model

Conv1D Filters 16

Kernel size 3

Activation ReLU

Conv1D Filters 32

Kernel size 3

Activation ReLU

Conv1D Filters 64

Kernel size 3

Activation ReLU

Maxpooling Pool size

Faltten - -

RepeatVector - -

LSTM Hidden node 16

Activation ReLU

Return sequence True

LSTM Hidden node 32

Activation ReLU

Return sequence True

Time distributed Dense 100

Activation ReLU

Time distributed Dense 1

Output - 1/3/6

for comparison. To check the quality of forecasting outcomes,
the accuracy evaluation was established, and the obtained results
established that the two hybrid methods are very precise in their
predictions. However, the ConvLSTMmodel outperformed all other
models and has higher efficiency. Thus, the main contributions of
this research can be outlined as follows.

• Time-series forecasting of home energy consumption is
conducted using the Hybrid ConvLSTM and CNN-LSTM
models.
• Three scenarios with different time-period predictions are
studied in simulation for better analyzes.
• The performance of the suggested models is compared with
other baseline models, LSTM and CNN, using three error
metrics: mean absolute error (MAE), mean absolute percentage
error (MAPE), and root mean squared error (RMSE).

The rest of this research paper is structured as follows: The
proposed methodology is elaborated in Section 2. The forecasting
evaluation and case study are outlined in Section 3. The analysis
results of the presented forecasting techniques compared with other
baseline models are discussed in Section 4. Lastly, conclusions are
given in Section 5.

2 Proposed methodology

This section outlines and clarifies the proposed hybrid models
used in the simulation. Each proposed hybrid model is composed of
an encoder part that encrypts the input data and a decoder part that
decodes the encoded data and builds prediction for every single day.

2.1 Convolutional neural networks with
long short-term memory (CNN-LSTM)

The CNN-LSTM model is composed of a sequence of layers of
CNN and LSTM.The structure of the CNN-LSTM framework used
is illustrated in Figure 1.The CNN feature extraction box consists of
three sequences of one-dimensional conventional layer (Conv1D)
(Figure 2) and three rectified linear units (ReLU).The model can be
represented using Equations 1–13. The result of the vector output
from the Conv1D can be expressed as follows (Agga et al., 2021):

ylij = σ(a
l
j +

N

∑
n=1
(wl

n,jx
0
i+n−1,j)), (1)

where σ is the activation function, a is the bias for the j feature map,
N is the number of units per window, n is the index rate of the filter,
w is the kernel weight, and x is the energy consumption input vector.

To decrease the computational cost of the upper layers
and sustain the most prominent information, the max-
polling layer is used. The functioning of this layer is
described thus:

ylij =max
r∈R

fl−1i×T+r,j, (2)

where T is the stage that defines the distance of the entering data
area to be affected and R is the pooling size lower than the input
size y. The obtained results after the pooling layer are then flattened
into a vector and fed to the LSTM decoder through the Repeat
Vector layer. The decoder part is composed of LSTM layers that
save time information about daily energy consumption derived
through CNN. The structure of the LSTM model is illustrated
in Figure 3.

The obtained values by the CNN layer are sent to the gate units.
The gate unit is a mechanism that defines the state of each single
memory cell viamultiplication operating.The operation of the input
gate i, the forget gate f, and the output gate o is explained thus by
Eq. 41:

it = σ(Wpipt +Whiht−1 +Wci ◦ ct−1 + bi) , (3)

ft = σ(Wpfpt +Whfht−1 +Wc f ◦ ct−1 + b f) , (4)

ot = σ(Wpopt +Whoht−1 +Wco ◦ ct−1 + bo) , (5)
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FIGURE 4
ConvLSTM framework.

TABLE 3 Configuration of the ConvLSTM layers.

Proposed model

ConvLSTM2D Filters 20

Kernel size Raza and Khosravi (2015), Kaur et al. (2020)

Activation ReLU

Flatten - -

Repeat Vector - -

LSTM Hidden node 20

Activation ReLU

Return sequence True

TimeDistributed Dense 100

Activation ReLU

TimeDistributed Dense 1

Output - 1/3/6

where W is the weight matrix of each gate unit, pt is the output of
the pooling layer at time t, and b is the bias vector. The output layers
at time t are the cell state ct and the hidden state ht . They can be
expressed as follows:

ct = ft ◦ ct−1 + itσ(Wpcpt +Whcht−1 + bc) , (6)

ht = ot ◦ σ(ct) . (7)

The final layer of CNN-LSTM is composed of a fully connected layer
(FLC). The output vector obtained from the FCL can be expressed
as follows:

dli =∑
j
Wl−1

ij (σ(h
l−1
i ) + b

l−1
i ) . (8)

The configuration of all layers of the indicated model is provided
in Table 2.
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FIGURE 5
Daily energy consumption (kWh).

TABLE 4 Dataset description.

Value

Count 1,498

Mean 21.399866

Std 12.634619

Min 5

25% 11

50% 17

75% 31

Max 78

2.2 Convolutional LSTM network
(ConvLSTM)

The structure of the suggested ConvLSTM is illustrated in
Figure 4. The encoder part is composed of a two-dimensional
conventional LSTM layer (ConvLSTM2D) followed by a ReLU
and a flattened layer. The mathematical theory of the ConvLSTM
model looks like the LSTM model with some mathematical symbol
changes. Thus, it can be summarized by the following formulations
(Zhang et al., 2022).

it = σ(Wi−xi ⊗ xt +Wi−hi ⊗ ht−1 +Wi−ci ◦ ct−1 + bi) , (9)

ft = σ(W f− fx ⊗ xt +W f−hx ⊗ ht−1 +W f−c f ◦ ct−1 + b f) , (10)

ot = σ(Wo−xo ⊗ xt +Wo−ho ⊗ ht−1 +Wo−co ◦ ct + bo) , (11)

ct = tanh(Wc−xc ⊗ xt +Wc−hc ⊗ ht−1 + bc) , (12)

ht = ot ◦ tanh(ct) , (13)

where ⊗ denotes the convolution operator. To match the 2D
output of the upper layer and the 3D input of the lower layer,
a RepeatVector is employed. The obtained vectors are fed into
the LSTM decoder. The FCL is then charged to repeat each time
step in the output sequence before the final output layer. The
configuration of all layers of the proposed model is provided
in Table 3.

3 Forecasting evaluation and case
study

3.1 Forecasting evaluation

To test the effectiveness of the earlier described methods, three
common forecasting accuracy tests are employed—MAE, RMSE,
and MAPE—where the mathematical equations are formulated
using Equations 14–16:

MAE =
M

∑
m=1

|Em − Ě|
M
, (14)

RMSE = √
∑M

m=1
(Em − Ě)

2

M
, (15)

MAPE =
M

∑
m=1
|
Em − Ě
Em
| × 100, (16)
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FIGURE 6
Schematic representation of the forecasting process.

where Ei is the actual energy consumption, Ě is the forecasted
energy consumption, and M represents the number of
forecasting samples.

3.2 Case study

Energy consumption data were gathered from a household
situated in Houston, Texas, United States (Residential power usage,
2022). Smart meters were employed to obtain energy usage data
fromeach electrical appliance such as televisions, washingmachines,
dryers, and air conditioner. The dataset involved the daily energy
usage in (kWh) from June 2016 to August 2020 (Figure 5). The
household was equipped with security DVR and POI cameras, as
well as two refrigerators. Additionally, there were two 50-gallon
water heaters that operated during the daytime. At night, electrical
appliances such as light bulbs, TVs, washing machines, dryers, and

air conditioners operated from 6 pm in the evening until 8 am in
the morning.

Figure 5 illustrates that the energy consumption values ranged
from as low as 5 kWh to as high as 78 kWh, with most of
the data points falling between these extremes. Consumption
rarely reached the maximum, with such instances possibly
representing days of extreme weather conditions or other
anomalies. Additional specifics on the dataset are provided in
the Table 4.

The overall systematic forecasting process considered in this
study is represented in Figure 6. After collecting the dataset,
a pre-processing step was necessary in order to normalize the
obtained data. The normalized dataset was divided into training
and testing sets and then exploited to develop the ConvLSTM,
CNN-LSTM, CNN, and LSTM models. To evaluate each model, a
diagnostic check was established using the forecasting evaluation
earlier described.
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FIGURE 7
1-day-ahead energy consumption forecasting.

FIGURE 8
1-day-ahead energy consumption forecasting; zoom-in between days 230 and 260.
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FIGURE 9
1-day-ahead energy consumption errors.

TABLE 5 Scenario 1 prediction errors.

Model Error

ConvLSTM

MAE = 3.69

MAPE = 18.48%

RMSE = 5.39

CNN-LSTM

MAE = 3.80

MAPE = 18.59%

RMSE = 5.46

LSTM

MAE = 3.90

MAPE = 22.75%

RMSE = 5.52

CNN

MAE = 4.03

MAPE = 23.00%

RMSE = 5.51

4 Results, analysis, and discussion

The study aimed to evaluate the performance of the two hybrid
models under study using the daily energy consumption dataset
of a smart home. Different time intervals were considered in the
simulation test to obtain the k-step-ahead energy prediction. To
evaluate the efficiency of these models, baseline models such as
LSTM and CNN were used for comparison. The results obtained
were analyzed by evaluating the metrics, leading to the following
results.

4.1 Scenario 1: 1-day-ahead energy
consumption forecasting

The 1-day-ahead energy consumption prediction using
ConvLSTM, CNN-LSTM, LSTM, and CNN is illustrated in
Figure 7, and a zoom-in of 30 days from days 230–240 using the
abovementionedmodels is plotted in Figure 8.The real energy usage
curves are shown in blue, and the forecasting results, in orange. As
can be seen, the two curves match well for all the studied models.
However, it is hard to distinguish which one perfectly predicts
energy consumption and thus provides lower error and higher
accuracy. Thus, the difference between the real and predicted data
is calculated and displayed in Figure 9. This shows that the CNN
model performs the most important fluctuations, followed by the
LSTM model. However, the error graph of the ConvLSTM and the
CNN-LSTMmodels are relatively small.

To better quantify the performance of the investigated models,
accuracy tests are provided, and the results obtained are depicted
inTable 5. It is clear that the twohybridmodels predictwell the 1-day
energy consumption. The ConvLSTM model achieves the smallest
MAPE of 18.48% and the lowest MAE of 3.69. In addition, CNN-
LSTM reaches a MAPE of 18.59% and RMSE of 5.46. The LSTM
model performs quite well for energy consumption compared to
the CNN model. For instance, the MAPE of LSTM was 22.75% and
the RMSE 5.52. However, CNN had some difficulty predicting the
energy consumption 1 day before, resulting in MAE of 4.03 and
MAPE of 23%.

4.2 Scenario 2: 3-day-ahead energy
consumption forecasting

To investigate the efficiency of the proposed forecasting models,
the time interval prediction was increased. Figure 10 represents
in detail the 3-day-ahead energy consumption prediction using
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FIGURE 10
3-day-ahead energy consumption forecasting.

FIGURE 11
3-day-ahead energy consumption errors.

the same previous models. The difference between the real and
predicted values is illustrated in Figure 11. As is apparent from
these figures, the energy consumption prediction is quite accurate
compared to the previous scenario. Moreover, the real and the
predicted curves do not match well for all the models. To identify
the accurate energy forecasting model, the difference between

the real and the predicted data is illustrated in Figure 11. Once
again, the CNN model scores the highest error fluctuations,
followed by the LSTM model. However, the error graphs of the
ConvLSTM and the CNN-LSTM models are relatively small. The
error metrics are highly recommended for determining the most
accurate model.
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TABLE 6 Scenario 2 prediction errors.

Model Error

ConvLSTM

MAE = 4.07

MAPE = 21.27%

RMSE = 5.88

CNN-LSTM

MAE = 4.15

MAPE = 22.65%

RMSE = 5.83

LSTM

MAE = 4.24

MAPE = 26.09%

RMSE = 5.79

CNN

MAE = 5.15

MAPE = 30.86%

RMSE = 6.85

The error metrics of the studied methods with a time interval
prediction of 3 days are provided in Table 6. As expected, both
hybrid models made better predictions than the other baseline
models. However, ConvLSTM outperformed CNN-LSTM with

the smallest MAPE of 21.27%, although CNN-LSTM scored a
MAPE of 22.65%. Once again, the proposed model shows more
robustness even when the time interval is increased. Furthermore,
in this scenario, LSTM shows its weakness in long-time interval
predictions, resulting in a MAPE of 26.09% and MAE of 4.24.
The CNN model scores the worst results, with a MAPE of 30.86%
and RMSE of 6.85.In accordance with the partially obtained error
metrics results, it can be deduced that the proposed ConvLSTM and
CNN-LSTM are promisingmodels that performwell even for 3 days
ahead.

4.3 Scenario 3: 6-days-ahead energy
consumption forecasting

In this third scenario, the forecasting time interval
is raised to 6 days. Figure 12 displays in detail the 6-
days-ahead energy consumption prediction using the
aforementioned models. The errors between the real and
predicted data for all methods are represented in Figure 13.
In comparing the previous and current scenarios, it is
clear that accuracy declines and the difference between the
real and the predicted data is high. However, both hybrid
methods still realize some good results compared with the
baseline methods.

Table 7 presents the error metrics results for all methods with
a time interval prediction of 6 days. As expected, the ConvLSTM
model achieves the best prediction results with the smallest MAPE

FIGURE 12
6-day-ahead energy consumption forecasting.
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FIGURE 13
6-day-ahead energy consumption errors.

TABLE 7 Scenario 3 prediction errors.

Model Error

ConvLSTM

MAE = 4.65

MAPE = 25.35%

RMSE = 6.54

CNNL-STM

MAE = 4.69

MAPE = 25.20%

RMSE = 6.75

LSTM

MAE = 4.72

MAPE = 28.03%

RMSE = 6.66

CNN

MAE = 5.80

MAPE = 35.88%

RMSE = 7.61

of 25.35%. Moreover, the hybrid CNN-LSTM demonstrates quite
better results than the other baseline models, with MAE of 4.69
and MAPE of 25.20%. However, the baseline models demonstrate
some difficulties in predicting the energy consumption 6 days
ahead. These results indicate that LSTM achieves a MAPE of
28.03% and RMSE of 6.66. However, CNN scores worst, with a
MAPE of 35.88%.

Once again, ConvLSTM outperforms CNN-LSTM, confirming
the strength of the proposed model in predicting energy
consumption even over long
time intervals.

4.4 Results analysis

A comparison of each model’s performance through the three
scenarios based on the MAPE is provided in Figure 14. It is
obvious from this figure that an increase in the time prediction
interval decreases the performance of the forecasting models.
For all the models, the MAPE increases from scenario 1 to
3. The first scenario is recognized as the most reliable, with
accurate predictions and lower errors. However, scenario 3 scores
worst with the highest errors. Over all scenarios, the proposed
ConvLSTM outperforms all other models. In the first scenario,
it improves predictions by 4.52%. However, in the second and
third scenarios, the predictions are enhanced by 9.59% and 10.53%,
respectively. The CNN-LSTM model provides good results as well,
ranking second after ConvLSTM, improving prediction by 4.41%,
8.21%, and 10.68% for the first, second, and third scenarios,
respectively. Moreover, the LSTM model had enhanced results.
For instance, the first scenario only had a 0.25% improvement,
but in the second and third scenarios, 4.77% and 7.85% were
reached, respectively. Meanwhile, the CNN model had the lowest
performance improvement over all scenarios, scoring the highest
MAPE: 23% in scenario 1, 30.86% in scenario 2, and 35.88% in
scenario 3.

As mentioned earlier, an increase in the time prediction
interval resulted in decreasing the performance of the models.
However, hybrid models outperformed baseline models owing to
the blending of the different robustness of each model. According
to the error metrics analyzed above, the proposed ConvLSTM
and CNN-LSTM models outperform all the other models in all
studied scenarios.

5 Conclusion

This research proposes hybrid ConvLSTM and CNN-LSTM
models to predict the k-step-ahead energy consumption in a smart
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FIGURE 14
MAPE values for all scenarios.

home. First, the two hybrid methods were tested to predict 1-
day-ahead energy consumption, and the obtained results were
compared with other baseline models such as LSTM and CNN.
Then, 3- and 6-days-ahead are added to the simulation for better
analysis. The findings indicate that the more the prediction period
increases, the more the model’s accuracy decreases. However,
ConvLSTM outperformed all the proposed models in predicting
energy consumption over all three scenarios. In the first scenario,
predictions were improved by 4.52%. However, in the second
and third scenarios, the predictions were enhanced by 9.59%
and 10.53%, respectively. Meanwhile, CNN-LSTM was also able
to make good predictions, ranking second after ConvLSTM. It
attained a MAPE of 18.59% in the first scenario, 22.65% in the
second, and 25.20% in the third scenario. However, the baseline
models worked quite well in the first scenario, but in scenarios
2 and 3, their performance dropped significantly, reaching a
MAPE of 28.03% for LSTM and 35.88% for CNN in scenario
3. In future work, our focus will be on predicting the hourly
energy consumption in a smart home while investigating other
hybrid methods.
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