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This study introduces a smart home load scheduling system that aims to address
concerns related to energy conservation and environmental preservation. A
comprehensive demand response (DR) model is proposed, which includes an
energy consumption scheduler (ECS) designed to optimize the operation of
smart appliances. The ECS utilizes various optimization algorithms, including
particle swarm optimization (PSO), genetic optimization algorithm (GOA), wind-
driven optimization (WDO), and the hybrid genetic wind-driven optimization
(HGWDO) algorithm. These algorithms work together to schedule smart
home appliance operations effectively under real-time price-based demand
response (RTPDR). The efficient integration of renewable energy into smart
grids (SGs) is challenging due to its time-varying and intermittent nature. To
address this, batteries were used in this study to mitigate the fluctuations
in renewable generation. The simulation results validate the effectiveness
of our proposed approach in optimally addressing the smart home load
scheduling problem with photovoltaic generation and DR. The system achieves
the minimization of utility bills, pollutant emissions, and the peak-to-average
demand ratio (PADR) compared to existing models. Through this study, we
provide a practical and effective solution to enhance the efficiency of smart
home energy management, contributing to sustainable practices and reducing
environmental impact.
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1 Introduction

A reliable power system operation depends on the optimal
scheduling of power usage (Wang et al., 2021a; Liu et al., 2023a).
However, devising a framework for optimal power usage scheduling
that bolsters reliability presents formidable challenges. These
challenges are particularly pronounced as power demand surges due
to population growth and elevated living standards. Presently, over
50% of the global population lives in urban zones, a marked increase
from 30% in 1950, and this percentage is projected to reach 66% by
2050 (Amato et al., 2017). Additionally, electricity demand in power
zones is anticipated to increase by 40% by 2025, with the domestic
and commercial sectors experiencing a 25% increase from current
levels, as projected by the Energy Information Administration (EIA)
(Energy Information Administration, 2019). The EIA forecasts a
50% increase in power consumption between 2018 and 2050
(Energy Information Administration, 2019).

The widespread reliance on fossil fuels for electricity production
is a main contributor to environmental pollution and proves
unsustainable due to the dwindling reserves of conventional
resources. Consequently, transitioning from conventional
to modern renewable energy (RE) enhances reliability and
environmental sustainability (Liu et al., 2023b; Yao et al., 2023).
Nevertheless, conventional power systems are ill-equipped to
meet the burgeoning energy demands and are ill-suited for
integrating RE. Moreover, they fail to address challenges such as
bidirectional power, bidirectional communication flow, hybrid
power generation, and simultaneous information andpower transfer
systems (Yang et al., 2023a). To address these challenges, researchers
actively explored innovative grid solutions, such as smart grids (SGs)
(The Smart Grids, 2022). SGs encompass various advanced features
such as demand response (DR), advanced metering infrastructure
(AMI), sophisticated communication infrastructure (Palahalli et al.,
2019), net metering, energy management (Ahmed et al., 2022),
and flexible load (Shaker et al., 2023). This modern system also
has technical aspects such as an energy-efficient framework for
the internet of things (Jiang et al., 2022), a voltage and frequency
stabilization control strategy (Zhang et al., 2023), monitoring house
vacancy dynamics (Liu et al., 2023c), fast and accurate calculation
methods (Li et al., 2022a; Song et al., 2022a), optimal planning
(Ullah et al., 2021), and energy management. These advancements
and modern technical aspects represent a pivotal step toward
achieving a more reliable and sustainable power system in the face
of evolving energy demands and environmental concerns. To bridge
the energy supply–demand mismatch and address environmental
concerns, the DR is used by utility companies. The DR aims to
balance the fluctuating energy demands of users with the available
utility generation capacity, thus avoiding extensive investments
in additional energy generation infrastructure (Alzahrani et al.,
2023a). The DR incorporates pricing mechanisms and incentive
initiatives to optimize consumption patterns and reshape user
demand. One such pricing mechanism is the time-of-use (ToU)
structure. This involves three types of hours throughout the day,
stimulating users to transition from peak hours to non-peak
hours. Another approach is critical peak pricing (CPP), which
assigns higher prices during peak hours. Real-time pricing (RTP)
employs an hourly fluctuating mechanism (Silva et al., 2023a). To
incentivize consumers to participate in load scheduling via DR,

utility companies offer incentives tomanage the gap between energy
demand and supply effectively. In addition, authors reshaped energy
usage and use wide-area phasor measurements to ensure robust
control and identify sources (Wang et al., 2021b; Yang et al., 2023b).
Residential load scheduling has garnered considerable attention, yet
a lack of knowledge is a significant challenge that residential users
often face while adopting DR for load scheduling. To tackle this
challenge, an energy consumption scheduler (ECS) was introduced
using optimization techniques. The ECS was designed to encourage
users to respond efficiently to price incentives offered by utility
companies. It operates by receiving pricing incentive offers from
power suppliers and orchestrating interruptible appliances (IAs) and
non-interruptible appliances (non-IAs). Inês et al. (2020); Lu et al.
(2020); and Ghayour and Taghi (2022) focused on scheduling
residential loads using various optimization techniques to minimize
electricity bills. Additionally, consumers were observed to integrate
solar systems with batteries to generate energy for energy balancing
effectively (Rehman et al., 2023a; Alzahrani et al., 2023b). However,
it is worth noting that although these strategies aim to reduce
electricity bills, they may inadvertently lead to peaks in demand.
Li et al. (2022b) and Chen et al. (2023) developed a model to
solve the economic dispatch problem. A modified gravitational
search and particle swarm optimization (PSO) algorithm was
developed to solve the multi-objective load dispatch problem in
microgrids incorporating electric vehicles (Zhang et al., 2022a).
Several DR strategies for appliance power usage scheduling
benefited consumers and utility providers (Bizzozero et al., 2016;
Mohammad andMishra, 2019; Sarker et al., 2021; Song et al., 2022b;
Chreim et al., 2022; Alahyari and Jooshaki, 2023; Rehman et al.,
2023b; Reiszadeh et al., 2023). Consumers have adopted strategies
involving photovoltaic (PV) units, batteries, and controllable loads
within their homes to decrease their electricity bills while optimizing
their consumption. For instance, a strategy was developed for
scheduling an energy hub with risk constraints, incorporating
RE, DR, and electric vehicles (Liu et al., 2023d; Yang et al., 2024).
Furthermore, a low-carbon, fixed-tour scheduling challenge with
time windows in a time-dependent traffic scenario was addressed
by Zhang et al. (2022b). Nevertheless, none of the existing literature
has simultaneously addressed the issues of electricity bills, pollutant
emissions, or the peak-to-average demand ratio (PADR). It is
indispensable to highlight that residential energy management
is vital to enhancing the stability of the electricity grid, as the
deployment of DR practices driven by more energy-efficient
utilization by consumers can lead to significant energy savings
(Parvin et al., 2022). Investigating load scheduling in the context
of utility and PV systems holds promise for achieving more
optimal energy utilization in residential areas. Thus, meta-heuristic
approaches have emerged to address problems accompanied by
game-theoretic models. For example, the PSO algorithm discussed
by Disanayaka and Hemapala (2023) was developed to cater to
load scheduling problems for electricity bill payments and load
peak curtailment. However, the resultant system is complex. Some
authors have developed evolutionary algorithms to address power
usage scheduling problems (Alonso et al., 2012; Nawaz et al., 2020a;
Lotfi et al., 2020; El et al., 2022). A segmented probabilistic strategy
using multi-measurement data was utilized for the harmonic
estimation of residential distribution systems considering non-
intrusive residential loads (Xie and Sun, 2022; Lin et al., 2023;
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Wang et al., 2023). Authors used the genetic optimization algorithm
(GOA) for energy cost and utility bill reduction by optimizing power
usage scheduling for residential loads (Arabali et al., 2012). Using
SG, this study adjusts generation and load, measures and monitors
data, and transmits and distributes power for optimal energy
management. Mandal and Mandal (2020) developed an enhanced
differential evolutionary algorithm (EDEA) for DR between users
and aggregators. Silva et al. (2023a); Rehman et al. (2023c); Liu et al.
(2023e); and Makroum et al. (2023) developed heuristic algorithms
for optimal load scheduling in SGs. For example, Ullah et al. (2020a)
adapted the cuckoo search algorithm (CSA) to maintain a balanced
load curve considering the users’ preferences and constraints. The
gray wolf accretive satisfaction algorithm was proposed for smart
home appliance control and monitoring by Ayub et al. (2020). The
aim was to reduce energy costs and increase savings. Likewise, in
Ahmad et al. (2023), a heuristic algorithm-basedECSwas developed
to solve power scheduling problems considering RE and pricing
DR. The aim was to minimize utility bill payments, operation
delay time, and peak energy consumption. The gray wolf and
crow search optimization (GWCSO) algorithm was developed by
Waseem et al. (2020) to solve residential load scheduling problems
for peak energy consumption and energy cost optimization.
Zhao et al. (2013); Ma et al. (2016); and Jiang and Xiao (2019a)
developed the GOA to solve power usage scheduling problems
using the DR for peak energy demand alleviation, operation
delay minimization, and utility bill curtailment for single and
multiple consumers. Likewise, Ullah et al. (2020b) adopted the PSO
algorithm to solve load scheduling problems using incentive DR
and RE in SGs. An energy management framework was developed.
The ECS was programmed based on the GOA, Bacterial foraging
optimization algorithm (BFOA), PSO, and genetically enhanced
PSO algorithms by Jasim et al. (2023); Youssef et al. (2023); and
Samadi et al. (2022) for peak load demand and utility bill payment
curtailment. An optimal power flow solution using heuristic and
meta-heuristic algorithms was introduced by Shaheen et al. (2022a)
and Shaheen et al. (2022b) to maximize savings.

These techniques cannot handle the complexity and large-
scale nature of load scheduling problems in real-time. Meta-
heuristic algorithms emerge as the most suitable candidates
to address these challenges, offering the capacity to handle
complex and large-scale problems while providing near-optimal
solutionswithin reasonable timeframes.However, their effectiveness
is contingent on parameter choices and the quality of initial
solutions, making it challenging to guarantee the discovery of
globally optimal solutions. Thus, a smart home load scheduling
system with solar PV generation and DR was developed
under the umbrella of SGs. The main technical contribution is
listed as follows:

• Introduction of the hybrid genetic wind-driven optimization
(HGWDO) algorithm: An HGWDO algorithm is
introduced, combining the GOA and wind-driven
optimization (WDO) algorithms for optimal smart
home load scheduling under real-time pricing DR and
renewable generation.
• Development of the smart home load scheduling system:

A smart home load scheduling system is devised, using
heuristic techniques for the ECS to address the home

energy management problem. The system incorporates a
PV system, batteries, and smart appliances to optimize
home load behavior and reduce utility bills, pollutant
emissions, and PADR.
• Comparative analysis and validation: Extensive simulations

are conducted to evaluate the HGWDO algorithm against the
PSO, GOA, and WDO algorithms. The results demonstrate
the superior performance of the proposed HGWDO
approach in terms of utility bill payment, pollutant
emissions, and PADR. This work is a continuation of
the previous work (Hafeez et al., 2020), where the energy
management problem was solved for Internet of Things-
enabled smart homes under price-based DR using the wind-
driven bacterial foraging algorithm (WBFA). Validation is
supported by comparison with the BPSO, GOA, GWDO, and
GBPSO algorithms.

This work is organized as follows: first, an introduction
is presented; second, the problem statement and formulation
are presented; third, the modeling and methodology
of the developed framework are discussed; fourth, the
simulation results and discussions are presented; and
finally, the work is concluded, and future directions
are unfolded.

2 Problem statement and formulation

Initially, the smart home load scheduling problem is presented
and defined separately for each specific objective, such as
minimizing utility bill payments, reducing pollutant emissions, and
alleviating the PADR. Subsequently, the load problem is structured
as an optimization challenge. A more detailed explanation is
presented below.

2.1 Problem statement

Smart home load scheduling is a challenge due to the
unpredictable and nonlinear behavior of end users. Thus, most
researchers have focused on smart appliance operation scheduling
for optimal home energy management. Numerous strategies have
emerged in the literature, primarily focusing on pricing-based
DR mechanisms to govern smart appliance scheduling. Jiang
and Xiao (2019b) and Hafeez et al. (2020) devised a GOA for
scheduling appliances to reduce utility expenses and address the
PADR. However, this approach comes at the cost of compromising
consumer convenience while striving to minimize utility expenses,
because it exhibits certain inherent limitations and issues related to
uncontrolled mutation, resulting in imbalanced loads (Nawaz et al.,
2020b). Another strategy, based on the BPSO algorithm, was
presented for scheduling smart appliances by Imran et al. (2020).
Nevertheless, this approach further subdivided the scheduling time
horizon into shorter intervals, adding complexity to the model and
increasing computational overhead, which can be avoided. The
HGWDO algorithm is introduced with a strategy for programming
the ECS to address these challenges. The ECS, using the HGWDO
algorithm, automatically responds to DR pricing signals for effective
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smart appliance operation schedules and efficient energy utilization.
The WDO and GOA algorithms were chosen for the development
of the HGWDO algorithm due to their ease of implementation,
adaptability to specific constraints, low computational complexity,
rapid convergence, and minimal computational time. The
HGWDO algorithm-based ECS addresses smart home energy
managementwith real-time price-based demand response (RTPDR)
by yielding optimal schedules for smart appliances. End users
can then follow these schedules to maximize energy utilization,
minimize utility bill payments, mitigate the PADR, and reduce
pollutant emissions.

2.2 Problem formulation

Smart appliance operation scheduling was structured as an
optimization problem for efficient home energy management.
From an optimization standpoint, it is highly desirable for these
appliances to efficiently harness available energy resources to achieve
a triple objective: reduce pollutant emissions, mitigate the PADR,
and minimize the utility bills paid to the utility company. The
formulation of the load scheduling problem as an optimization
problem is given below:

min (CT,ϒ,R
p
a) , (1)

subject to.

ET ≤ Capacity, (2a)

EschT = E
unsch
T , (2b)

T o,sch
i ≠ T

o,unsch
i , (2c)

T lo,sch
a = T

lo,unsch
a . (2d)

Eq. 2a introduces a constraint that enforces the capacity limit
of the power grid, ensuring that it can actively participate in the
power usage scheduling of smart appliances without (W/O) utility
overloading.Meanwhile, Eq.2b constraints ensure that the net power
consumption remains unchanged W/O scheduling. Eq.2c indicates
the status of an activity, distinguishing between continued and
completed actions. The constraint is essential for facilitating a fair
comparison. Finally, Eq. 2d stipulates that the duration of the
time interval must remain consistent before and after scheduling,
promoting fairness in the comparison process. In the subsequent
sections, we elaborate on each objective and provide their formal
formulations, inspired by Hafeez et al. (2020).

2.2.1 Energy consumption
Energy consumption refers to the electricity consumed by

smart appliances during the scheduling period. This study considers
three types of smart appliances: power-flexible appliances (PFAs),
denoted by AP

a ; critical appliances, denoted by AC
a ; and time-flexible

appliances (TFAs), denoted by AT
a . The TFA is further classified

into two subtypes: interruptible time-flexible appliances (ITFAs)
and non-ITFAs. The hourly electricity consumption of ITFAs is
formulated as follows:

EIc (t) = PIr × St. (3)

In this context, EIc(t) stands for the hourly electricity consumption,
PIr represents the power rating, and St functions as the on/off status
indicator of the appliance. The net energy consumed by ITFAs is
computed below:

EIT =
24

∑
t=1

N

∑
a=1

EIc (t) ∀ I ∈ A, (4)

where N is the number of appliances and EIT is the net energy
consumption of ITFAs.

The net energy consumed by the non-ITFA is computed below:

ENIc (t) = PNIr × St, (5)

where ENIc (t) is the consumed energy at each hour, PNIr indicates the
power rating, and St is the non-ITFA status indicator. Thus, the total
energy used by the non-ITFA is computed below:

ENIT =
24

∑
t=1

N

∑
a=1

ENIc (t) ∀ N ∈ A. (6)

Thus, the net energy consumed per day by the TFA is computed
below:

EtaT = E
I
T +E

NI
T . (7)

Here, EIT and ENIT denote the daily electricity consumption of ITFAs
and non-ITFAs, respectively, while EtaT represents the combined net
electricity consumption of both ITFAs and non-ITFAs. The hourly
and daily energy consumption of PFAs is expressed below:

Epc (t) =
{
{
{

Pminp
r × St for on − peak hrs of γ (t)

Pmaxp
r × St for off − peak hrs of γ (t) ;

∀ p ∈ A, (8)

EpT =
24

∑
t=1

N

∑
a=1

Epc (t) . (9)

2.2.2 Utility bill payments
Theutility bill represents the charges usersmust pay to the utility

company for their electrical energy usage over a specified period.
This research established a formula for utility bill payments based on
RTPDR received from the utility company. The 2009 FERC Report
shows that users engaged in DR initiatives for load scheduling
enjoyed a 65% benefit. The formula for calculating the electricity bill
that users pay to their utility company for the electricity consumed
is expressed as follows:

CRP
T =

24

∑
t=1
(

N

∑
a=1

Eac (t) × St × γ (t)). (10)

Eq. 10 represents the electricity charges that consumers need to pay
for the electricity they use through an RTPDR. The variable CRP

T
signifies the total bill paid by users to operate all types of smart
appliances, whereas Eac (t) represents the electricity consumed by
each appliance a during hour t.

2.2.3 PADR
Utility companies encourage users to shift their electricity

consumption frompeak to off-peak hours to reduce the strain on the
power grid andmitigate peak demand.The PADR is ametric used to
measure the peak and average power usage ratio. It holds significant
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importance for utility companies and users for two primary reasons:
(a) it helps distribute the loadmore evenly, reducing the necessity for
peak power generation, and (b) it leads to lower utility bill payments
for users. The PADR is obtained as follows:

Rp
a = 24×(

max(EIc (t) , ENIc (t) , E
p
c (t) ,Ecc (t))

ET
), (11)

where Rp
a signifies the PADR and ET represents the overall energy

consumption.

2.2.4 Pollutant emissions
Pollutant emissions occur when carbon is released into the

atmosphere during the operation of household appliances. Pollutant
emissions are calculated as follows, as presented by Imran et al.
(2020):

ϒ =
avgEP
ε× ς× I

. (12)

Eq. 12 shows the carbon emissions measured in pounds. In
this equation, avgEP represents the average electricity price, ɛ
represents the price per kWh, ς indicates the emission factor, and I

denotes hour of the day.

3 Methodology

This section presents the methodology of the developed system
model, which consists of the generation and demand sides, focusing
on smart home load scheduling in SGs. The AMI is pivotal in
enabling RTPDR for smart home load scheduling. The homes on
the demand side are equipped with an ECS, a home gateway,
appliances, smart meters (SMs), remote control capabilities, a
monitoring display (MD), and a wireless home area network.
These components optimize energy consumption and enhance
control over household energy usage. Figure 1 shows the key
components of the system and their interactions.The AMI is a
vital component of the SG, serving as a central nervous system for
efficient smart home load scheduling. The AMI functions as a two-
way communication system that connects utilities and consumers.
Its primary role is the collection and real-time delivery of power
consumption records from SMs to utility companies. Additionally,
the AMI transmits RTPDR from utilities to consumers through SMs
and home gateways. The home gateway may exist as a separate
device or be integrated into the SMs, serving as a graphical user
interface (GUI) between the HAN and the wired network. The SM,
which can be installed indoors or outdoors in homes, is located
between the ECS and the AMI. Its core responsibilities include
measuring, recording, and processing energy consumption data and
delivering this information to the utility. Furthermore, the SMs
send an RTPDR to the ECS to facilitate optimal smart home load
scheduling.

This study focuses on a home equipped with various types
of smart appliances, including those with power-flexible, critical,
and time-flexible appliances. PFAs have flexible power ratings and
adhere to predefined operating schedules. Meanwhile, TFAs have
adaptable operating times but operate at fixed power levels. The
TFA is further divided into two categories: ITFAs (dishwashers,

tumble dryers, washing machines, etc.) and non-ITFAs (heaters,
vacuum cleaners, etc.). To address the challenge posed by the lack
of user knowledge, which often hinders the implementation of DR
programs, an ECS is used in homes. The ECS, based on HGWDO,
responds to theRTPDRon time.TheHGWDO-basedECS considers
factors such as the power ratings of smart appliances, RTPDR,
the duration of appliance operations, and energy availability from
the power grid. It uses these inputs to schedule the operation
hours of the smart appliances while adhering to the objective
function and various constraints. The ECS within the home can
communicate with appliances via various communication networks,
such as Wi-Fi, Z-Wave, Zigbee, and HomePlug, to share operation
schedules with these appliances. Energy management within the
home is achieved through the scheduling of smart appliances,
and it can be monitored either through an MD or remotely
via Android phones. The workflow shown in Figure 1 outlines
the entire process of this study. This model was developed with
motivation from Hafeez et al. (2020).

The proposed model remotely controls and monitors the
operation of smart appliances to efficiently manage energy through
automated scheduling, eliminating the need for human intervention
via DR programs.The key objectives of this home energy framework
are outlined as follows:

• Utility bill payment minimization
• PADR alleviation
• Pollutant emission mitigation

These objectives are obtained by smart home load scheduling
using an ECS based on HGWDO under RTPDR to utilize energy
for energy management optimally.

3.1 Inputs

The developed system model receives input data, including
the available energy from the power grid, solar PV, and battery,
information about RTPDR, power ratings of appliances, duration
of operation, and power usage patterns. A more comprehensive
breakdown of these inputs is provided below.

3.1.1 Solar PV generation
RE includes wind, solar, fuel cell, biogas, and tidal energies.

Among these REs, solar energy is plentiful, easily available, and
free. Thus, this work considers solar energy as an RE. The aim
is to use solar energy to reduce utility bill payments, peak
energy consumption, etc. Solar energy is modeled and defined
by Eq. 13 (Ahmad et al., 2023). The symbols used by Eq. 13 are
defined as follows: Epv is the generated output power, ∂pv denotes
the solar system efficiency, and Apv shows the solar panel area.
Likewise, rad (t) and Tp (t) denote the irradiation and temperature,
respectively, and the temperature correction factor is constant and
equal to 0.005.

Ppv (t) = ∂pv ×Apv × rad (t) × (1− 0.005× (Tp (t) − 25)) . (13)

The Weibull probability function models solar radiation as in
Eq. 14. The symbols used in Eq. 14 are defined as follows: θ1 and θ2
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FIGURE 1
Developed functional diagram for smart home load scheduling. The single arrowhead indicates one-way flow, whereas the bi-arrowhead signifies
two-way flow.

denote shape factors, 0 < rad(t) <∞, ω indicates the weight factor,
and λ1 and λ2 represent scale factors.

F (rad (t)) = ω(θ1
λ1
)(

rad (t)
λ1
)
(θ1−1)e

−( radλ1 )
θ1

+ (1−ω)(θ2
λ2
)(

rad (t)
λ2
)
(θ2−1)e

−( radλ2 )
θ2

. (14)

The ECS uses the maximum available solar energy during high-
priced hours and charges batteries during low-priced hours to
minimize utility bill payments.

3.1.2 Battery as energy storage
Batteries play a vital role in modern energy systems; they help

balance the power grid, improve reliability and resilience, and enable
RE integration. Power usage scheduling with batteries involves
charging the batteries during periods of low demand, such as at
night whenmany businesses are closed and electricity usage is lower.
The stored energy can then be discharged during periods of high
demand, such as during hot afternoons when many people run air
conditioning units. By doing this, the batteries minimize the peak

electricity demand and alleviate the strain on the grid, leading to a
more reliable and stable energy supply. Batteries are used to provide
backup power during a power outage situation. For example, if a
hospital has batteries installed, it can use the stored energy to power
critical systems, such as life support equipment, during an outage
until power is restored. In addition to load-scheduling and backup
power, batteries can also help integrate RE, like solar power, into
the power grid. The RE is variable and intermittent. Batteries can be
used to store excess energy during periods of high production and
then release it during periods of low production, providing a more
stable and reliable energy source. Thus, batteries remarkably curtail
pollutant emissions and notably alleviate utility bill payments. In
addition, batteries exchange power with utility companies when the
load demand is at its peak during the highest hours (Ahmad et al.,
2023). The batteries are modeled and defined in Eq. 15. The symbols
used are defined as follows: BESS, μBESS, η, EECh, and EEDch

represent the stored energy, efficiency, time duration, solar power
supplied to batteries, and power released from batteries to load,
respectively.

BESS (t) = BESS (t− 1) + η ⋅ μBESS ⋅EECh (t) −
η ⋅EEDch (t)

μBESS
∀t. (15)
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Limits designed to resolve overcharging/deep discharging are
presented as follows:

EECh (t) ≤ EEChUB, (16)

EE(t)Dch ≤ EEDchLB , (17)

PS (t) ≤ PSChUB. (18)

3.1.3 Appliances
A smart home is outfittedwith various types of smart appliances,

including PFAs, denoted as AP
a , TFAs, denoted as AT

a , and critical
appliances, denoted as AC

a . These smart appliances are characterized
by specific parameters encompassing well-defined operational time
intervals, power ratings, priority levels, categories, statuses, and
positions. The mathematical representation is as follows:

A = {AT
a ,AP

a ,AC
a } . (19)

The status indicator Sat = {1,0} and position indicator Xa
t =

(rat ,w
a
t ) are assigned for every appliance, where rat represents

remaining hours and wa
t represents waiting hours. The complete

description of the appliance is presented as follows:

1. PFAs, referred to as AP
a , exhibit adjustable power ratings. They

operate at the minimum rated power level during high-priced
hours and at the maximum rated power level during low-
price hours, aiming to reduce utility bill payments, alleviate
the PADR, andminimize pollutant emissions.These appliances
are given a secondary priority. These are also known as power-
regulating appliances. The formulation for the PFA in the
current and subsequent hours is as follows:

XN
t = (T

o
P,β− α+T

o
P + 1) , (20)

XP
t+1 =
{{{{
{{{{
{

rPt , 0, P
minp
r ifSt = 1, rPt ≥ 1

rPt , 0, P
maxp
r ifSt = 1, rPt ≥ 1

0, 0 otherwise.

(21)

In this context, XP
t and XP

t+1 represent the present and subsequent
status in the present and subsequent hours for PFAs, respectively.
The parameter To

P represents the total operating time. α denotes
the starting time of operation, β represents the ending time of
operation, rPt indicates the remaining hours, and St serves as
the status indicator for PFAs. These PFAs dynamically regulate
their power output within the range of the minimum power
rating, denoted as Pminp

r , and the maximum power rating,
denoted as Pmaxp

r .

2. TFAs have flexible operating schedule functions at rated power
levels. These appliances are denoted by AT

a and can be further
classified into two categories: non-ITFAs, labeled by ANI

T , and
ITFAs, denoted by AI

T. These types of appliances are signed as
the third and fourth priority, respectively. The mathematical
characterization is outlined as follows:

AT
a = {AI

T,A
NI
T } . (22)

• ITFAs, denoted as AI
T, can adjust their operation times by

advancing or delaying their schedules as required. The ITFA
operation interruption/delay/advance during runtime before
completing their assigned tasks significantly contributes to
minimizing peak energy consumption. Additionally, these
smart appliances can refrain from starting during high-priced
hours. They can be either shut down or rescheduled to
operate during low-priced hours to ensure utility bill payment
reduction. These types of appliances are also referred to as
deferrable appliances. The positioning of ITFAs for the current
and subsequent hours is computed below:

XI
t = (T

o
I ,β− α+T

o
I + 1) , (23)

XI
t+1 =
{
{
{

rIt, w
I
t − 1, P

I
r ifSt = 0,wI

t ≥ 1

rIt − 1, w
I
t P

I
r ifSt = 1, rIt ≥ 1.

(24)

In this context, XI
t represents the current status of the ITFAs, while

XI
t+1 denotes their status in the next hour. The parameter To

I signifies
the total hours of operation; α represents the start time of operation;
β is the end time of operation; rIt represents the remaining hours;
wI
t indicates the waiting hours;PIr stands for the power rating; and St

reflects the status indicator (on/off) of the ITFA.

• Non-ITFAs, designated as ANI
T , can accommodate schedule

delays but cannot tolerate interruptions during operation until
the assigned task is completed.The positioning of the non-ITFA
for the current and subsequent hours is defined as follows:

XN
t = (T

o
N,β− α+T

o
N + 1) , (25)

XN
t+1 =
{
{
{

rNt , w
N
t − 1, P

NI
r ifSt = 0,wN

t ≥ 1

rNt − 1, 0, P
NI
r ifSt = 1, rNt ≥ 1.

(26)

In this context, XN
t represents the current status of the non-ITFAs,

while XN
t+1 signifies their status in the next hour. The parameter To

N
denotes the total hours of operation, α indicates the start time of
operation, β represents the end time of operation, rNt indicates the
remaining hours, wN

t denotes the waiting hours, PNIr stands for the
power rating, and St represents the status indicator (on/off).

3. Critical appliances, denoted asAC
a , are smart devices operating

at rated power levels and do not accept delay/interruption once
their operation commences. They are given priority and follow
a predefined schedule that does not disturb user convenience.

The input parameters for the smart appliances integrated into
the home are briefly described and provided in Table 1.

3.1.4 Price-based demand response
This study introduces the RTPDR, an input for the developed

HGWDO-based smart home load scheduling system. The utility
company provides the RTPDR to theHGWDO-based ECS, enabling
smart appliance power usage scheduling to achieve objectives such
as minimizing utility bill payments, reducing pollutant emissions,
and mitigating the PADR. The RTPDR is adapted from the FERC
(MISO, 2017). The RTPDR is structured with three pricing levels
throughout the day, namely, high-, medium-, and low-price hours.
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TABLE 1 Home appliance parameters, including factors such as their
duration, category, operating time intervals, priority, and power rating.

Appliance Power (kW) Start time End time

Washing machine 3.0 9:00 15:00

Tumble dryer 3.3 16:00 20:00

Dish washer 2.5 22:00 24:00

Vacuum cleaner 1.5 10:00 12:00

Water heater 1.8 5:00 8:00

Refrigerator 0.5–1.5 1:00 24:00

Air conditioner 0.8–1.8 1:00 24:00

Water dispenser 0.5–2.0 1:00 24:00

Microwave oven 1.2 14:00 16:00

1.9 8:00 10:00

Electric kettle 1.9 16:00 18:00

1.9 20:00 22:00

1.2 7:00 9:00

Electric toaster 1.2 13:00 15:00

1.2 20:00 22:00

The explanation is as follows: γ(t) represents the electricity price
at time step t, and γ1, γ2, and γ3 denote the prices of the RTPDR
during the off-,mid-, and on-peak periods, respectively.TheRTPDR
is defined for the entire day with an hourly resolution, meaning
that the union of the time intervals T1, T2, and T3 adds up to 24 h,
satisfying the condition γ1 < γ2 < γ3. To provide a breakdown, time
intervals from 1 to 8 h and 22 to 24 h correspond to low-price hours,
representing T1 and γ1. Likewise, time intervals from 8 to 16 h and
21 to 22 h constitute average-price hours, corresponding to T2 and
γ2. Moreover, the time interval from 16 to 21 h falls within the high-
price hours, indicating T3 and γ3. Based on our proposed HGWDO
algorithm, the ECS is designed to shift the load frompeak to off-peak
hours, aiming to curb utility bill payments, and pollutant emissions,
and reduce the PADR.

4 Hybrid genetic wind-driven
optimization algorithm

The HGWDO algorithm is our proposed hybrid algorithm that
combines the complete WDO technique with the GOA algorithm
mutation and crossover processes. This amalgamation was chosen
because the GOA excels at PADR minimization, whereas the WDO
algorithm proved to be efficient in utility bill payment and pollutant
emission reduction. The strategy based on the HGWDO algorithm
was designed to schedule appliance operations, aiming to satisfy the
needs of both users and utility companies. The HGWDO algorithm

Algorithm 1. HGWDO algorithm for smart home load scheduling in the
smart grid.

comprises two steps: (a) the entire operational process of the WDO
technique and (b) the mutation and crossover phases of the GOA
algorithm (Hafeez et al., 2020).The optimal result obtained from the
WDO technique was subjected to mutation and crossover phases
of the GOA algorithm to derive the optimal operation schedule
for appliances. Smart appliances then use this optimal schedule
to minimize utility bill payments, pollutant emissions, and PADR.
The HGWDO algorithm was configured with a population size of
10 individuals, a variable n set to 9, running for 100 iterations.
Additionally, the algorithm used a parameter RT with a value of 3, g
set to 0.2, α set to 0.4, and considered dimensions within the range
of −5–5. The maximum and minimum velocities (vmax and vmin)
were set to 0.3 and −0.3, respectively. The crossover probability (Pc)
was set to 0.9, and the mutation probability (Pm) was set to 0.1. The
complete implementation of the HGWDO algorithm to solve the
smart home load scheduling problem is presented in Algorithm 1.

4.1 Output

The HGWDO-based ECS relies on various parameters of
smart home appliances, such as their operating schedule, power
consumption, priority, and current status. It also considers the
RTPDR and the available energy from the power grid, PV, and
battery. Using these inputs, it aims to efficiently manage the power
consumption of homes by creating optimal operation schedules for
appliances.The output of the developed systemmodel is the optimal
operation schedule of appliances aiming to achieve the desired
objectives: utility bill payment, pollutant emission, and PADR
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FIGURE 2
Input profiles: (A) real-time price-based demand response signal; (B) temperature; (C) solar radiation; (D) estimated photovoltaic generation; (E)
utilized and remaining PV generation; and (F) hourly battery charging level.

FIGURE 3
Load pattern: (A) without (W/O) a PV and battery system; (B) with PV; (C) with a PV and battery system.

minimization. The smart appliances use the schedules generated by
the HGWDO-based ECS to minimize utility bill payments, reduce
pollutant emissions, and mitigate the PADR simultaneously.

5 Experimental results

The simulations for the developed model using the HGWDO
algorithm were conducted using MATLAB R2017b, where the
performance of the developed algorithm was compared to that of
three benchmark algorithms: PSO, GOA, and WDO with respect

to energy consumption, utility bill payment, pollutant emissions,
and PADR. We selected these algorithms as benchmarks due to
their architectural similarities with the proposed algorithm. We
carefully tuned the control parameters for the developed and
benchmark algorithms to ensure a fair comparison. Experiments
were conducted for three scenarios to evaluate the performance of
our proposed and benchmark algorithms. In the first scenario, we
considered a power grid as a source W/O the integration of PV
and batteries. The second scenario involved a power grid with PV
integration, and the third scenario included a grid with both PV and
battery integration. The proposed HGWDO algorithm incorporates
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FIGURE 4
Utility bill payment evaluation: (A) hourly utility bill payment W/O the PV and battery system; (B) hourly utility bill payment with PV; (C) hourly utility bill
payment with the PV and battery system; (D) net utility bill payment W/O the PV and battery system; (E) net utility bill payment with PV; (F) net utility bill
payment with the PV and battery system.

the RTPDR, forecasted temperature, and solar irradiance, as shown
in Figures 2A–C. The output power from solar energy systems
depends on solar radiation (Figure 2C) and temperature (Figure 2B).
We also considered the estimated PV generation, utilized PV
generation, and remaining PV generation after battery charging, as
depicted in Figures 2D, E, and the battery state of charge (Figure 2F).

A detailed discussion and performance evaluation of the
developed HGWDO and other algorithms are presented in the
following sections. The effectiveness assessment of the developed
HGWDO technique was performed by comparing it with the PSO,
GOA, and WDO algorithms in terms of energy consumption,
utility bill payment, pollutant emissions, and PADR. By assessing
the effectiveness of the HGWDO algorithm in optimizing these
key metrics, we aimed to comprehensively understand its potential
contributions to energy efficiency, cost reduction, environmental
sustainability, and grid reliability. The comparative analysis sheds
light on the suitability of the algorithm for addressing complex smart
home load scheduling challenges and its potential to outperform
established optimization techniques. A detailed analysis of each
metric is presented in the following sections.

5.1 Energy consumption

The energy consumption profiles for scheduled operation using
the PSO, GOA, WDO, and HGWDO algorithms, as well as
unscheduled loads, were analyzed across three scenarios: W/O
PV and battery system, with PV alone, and with PV and battery
systems. Figure 3 represents these energy consumption patterns,

providing valuable insights into how the scheduling strategies of
each algorithm impact energy usage under different configurations.

The load scheduling based on the PSO, GOA, WDO, and
HGWDO algorithms, as well as the unscheduled load W/O PV
and battery systems, is depicted in Figure 3A. For users W/O PV
and battery systems, the unscheduled load exhibited consumption
peaks of 800 Wh at 1, 2, 22, and 23 h, 700 Wh during 18–20 h, and
680 Wh during 7 and 8 h. On average, it consumed 300 Wh during
the remaining hours.

The load scheduling based on the PSO for users exhibited
peak energy consumption of 690 Wh at 2, 5, and 14 h, along
with 510 Wh at 22–23 h. During the remaining hours, the load
scheduling based on the PSO maintained a moderate energy
consumption level. Notably, the peak energy consumption with
the PSO was 13.75% lower than that in the unscheduled case.
For users under the GOA-based load scheduling, peak energy
consumption occurred at 510 Wh during 16–18 h and 495 Wh at
19 and 20 h, with moderate energy consumption in the remaining
hours.This lead to a significant curtailment of 36.25% in peak power
consumption compared toW/O scheduling. In the created schedule,
peak energy consumption reached 480 Wh during 21–24 h. Like
the GOA, the WDO load scheduling exhibited moderate energy
consumption during the remaining hours, with a 40% decrease
in peak power consumption compared to the W/O scheduling
case. The HGWDO-generated scheduling showed a peak power
consumption of 500 Wh at 2, 3, and 19–24 h while maintaining
moderate energy consumption in the remaining hours. Compared
to the unscheduled scenario, HGWDO achieved a 37.75% reduction
in peak power consumption. Similarly, the load scheduling results
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TABLE 2 Evaluation with respect to utility bill payment, PADR, and
carbon emission reduction.

Scenario Algorithm Utility
bill
payment
reduction
(%)

PADR
reduction
(%)

Carbon
emission
reduction
(%)

1

- - -

PSO 12.03 19.77 10.46

GOA 10.75 11.46 17.15

WDO 17.08 22.63 20.50

HGWDO 24.05 31.23 23.84

2

- - -

PSO 12.75 13.04 11.47

GOA 14.09 16.72 14.75

WDO 19.79 21.40 16.06

HGWDO 29.53 31.43 18.46

3

- - -

PSO 8.67 9.43 8.29

GOA 17.35 16.98 10.59

WDO 23.14 24.90 11.05

HGWDO 32.64 30.18 13.08

based on the PSO, GOA, andWDO algorithms and the unscheduled
scenario, both with PV and with PV and battery systems, are
depicted in Figures 3B,C, respectively. Notably, the HGWDO
algorithm outperformed the unscheduled scenario and the PSO,
GOA, andWDOalgorithms because it yielded themost optimal load
schedule across all scenarios.

The load scheduling with PSO, GOA, WDO, and HGWDO
algorithms with the PV and battery system is depicted in Figure 3.
The developedHGWDO algorithm in the case of the PV and battery
system was better than the other PSO, GOA, and WDO algorithms.

5.2 Utility bill payments

This section presents PSO, GOA, WDO, and HGWDO
effectiveness assessments under different conditions: W/O PV
and battery systems, with PV, and with PV and battery systems,
emphasizing visusalized in Figures 4A–F.Thehourly evaluationwith
Figure 4B. The maximum utility bill of an unscheduled load is 91
cents at 10 h, the PSO is 37.87 cents at 8 h, the GOA is 52.5 cents at
10 h, the WDO is 42.32 cents at 22 h, and the HGWDO algorithm
is 43.24 cents at 2 h. Similarly, in case 1, the utility bill payment
W/OPV and battery systems are shown in Figure 4A.Themaximum

utility bill payment of an unscheduled load is 69 cents at 8 h, the PSO
is 49 cents at 8 h, the GOA is 42 cents at 10 h, the WDO is 51 cents
at 20 h, and for the proposed HGWDO algorithm, it is 65.36 cents at
20 h. Likewise, the hourly utility bill payment assessment using PV
and battery systems, with and W/O the scheduling-based proposed
algorithm and existing algorithms, is depicted in Figure 4C. The
maximum utility bill payment for the unscheduled load is 59.99
cents at 1 h, the PSO is 59.65 cents at 10 h, the GOA is 58.35 cents
at 8 h, the WDO is 58.99 cents at 8 h, and the developed HGWDO
algorithm is 47.87 cents at 8 h. The results conclude that HGWDO
surpasses the performance of available techniques regarding hourly
utility bill payments for all three scenarios.

Thenet utility bill payment evaluation of the proposed algorithm
compared to the existing algorithms is listed in Table 2 and shown
in Figures 4D–F. In 24 h, the net utility bill payment for the
unscheduled load is 1,580 cents compared to those of the PSO,
GOA, WDO, and HGWDO algorithms, which are 1,390, 1,410,
1,310, and 1,200 cents, respectively. Comparing all the benchmark
heuristic algorithms with the HGWDO algorithm showed that the
proposed algorithm has the minimum utility bill payment during
the 24 h in scenario 1, presented in Figure 4D. Similarly, in scenario
2, in 24 h, the net utility bill payment for the unscheduled load
is 1,490 cents compared to those of the PSO, GOA, WDO, and
HGWDO algorithms, which are 1,300, 1,280, 1,195, and 1,050 cents,
respectively, presented in Figure 4B. Likewise, in scenario 3, the
net utility bill payment for the unscheduled load is 1,210 cents.
On the other hand, the utility bill payments of the PSO, GOA,
WDO, andHGWDOalgorithms are 1,105, 1,000, 930, and 815 cents,
respectively, depicted in Figure 4F. The graphical and numerical
results validate that the net utility bill payment curtailment of the
HGWDO algorithm is more significant than available techniques
and W/O scheduling cases. Consequently, the developed HGWDO
algorithm has the minimum utility bill payment on an hourly basis
or aggregated level compared to the existing algorithms for all
three scenarios.

5.3 Pollutant emissions

The evaluation of pollutant emissions from unscheduled and
scheduled loads is depicted in Figures 5A–C and summarized in
Table 2. Compared to the scenario W/O scheduling, the existing
and proposed algorithms demonstrate reduced carbon emissions.
However, it is noteworthy that the proposed algorithm consistently
outperforms all benchmark algorithms regarding carbon emission
reduction. For instance, in the scenario of W/O load scheduling
(shown in Figure 5A), peak carbon emission occurs at 21 h, reaching
160 pounds. On the other hand, the PSO, GOA, WDO, and
HGWDO algorithms exhibit maximum carbon emissions of 150
pounds, 142 pounds, 140 pounds, and 137 pounds, respectively,
at 21 h. Consequently, all benchmark algorithms perform better
than the unscheduled load scenario in reducing carbon emissions.
Notably, the proposed algorithm achieves the lowest carbon
emission at 21 h with only 137 pounds. Similarly, when considering
the scenario with PV systems (shown in Figure 5B), the maximum
carbon emission from the unscheduled load is 130 pounds at 21 h.
On the other hand, PSO, GOA, WDO, and HGWDO produce
maximum carbon emissions of 110 pounds, 105 pounds, 103
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FIGURE 5
Pollutant emission analysis: (A) W/O the PV and battery system; (B) with PV; (C) with the PV and battery system.

pounds, and 102 pounds, respectively, at 21 h. Remarkably, the
proposed HGWDO algorithm emits only 101 pounds of carbon at
21 h, the lowest among all existing algorithms. Furthermore, it is
worth noting that both the existing and proposed algorithms emit
lower pollution than W/O scheduling. The peak pollutant emission
is 145 pounds at 21 h for W/O scheduling in scenario 3 (presented
in Figure 5C). In contrast, peak carbon emissions for PSO, GOA,
WDO, and the proposed HGWDO algorithm are 142 pounds, 140
pounds, 137 pounds, and 130 pounds at 21 h, respectively. This
analysis underscores the significant reduction in carbon emissions
achieved by both the existing and proposed algorithms, particularly
when compared to unscheduled load scenarios.

In scenario 1, when no power usage scheduling is applied,
the total carbon emissions amount to 1,195 pounds. In contrast,
benchmark algorithms such as PSO, GOA,WDO, and our proposed
HGWDOalgorithm emit 1,070, 990, 950, and 910 pounds of carbon,
respectively. Comparatively, PSO reduced carbon emissions by
10.46%,GOAby 17.15%,WDOby 20.50%, andHGWDOby 23.84%
compared to unscheduled carbon emissions. This demonstrates
the effectiveness of our proposed algorithm in reducing carbon
emissions both per hour and in total in scenario 1.

When considering the unscheduled load and PV generation
scenario, the emissions stand at 915 pounds. The existing PSO,
GOA, WDO, and our HGWDO algorithms emit 915, 810, 780,
768, and 746 pounds of carbon, respectively. In this context, PSO
reduced carbon emissions by 11.47%, GOA by 14.75%, WDO by
16.06%, and HGWDO by 18.46%, marking the highest reduction
among the algorithms. Therefore, the developed algorithm
consistently outperformed the existing algorithms in pollutant
emission reduction.

In scenario 3, the unscheduled load led to a total carbon
emission of 1,085 pounds. The PSO, GOA, WDO, and HGWDO
algorithms resulted in emissions of 995, 970, 965, and 943 pounds,
respectively. Relative to the unscheduled carbon emissions, PSO
reduced emissions by 8.29%, GOA reduced emissions by 10.59%,
WDO by 11.05%, and HGWDO by 13.08%. Consequently, the
HGWDO algorithm consistently produced lower carbon emissions
than all benchmark algorithms.

5.4 Peak-to-average demand ratio

The assessment of the PADR is presented in Table 2 for three
distinct scenarios. In scenario 1, the PADR values for the PSO,
GOA, WDO, and developed HGWDO algorithms are 2.80, 3.09,
2.70, and 2.40, respectively. These algorithms collectively reduce
the PADR by 19.77, 11.46, 22.63, and 31.23, respectively. The
HGWDO algorithm successfully achieves load distribution during
off-peak and mid-peak hours, meeting its objectives. In contrast,
benchmark algorithms generate rebound peaks during power usage
scheduling, posing threats to grid reliability. Consequently, the
proposed HGWDO algorithm significantly mitigates the PADR
compared to the existing algorithms. In scenario 2, the developed
HGWDO algorithm and the PSO, GOA, and WDO algorithms
reduce the PADR by 31.43, 13.04, 16.72, and 21.40, respectively.
The proposed algorithm uniformly allocates the load during off-
peak hours and optimizes grid capacity using a knapsack problem
formulation, avoiding rebound peaks. Conversely, benchmark
algorithms uniformly shift load, leading to rebound peaks that
disrupt power grid reliability. These results demonstrate that
HGWDO optimally shifts the load from high- to low-price hours,
benefiting consumers and utility companies. The performance of
the proposed algorithm shines when integrated with PV scheduling.
Similarly, in scenario 3, PSO,GOA,WDO, andHGWDOalgorithms
curtail the PADR by 9.43, 16.98, 24.90, and 30.18, respectively.
The HGWDO algorithm optimally distributes the load during off-
peak hours and successfully meets its objectives. Some techniques
create rebound peaks that jeopardize grid reliability. The evaluation
of the PADR in the context of PV battery systems reveals that
the developed HGWDO algorithm significantly reduces the PADR
compared to the other techniques, benefiting utility providers
and consumers.

6 Conclusion and future work

Optimal smart home load scheduling can be achieved through
the DR program. However, a lack of knowledge can often hinder
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the successful implementation of DR. The emergence of the ECS
has helped overcome this challenge and led to the development
of the HGWDO algorithm. The HGWDO algorithm-based ECS
automatically responds to the RTPDR for optimal operation
scheduling of smart appliances under PV, battery, and utility
systems. The developed algorithm aims to address the smart home
load scheduling problem forW/O PV and battery, with PV, and with
PV and battery systems, aiming to simultaneously reduce utility bill
payment, pollutant emission, and PADR. The results show that the
developed HGWDO is more effective than other frameworks based
on PSO, GOA, and WDO schemes. The future directions for this
work are as follows:

• The Lyapunov technique will be used for real-time scheduling
to address smart home load scheduling issues by responding to
on-site events and requests.
• Dynamic power usage scheduling issues will be addressed by

adapting multi-objective optimization algorithms.
• We will employ cloud computing for smart home load

scheduling problems via the DR in SGs.
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