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This study examines the impact of urban management on the efficiency of
regional innovation in China’s manufacturing industry, with a specific focus on
modern sustainable energy. The research takes into consideration the regional
diversity in innovation development across China’s three major regions and
integrates common Frontier theory with the MSBM model. By employing a
non-radial distance function approach, this study develops the MMSBMP
model, incorporating various improved methods proposed by researchers.
The Luenberger index methodology is utilized to assess the innovation
efficiency of the national manufacturing industry from 2017 to 2021, enabling
the identification of efficiency losses. The findings highlight significant disparities
and opportunities for enhancing innovation efficiency across the three major
regions, both at the common Frontier and the group Frontier. However, caution is
advised due to the potential overestimation of regional Frontier efficiency values
resulting from variations in technical reference datasets. Analysis of the Total
Growth Rate (TGR) values reveals distinct development characteristics among the
regions, with the eastern region exhibiting smaller extremes and the central and
western regions displaying larger extremes. This comprehensive examination of
China’s manufacturing industry emphasizes the influence of urban management.
By investigating the consequences of urbanmanagement practices, this research
provides insights into the relationship between urban development strategies and
the performance, efficiency, and sustainable growth of the manufacturing
industry. The study highlights the significance of urban management in
shaping regional innovation efficiency and emphasizes the continual
improvement of the industry’s innovation performance in the context of
modern sustainable energy.
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1 Introduction

China’s manufacturing industry has played a central role in the
country’s economic growth and transformation. In recent years,
there has been a shift towards emphasizing the efficiency of regional
innovation within the manufacturing sector, particularly regarding
modern sustainable energy, as China strives for high-quality
development and sustainability (Li et al., 2020; Wang and Feng,
2020; Yang and Leibold, 2020). Urban management, encompassing
a range of policies and strategies aimed at creating a conducive
environment for innovation, is a significant factor affecting
innovation efficiency. Understanding the impact of urban
management on regional innovation efficiency in China’s
manufacturing industry is crucial for informed decision-making
and policy development. This study seeks to examine the influence
of urban management on the efficiency of regional innovation in
China’s manufacturing industry, with a specific focus on modern
sustainable energy (Xiao, 2016; Li et al., 2020; Wang and Feng, 2020;
Yang and Leibold, 2020).

It recognizes the regional heterogeneity of innovation
development across China’s three regions and employs a non-
radial distance function approach to comprehensively evaluate
innovation efficiency. The non-radial distance function approach
allows for a simultaneous consideration of both input reduction and
output increase, providing a more accurate measurement of
efficiency (Wang, 2007; Zhang et al., 2016; Li et al., 2019). The
development of China’s manufacturing industry has been a driving
force behind its economic growth. To achieve high-quality
development, understanding and improving regional innovation
efficiency is crucial. Urban management plays a significant role
in creating an environment conducive to innovation (Battese and
Rao, 2002; ODonnell et al., 2008; Sharma and Thomas, 2008; Fritsch
and Slavtchev, 2010). This study conducts a comparative analysis of
regional innovation efficiency in China’s manufacturing industry,
focusing on the consequences of urban management. By considering
regional heterogeneity and employing the non-radial distance
function method, this research provides a comprehensive
evaluation of innovation efficiency, considering both input
reduction and output increase simultaneously (Gayosa and
Cabanda, 2014; Zou and Zhu, 2020; Feng et al., 2022). The
results of this study contribute to enhancing our understanding
of the role of urban management in promoting regional innovation
efficiency in China’s manufacturing industry. By incorporating the
non-radial distance function method, this study aims to capture the
intricate dynamics and variations in innovation performance among
different regions. Additionally, the research integrates common
Frontier theory with the Malmquist-DEA-Slacks-Based Measure
(MSBM) model and develops the Modified Malmquist-DEA-
Slacks-Based Measure-Panel (MMSBMP) model. This
methodological fusion facilitates a comprehensive analysis of
innovation efficiency and its correlation with urban management
(Zou and Zhu, 2020; Zou et al., 2022; Hou et al., 2023). The study
employs the Luenberger index methodology to assess the innovation
efficiency of China’s manufacturing industry within a specific time
frame, enabling a differentiated evaluation of efficiency and
identification of potential sources of efficiency losses. Through an
examination of the impacts of urban management on innovation
efficiency, the research aims to provide valuable insights for

policymakers and stakeholders, supporting the formulation of
effective strategies to enhance regional innovation capabilities
(Tone, 2001; Zou et al., 2022; Hou et al., 2023). This comparative
study aims to provide a comprehensive understanding of the
regional innovation efficiency within China’s manufacturing
industry, with a particular focus on the role of urban
management in facilitating innovation. The findings from this
research will contribute to the ongoing initiatives aimed at
promoting high-quality development and enhancing the overall
performance of China’s manufacturing sector. It is essential to
note that fostering innovation-driven growth is a steadfast value
pursued by the Chinese population in advancing high-quality
economic development in the new era. Moreover, local
governments collaborate to establish regional competitive
advantages in support of innovation and economic progress
(Farrell, 1957; Wu, 2006; Sharp et al., 2007; Hang et al., 2015; Li
et al., 2023).

In 2021, industrial enterprises in China witnessed significant
increases in spending on new product development and new
product sales revenue. However, the regional manufacturing
innovation gap continues to widen due to insufficient resources,
low innovation efficiency in core technologies, and constraints
imposed by financialization. It is crucial to scientifically evaluate
the innovation efficiency, compare regional differences, and
optimize resource allocation for high-quality development
(Battese and Rao, 2002; Wang, 2007; Xiao, 2016; Zhang et al.,
2016; Li et al., 2019; Wang and Feng, 2020). Many researchers
have increasingly used Data Envelopment Analysis (DEA) to
measure manufacturing innovation efficiency, both domestically
and internationally. Various studies have employed DEA models
to examine regional innovation efficiency in China and have
provided valuable insights and policy recommendations for
enhancing efficiency and reducing disparities (Gayosa and
Cabanda, 2014; Zou and Zhu, 2020; Feng et al., 2022; Zou et al.,
2022; Hou et al., 2023). Nevertheless, the existing body of literature
that evaluates manufacturing innovation efficiency often neglects
the importance of individual input or output indicators in the
measurement process and fails to account for negative values
associated with these indicators. As a result, scholars have made
efforts to address these limitations., Tone (2001) proposed the
Weighted Slacks-Based Measure (WSBM) model, which assigns
varying weights to each input-output indicator while ensuring
that the effective efficiency values of Decision-Making Units
(DMUs) remain unaffected. Additionally, Sharp et al. (2007)
introduced the Modified Slacks-Based Measure (MSBM) model,
in which the objective function uses the extreme values of the input-
output indicators as the denominator to reduce the average
improvement ratio. This modification allows for the inclusion of
negative values in each indicator. These advancements in
methodology aim to enhance the accuracy and
comprehensiveness of manufacturing innovation efficiency
evaluation.

Building upon these advancements, this paper extends the
research by combining common Frontier theory with the
weighted MSBM model to construct the MMSBMP model. By
fully considering the heterogeneity of the three major regions,
this study aims to trace the sources of efficiency loss in
innovation. Furthermore, a differentiated analysis of domestic
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manufacturing industry innovation efficiency from 2017 to 2021 is
conducted to identify the causes of efficiency loss and provide
region-specific calculation and decision-making information.
Given the potential presence of negative values in production
efficiency, the Luenberger index is adopted instead of the
Malmquist index in this paper. This study focuses on the
influence of urban management on regional innovation efficiency
in China’s manufacturing industry, with a specific emphasis on
modern sustainable energy. While the study provides valuable
insights, there are several research gaps that need further
exploration. Firstly, there is a need for a deeper examination of
the specific urbanmanagement policies, strategies, and practices that
affect innovation efficiency and the mechanisms through which they
operate. Additionally, the study could delve more into the unique
challenges and opportunities related to sustainable energy
innovation within the manufacturing industry and how urban
management practices impact this area. A more comprehensive
analysis of efficiency losses, considering factors such as technological
barriers, resource allocation, and policy implementation, is also
necessary. Furthermore, exploring the regional heterogeneity in
innovation development across China’s major regions and
tailoring urban management practices to address regional
disparities would enhance understanding. Lastly, incorporating
comparative analysis with international cases would provide
insights into best practices from other regions that have
successfully fostered efficient innovation ecosystems. Addressing
these research gaps would contribute to a more comprehensive
understanding of the relationship between urban management and
regional innovation efficiency, enabling effective strategies for
sustainable growth in China’s manufacturing industry.

This study aims to investigate the regional innovation efficiency
of China’s manufacturing industry by integrating common Frontier
theory with the weighted MSBM model and constructing the
MMSBMP model. It addresses the limitations of existing
literature by considering the significance of individual input or
output indicators and incorporating negative values. The aim of
this study is to conduct a thorough analysis of innovation efficiency,
pinpoint the factors leading to efficiency loss, and contribute to a
deeper understanding of regional variations by examining the three
major regions of China. The research introduces novelty by
integrating these models, resulting in a more precise evaluation
of efficiency. The application of the Luenberger index and the
region-specific analysis further enhances the originality of the
study. The results of this research have important implications
for policymakers and stakeholders who are dedicated to
enhancing regional manufacturing innovation efficiency and
mitigating disparities.

2 Research methodology

2.1 MMSBMP model

Each region in China possesses unique technological characteristics,
which include variations in the industrial base, technology level, and
industrial structure. Recognizing regional heterogeneity is crucial when
studying innovation efficiency and its measurement within Chinese
industrial firms as shown in Figure 1. Previous researchers, such as Zou

and Zhu, (2020), Zou et al. (2022), and Li et al. (2023), have taken into
account the technological frontiers of different regions when assessing
innovation efficiency and regional disparities. In this study, we adopt
the nonparametric common Frontier model proposed by ODonnell
et al. (2008) to examine innovation efficiency and regional differences.
By doing so, we aim to mitigate potential biases in estimating
production frontiers and innovation efficiency. Consequently, the
method employed in this paper is the function-based approach. Let
us assume that the DMUs v (v � 1, 2,/, V) can be grouped into q
(q � 1, 2,/, Q) relatively independent clusters and that the input
manufacturing vector of the kth DMU is X � [x1, x2,/, xm], and
that the output vector isY � [y1, y2,/, yn]. For the qth cluster, the set
of production technologies is Tq � (X,Y), x can produce y{ }, and its
feasible set of outputs is Pq(X) � Y: (X,Y) ∈ Tq{ }. The distance
function at this point is Dq(X, Y) � sup θ > 0: (Xθ , Y) ∈ Pq(X){ },
and θ denotes the radial distance. Tg is a collection of coproduction
techniques, and then Tg � T1 ∪ T2 ∪/∪ Tq{ }.The set of production
possibilities is Pg(X) � Y: (X,Y) ∈ Tg{ }. The distance function is
Dg(X, Y) � sup θ > 0: (Xθ , Y) ∈ Pg(X){ }.

This study proposes three hypotheses. First, it posits that urban
management practices have a significant impact on regional
innovation efficiency in China’s manufacturing industry,
specifically in the realm of modern sustainable energy. Second, it
suggests that there are notable disparities in innovation efficiency
across different regions of China, which can be attributed to
variations in urban management strategies and policies. Lastly,
the study proposes that the integration of common Frontier
theory with the weighted Modified Slacks-Based Measure
(MSBM) model, through the development of the Modified
Malmquist-DEA-Slacks-Based Measure-Panel (MMSBMP) model,
offers a more accurate assessment of innovation efficiency and
facilitates the identification of sources of efficiency loss in the
manufacturing industry, with a particular focus on modern
sustainable energy.

On this basis, the MMSBMP model is obtained by reference to
and refinement of the non-radial function model in order to
measure efficiency. Here is the formula:

min ρ �
1 − 1∑w1

i

∑m
i�1
w1

i s
−
i /R−

ik

1 + 1∑w2
i

∑n
i�1
w2

i s
+
i /R+

rk

s.t.∑Q
q�1

∑Vq

v�1
λhkXmk + S− � xmk m � 1, 2,/,M( )

∑Q
q�1

∑Vq

v�1
λhkYnk − S+ � ynk n � 1, 2,/, N( )

∑ λ � 1

R−
ik � xik − min xi( )

R+
rk � max yr( ) − yrk

λ, s−, s+, w1
i , w

2
i ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

ρ is the efficiency value of the unit being evaluated. w1
i、w2

i

represent the input and output indicator weights, respectively. R−
ik

and R+
rk are the maximum possible improvements in the input and

output indicators for the Kth region respectively. 1∑w1
i

∑m
i�1
w1

i s
−
i /Rik
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and 1∑w2
i

∑n
i�1
w2

i s
−
i /Rrk refer to the inefficiency values of the weighted

inputs and weighted outputs respectively. Q denotes the number of
clusters. Vq represents the number of observations contained within

each cluster.

2.1.1 Innovation efficiency
According to Farrell, (1957), the distance function measures the

efficiency of the inputs to the production sector. This results in the
following relational and inefficiency equations of 1–8 for the
efficiency of cluster innovation:

TEq X, Y( ) � Dq X, Y( )[ ]−1 ∈ 0, 1[ ] (2)
βq � 1 − TEq X, Y( ) (3)

For variable payoffs at scale, accounting for the slack
enhancement component and introducing Archimedes
infinitesimals, the objective function for the innovation
inefficiency of the ith unit of production in defined as follows:

Dq X, Y( ) � max βqi + ε ∑M
m�1

s−mi +∑N
n�1

s+ni⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ (4)

Similarly, the objective function for the innovation efficiency at
the common Frontier, the inefficiency value, and the innovation
inefficiency of the jth unit of production with varying returns to scale
can be expressed as follows:

TEg X, Y( ) � Dg X, Y( )[ ]−1 ∈ 0, 1[ ] (5)
βg � 1 − TEg X, Y( ) (6)

Dg X, Y( ) � max βmj + ε ∑K
k�1

s−kj +∑L
l�1
s+lj⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ (7)

An example of a convex Frontier function is shown in Figure 2,
where all production units are aggregated into 3 regional Frontier
samples, which subsequently form a common Frontier. The group
Frontier is contained within the boundary of the common Frontier.
The innovation efficiency of production units is given by the
following relational equation: Dg(X, Y)≥Dq(X, Y) and
TEq(X, Y)≥TEg(X, Y).

Figure 3 illustrates an innovative and tailored incentive
mechanism specifically developed to effectively tackle the
inherent conflicting tasks and management challenges
encountered by thermal power generation enterprises. This
mechanism aims to provide a structured framework that aligns
the interests and objectives of various stakeholders within the
industry, while simultaneously addressing the complex and
multifaceted nature of thermal power generation operations. By
implementing this incentive mechanism, the aim is to enhance
overall performance, optimize resource allocation, promote
sustainable practices, and foster a conducive environment for
effective decision-making and management within the thermal
power generation sector.

2.2 Technology gap ratio and inefficiency
decomposition

The Technical Gap Ratio (TGR) is the ratio of the innovation
efficiency values of each unit of production at the two frontiers,
reflecting the technology gap between the cluster Frontier and the
common Frontier. It can be defined as:

TGRq X, Y( ) � Dq X, Y( )
Dg X, Y( ) (8)

The range of values of TGRq(X, Y) is [0, 1]. The larger the value,
the closer the innovation level of the cluster is to the potential
innovation level. Conversely, the larger the difference between the
two. In Figure 2, the unit of production A is both part of the cluster
Frontier and included in the common Frontier. Referring to the
technological Frontier of cluster 2 is referenced, its innovation-
efficiency value is TE2(A) � OF

OG.Referring to the technological
Frontier of the common Frontier, its innovation-efficiency value
is TEg(A) � OE

OG. Thus, the rate of technology gap for the unit of
production A is TGRq(X, Y) � OE

OF. In line with the theory of
inefficiency decomposition espoused by Hang et al. (2015), the
loss of innovation efficiency (LIEq

x) of the xth DMU in cluster q
in this paper comes from Management Inefficiency (MIqx) and
Technology Gap Ratio Inefficiency (TGRIqx). The former, caused
by mismanagement, fails to achieve innovation efficiency at the
cluster Frontier, as illustrated in the FG/OG section of Figure 2
belonging to endogenous barriers. The latter is caused by the
technology gap between the optimal level of technology at the
cluster Frontier and the common Frontier. It is the EF/OG score
part of Figure 2 and belongs to externality gap. The decomposition
of the loss in innovation efficiency is thus given by Eqs 12–14:

LIEq
x � TGRIqx +MIqx (9)

TGRIqx � TEq
x − TEg

x (10)
MIqx � 1 − TEq

x (11)

FIGURE 1
Varied enhancement trajectories of carbon emission efficiency in
China’s provincial construction industry: An approach using fuzzy-set
qualitative comparative analysis.
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2.3 Sample selection, data description and
indicator construction

2.3.1 Research sample and data sample
For the purposes of this paper, the research sample consists of

31 provincial-level regions in China from 2017 to 2021, excluding
Hong Kong, Macao and Taiwan for the time being, taking into
account the accuracy factor of data acquisition1. With reference to
the studies carried out by (Zou and Zhu, 2020; Zou et al., 2022), in
this paper, we again divide the 31 provincial research subjects into

three broad sample groups: eastern, central and western, taking into
account the different technological frontiers that different regions
face. The data sample includes the amount of R&D expenditure of
industrial enterprises above the scale (ARDEIEAS), the price index
of fixed asset investment (PIFAI), the full time equivalent of R & D
personnel (FTERDP), the number of effective invention patents
(NEIP), sales revenues of new products (SRNP) and the turnover of
the technology market (TTM) and others from 2017 to 2021. The
2017 data are the data from the baseline period. All data in the
sample are taken from the China Statistical Yearbook published by
the National Bureau of Statistics and provincial statistical yearbooks
for 2018 to 2023 or calculated from statistical data.

Figure 4 shows the scope of this academic study, a
comprehensive dataset has been meticulously constructed to
capture and encompass greenhouse gas (GHG) emissions directly
associated with industrial processes. This dataset serves as a robust
framework that systematically collects, organizes, and analyzes the
emissions data emanating from various industrial activities. By

FIGURE 2
Common and regional Frontiers.

FIGURE 3
An incentive mechanism designed to address the conflicting tasks and management challenges faced by thermal power generation enterprises.

1 The east includes Beijing, Tianjin, Hebei, Liaoning, Shandong, Shanghai,

Jiangsu, Zhejiang, Fujian, Guangdong and Hainan; the centre includes

Heilongjiang, Jilin, Shanxi, Henan, Anhui, Jiangxi, Hubei and Hunan; the

west includes Inner Mongolia, Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang,

Tibet, Sichuan, Chongqing, Guizhou, Guangxi and Yunnan.
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establishing this dataset, researchers and policymakers gain access to
a valuable resource that enables them to quantify, monitor, and
evaluate the environmental impact of industrial processes in terms
of GHG emissions. This framework facilitates a deeper
understanding of the sources, trends, and patterns of GHG
emissions within the industrial sector, thereby providing a solid
foundation for evidence-based decision-making, policy formulation,
and the implementation of targeted emission reduction strategies.

The construction of the GHG emissions dataset related to
industrial processes involves a systematic and rigorous process. It
begins with the identification and selection of relevant industries and
sectors that contribute significantly to GHG emissions. This
encompasses a wide range of industries, including but not limited
to manufacturing, energy production, transportation, and
agriculture. Once the industries and sectors are determined, data
collection methodologies are employed to gather emissions data
from various sources. These sources may include government
reports, industry surveys, emissions inventories, and scientific
literature. The collected data encompasses different types of
GHGs, such as carbon dioxide (CO2), methane (CH4), nitrous
oxide (N2O), and fluorinated gases. To ensure the accuracy and
reliability of the dataset, quality control measures are implemented.
This involves data validation, verification, and reconciliation to
identify and address any inconsistencies or discrepancies. Data
gaps are filled through estimation techniques or by referring to
established emission factors and conversion methods. The dataset is
then organized and structured in a consistent format, allowing for
easy access, retrieval, and analysis. It may be stored in a centralized
database or a data repository specific to the research project or
academic institution. The dataset’s structure typically includes
information such as industry sector, emissions source, GHG type,
temporal coverage, and geographical location. Once the dataset is
established, it becomes a valuable resource for researchers,
policymakers, and other stakeholders. It provides a foundation

for conducting detailed analyses and assessments of industrial
GHG emissions, enabling the identification of emission hotspots,
trends, and patterns. This information is crucial for developing
effective mitigation strategies, setting emission reduction targets,
and monitoring progress towards climate goals. Furthermore, the
dataset can be utilized for modeling exercises, scenario analysis, and
policy simulations to evaluate the potential impacts of different
interventions and measures. It also serves as a benchmark for
comparing emissions performance across industries, regions, and
time periods, fostering transparency and accountability in
addressing climate change.

Figure 5 shows an analysis that focuses on the evaluation of the
efficiency of green technology innovation within China’s industrial
sector. This evaluation is conducted through the utilization of
correlation network analysis, which allows for a comprehensive
examination of the interrelationships and connections between
different factors related to green technology innovation. Also,
Figure 5 shows valuable insights into the efficiency of these
innovations and their impact on China’s industrial sector,
ultimately contributing to a better understanding of the overall
landscape of sustainable technological advancements in the country.

2.3.2 Indicator system construction
To construct the indicator system for measuring manufacturing

innovation efficiency, this study adopts the Cobb-Douglas
production function as a guiding framework. The initial step
involves selecting economic variables, such as capital and labor,
which are commonly used in existing research to facilitate
comparisons with relevant literature. Specifically, regarding
manufacturing capital inputs, the choice of variable indicators is
influenced by prior studies. Wu, (2006) shows the time lag between
inputs and outputs of technological innovation, indicating that R&D
expenditure in the current year impacts subsequent innovation.
Building upon this understanding, this paper draws upon the works
of Zhang et al. (2016) and Zou and Zhu, (2020) and employs the
annual capital stock of industrial firms above a certain scale
(ACSIES) as a measure of the capital invested in manufacturing
industry innovation. The measurement of ACSIES utilizes the
perpetual inventory method:

Kit � 1 − σ( )Ki t−1( ) + Iit
Pit

(12)

Kit、Ki(t−1) denote ACSIEAS in year t and year t-1 of province i,
following the estimation in studies such as Li et al. (2023) and
Xiaoqing et al. (2014), and the capital stock is deflated back to the
base-period level in each year. σ is the depreciation rate factor. Iit
refers to ARDEIEAS in province i during year t. Pit is PIFAI in
province i in year t. The stock of R&D capital for the 2017 was
calculated using the following formula:

Ki2017 � Ii2017
gi + σ

(13)

gi �
����
Ii2021
Ii2017

4

√
− 1 (14)

gi is the geometric mean growth rate for i Province ARDEIEAS from
2018 to 2021.

In terms of labor inputs for manufacturing, this study takes into
account previous research conducted (Zou and Zhu, 2020; Feng

FIGURE 4
A dataset comprising greenhouse gas (GHG) emissions related to
industrial processes has been established within the framework.
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et al., 2022; Zou et al., 2022; Hou et al., 2023). Following their
insights, we utilize the Full-Time Equivalent Research and
Development Personnel (FTERDP) as an indicator of manpower
investment in research and experimental development activities for
industrial firms above a certain scale. When considering output
variables for manufacturing innovation, the direct reflection of the
current market value of innovations through patent application data
is deemed insufficient. Additionally, researchers discovered a
significant time lag in patent grant data. Given these factors, this
paper employs the New-to-Existing Patent Ratio (NEIP) to
represent the level of innovation in the current period. Scholars
generally agree that the Share of Resources for New Products
(SRNP) and Total Technological Milestones (TTM) are more
appropriate indicators for assessing the current level of
innovation in a region (Zou and Zhu, 2020; Zou et al., 2022).
Thus, the output variables for manufacturing innovation in this
study encompass indicators such as NEIP, SRNP, and TTM.
Furthermore, all indicator data is adjusted to the base period
level. In constructing the factor indicators using the non-radial
distance function, this paper draws inspiration from the ideas
presented by Li and Xu, (2018) and Wu and Lin, (2022). In line
with their approaches, equal importance is given to both input and
output indicators. Their weights are set at 1/2 respectively. Without
a priori information, the weights for the various input-output
indicators are averaged. The weight vector of input-output
variables in this paper is w � (14, 14, 16, 16, 16).

2.3.3 Descriptive statistical analysis of indicator
system data

Table 1 shows a statistical overview of the input-output
indicators for the three major regions of China from 2017 to 2020.

It is evident that the eastern region consistently exhibits
significantly higher average values for both input and output
indicators compared to the central and western regions. On
average, the central region tends to have higher mean values

compared to the western region. These findings highlight clear
regional disparities in terms of input and output indicators.

2.4 Empirical results and analysis

2.4.1 Efficiency measures and regional
variation analysis

In this paper, the input-output profile of the sample in 2017 is
used as the base period data to construct a production Frontier
function. The author measures the regional innovation efficiency
values of China’s manufacturing industry from 2018 to 2021 under
the regional Frontier and common Frontier respectively. The paper
adopts the nonparametric Mann-Whitney U method to test
differences in efficiency and observe the characteristics of
variation and regional differences in manufacturing innovation
efficiency. The results of the statistical description are shown
in Table 2.

From 2018 to 2021, China’s overall level of innovation efficiency
has shown improvement. However, it is still insufficient, and
significant regional disparities persist. Over the sample period,
the average regional innovation efficiency in China, calculated
using the common Frontier approach, was 0.698. This value is
higher than the 0.634 reported by Zou et al. (2022) for the
period 2009–2013, indicating an improvement in regional
innovation efficiency over the past decade. Interestingly, the data
reveals that even if national innovation inputs were reduced by
30.2% each, the innovation output target under the common
Frontier could still be met. On a positive note, the Western
region’s innovation efficiency, as measured by the regional
Frontier (0.883), surpasses the national average of 0.826. This
suggests that the Western region is making faster progress and
performing effectively in terms of innovation.

In terms of regional comparison, the average innovation
efficiency values under the common Frontier, in descending

FIGURE 5
Examining the efficiency of green technology innovation in China’s industrial sector through correlation network analysis.
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order, are Eastern, Central, and Western regions. Notably, the
Western region’s innovation efficiency value of 0.577 under the
common Frontier is significantly lower than the national average.
Conversely, when considering the regional Frontier, the efficiency
values of the three regions, in descending order, are Western,
Central, and Eastern. This could indicate a potential
overestimation of efficiency values in the Central and Western
regions. Moreover, the regional innovation efficiency values are
significantly higher under the cluster Frontier compared to the
common Frontier. In the Western region, the regional Frontier
yields an innovation efficiency of 0.883, leaving 11.7% room for
improvement, while the efficiency under the common Frontier is
0.577, leaving 42.3% room for improvement. The difference between
these two categories of progressive space is substantial, suggesting a
need for further verification of the variability of their efficiency
values. The p-values for the three regions (East, West, and Central)
are less than 0.05 for both the common Frontier and the regional

Frontier, indicating a rejection of the null hypothesis and a
departure from normal distribution. Consequently, this study
employs the non-parametric Mann-Whitney U method to test
the differences in efficiency values under the two frontiers. The
results can be observed in Table 3.

Based on the table provided, it is observed that the p-value for
both the Western region and the national innovation efficiency
values is less than 0.01, while the p-value for the Central region’s
innovation efficiency values is less than 0.05. As a result, the original
hypothesis is rejected, and it can be concluded that there is a
significant difference between the innovation efficiency values of
these groups, and the differences are statistically significant. These
results suggest that the Central andWestern regions exhibit a higher
level of innovation efficiency when considering their own talent
pool, technological conditions, and resource environment. However,
their efficiency levels are lower when compared to the national level.
Therefore, the innovation efficiency values derived using the cluster

TABLE 1 Statistical description of input-output indicators (2017–2021).

Region Indicators Minimum value Maximum value Mean value Standard deviation

Eastern Region FTERDP (person years) 1971 709,119 207,401.35 21.32

ACSIEAS (RMB 100 million) 21.91 11,397.81 3,994.40 3,563.41

NEIP(pieces) 1,258 511,717 86,676.33 11.19

SRNP(RMB 100 million) 91.18 49,241.73 13,951.73 13,576.10

TTM(RMB 100 million) 4.04 4,063.04 1,114.80 1,785.01

Central Region FTERDP (person years) 11,124 170,421 80,152.25 5.22

ACSIEAS (RMB 100 million) 372.22 2,934.92 1,405.43 887.93

NEIP(pieces) 3,518 61,986 26,002.6 2.06

SRNP(RMB 100 million) 645.07 14,967.02 5,967.74 3,915.80

TTM(RMB 100 million) 75.64 2,072.13 314.17 384.49

Western Region FTERDP (person years) 202 95,650 25,720 2.58

ACSIEAS (RMB 100 million) 1,867.77 0.3672 502.02 489.60

NEIP(pieces) 82 48,898 9,976 1.12

SRNP(RMB 100 million) 3.37 6,932.78 1,569.19 1,708.94

TTM(RMB 100 million) 0.0433 2,322.54 194.94 392.83

Note: Panel data includes a total of 775 sample observations from 31 provinces for the period 2017–2021.

TABLE 2 Statistical description of regional manufacturing innovation efficiency in China (2018–2021).

Region Common Frontiers Regional Frontiers

Minimum
value

Maximum
value

Mean
value

Standard
deviation

Minimum
value

Maximum
value

Mean
value

Standard
deviation

Eastern
Region

0.288 1 0.764 0.235 0.281 1 0.771 0.234

Central
Region

0.335 1 0.734 0.220 0.057 1 0.818 0.260

Western
Region

0.317 1 0.577 0.162 0.521 1 0.883 0.155

National 0.317 1 0.698 0.227 0.057 1 0.826 0.218
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Frontier in the Midwest may be overestimated. In contrast, the
p-value for innovation efficiency in the Eastern region does not meet
the significance threshold for either the regional Frontier or the
common Frontier. Consequently, the original hypothesis is
accepted. These results indicate that the Eastern region continues
to demonstrate the highest level of regional innovation in China and
maintains its leading position during the sample period.

2.4.2 Regional technology gap analysis
The innovation efficiency gap in the three major regions of

China for 2017–2021 can be analyzed by calculating and comparing
their TGR and tested by the Kruskal-Wallis H-test. The results are
shown in Tables 4, 5.

According to Table 4, the chi-square test value for the difference
in efficiency among the three major regions is found to be
asymptotically significant at the 1% level (p = 0.000). Therefore,
the paper rejects the initial hypothesis and concludes that the
regional disparities in their Total Factor Efficiency (TGR) are
highly significant, indicating a substantial technology gap between
regions. Firstly, the average TGR scores reveal that the Eastern region
exhibits a relatively high level of innovation input utilization, with a
score of 0.988. This implies that, given a constant level of innovation
output, the utilization of innovation inputs in the Eastern region can
reach 98.8%. On the other hand, the TGR scores for the Central and
Western regions are 0.877 and 0.696, respectively, leaving room for
improvement in regional innovation efficiency by 12.3% and 30.4%.
Secondly, the magnitude of extreme differences in TGR scores is
relatively small in the Eastern region, whereas significant disparities
exist in the Midwest. These findings indicate that while the average
difference in innovation efficiency between provinces in the Eastern

region is not substantial, there is a considerable average difference
within the Central andWestern regions. This suggests an imbalance in
the development of innovation within these regions. The results
highlight significant regional differences in terms of innovation
efficiency and indicate the presence of a technology gap between
regions. The Eastern region demonstrates higher innovation input
utilization, while the Central and Western regions have room for
improvement and exhibit larger disparities in innovation efficiency.

Based on the data presented in Table 5, the TGR for the Eastern
region consistently remains above 0.97, exhibiting a fluctuating
pattern. These findings suggest that the Eastern region benefits
from a more favorable institutional arrangement for innovation,
resulting in a higher level of innovation efficiency. In contrast, the
TGR values for the Central region peaked in 2018 before declining,
possibly indicating a greater impact from external factors like the
COVID-19 pandemic in recent years, leading to a slight decrease in
innovation efficiency. The TGR in the Western region shows a
tendency to fluctuate between high and low values, with a
widening gap between the Western region and the Eastern and
Central regions. This suggests that the Western region still faces
challenges in creating an environment conducive to innovation and
maintaining stable innovation efficiency. Overall, these observations
highlight the advantages of favorable institutional arrangements for
innovation in the Eastern region, leading to consistently high levels of
innovation efficiency. The decline in innovation efficiency in the
Central region is likely influenced by external factors such as the
COVID-19 pandemic. The Western region, on the other hand,
struggles with establishing an innovation-friendly environment and
ensuring stable innovation efficiency.

A more comprehensive investigation of the significant decline in
the TGR observed in the central region during 2019, followed by a
subsequent recovery, necessitates attributing this fluctuation to the
impacts of the COVID-19 pandemic. Although the analysis
acknowledges the influence of the pandemic, further inquiry is
warranted to comprehend the reasons behind the divergence of the
central region’s trend from that of other regions, despite the shared
external disruption caused by COVID-19. Factors such as disparities in
regional economic structure, industry composition, policy responses, or
specific local conditions might have contributed to the distinctive

TABLE 3 Results of Mann-Whitney U test for differences in regional innovation efficiency under two Frontiers.

Indicators Eastern Region Central Region Western Region National

Z-test value −0.042 −0.877 −4.157 −2.946

Prob. 1.000 0.083** 0.000*** 0.000***

Note:***, **, * denote 1%, 5% and 10% significance levels respectively.

TABLE 4 Statistical description and difference test results of TGR of regional innovation efficiency in China.

Minimum value Maximum value Mean value Standard Deviation

Eastern Region 0.904 1 0.988 0.026

Central Region 0.441 1 0.877 0.172

Western Region 0.399 1 0.696 0.175

Kruskal-Wallis H chi-square = 50.812 p-value = 0.000***

Note: *** denotes 1% significance levels respectively.

TABLE 5 Annual data on TGR of regional innovation efficiency in China.

2018 2019 2020 2021

Eastern Region 0.985 0.979 0.988 1

Central Region 0.940 0.845 0.896 0.830

Western Region 0.803 0.653 0.747 0.580
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trajectory observed in the central region. For instance, the central
region, which might have a higher concentration of industries such
as tourism or hospitality that were more severely affected by the
pandemic, could experience a more significant decline in the TGR
compared to regions with a more diverse industry base. Additionally,
the central region’s recovery could be influenced by the implementation
of specific policies, such as targeted financial support or infrastructure
investments, aimed at revitalizing the local economy. Undertaking
comprehensive research and analysis is imperative to unveil the
underlying factors driving the divergent trend in the central region
and to attain a comprehensive understanding of its specific dynamics in
relation to the impacts of COVID-19. The concentration of industries
such as tourism or hospitality may potentially account for the decline in
the Total Growth Rate (TGR) observed in the central region. Sectors
heavily reliant on travel and in-person interactions, including tourism
and hospitality, experienced substantial repercussions from the
COVID-19 pandemic due to constrained mobility and reduced
consumer demand. If the central region exhibits a greater prevalence
of such industries relative to other regions, it is conceivable that a more
pronounced contraction in the TGR would occur. The heightened
dependence on tourism and hospitality sectors renders the central
region more susceptible to external shocks, exemplified by the
pandemic, consequently precipitating a notable economic downturn.
Consequently, the concentration of industries like tourism or hospitality
could plausibly contribute to the observed decline in the TGRwithin the
central region during the pandemic.

2.4.3 Decomposition of regional inefficiency values
and efficiency loss analysis

Based on the preceding analysis, it is evident that the overall
regional innovation efficiency of China’s manufacturing industry has
not yet reached an optimal level, and significant regional disparities
exist. Therefore, it becomes crucial to delve deeper into the underlying
causes of efficiency losses in regional manufacturing. In this study, we
employ Eqs 9 and 10, 11 to conduct a two-dimensional decomposition
of the regional innovation efficiency loss (LIE). Specifically, we
decompose LIE into technology gap ratio inefficiency (TGRI) and
management inefficiency (MI). By examining the data on the
proportion of TGRI and MI in different regions, we can make
cross-sectional comparisons of efficiency losses. The results of this
analysis are presented in Table 6.

Table 6 shows that the average innovation efficiency loss in China’s
manufacturing industry is 0.316, with TGRI and MI accounting for
44.94% and 55.06% respectively. Notably, the area where efficiency
losses are more pronounced is MI. This can be attributed to various
factors, such as uneven regional development, variations in the strength
of regional government policies, competition for investment, differing
business environments across regions, and challenges in coordination

and management. Specifically, in the Eastern region, the average
innovation efficiency loss in the manufacturing sector is 0.236,
primarily driven by MI, which constitutes 97.03% of the total loss.

In the Central region, the efficiency loss of 0.266 stems from
both MI and TGRI, accounting for 68.42% and 31.58% respectively.
In the Western region, the efficiency loss is 0.422, predominantly
attributed to TGRI (72.27%), but also influenced by MI (27.73%).
These findings indicate that the regional innovation efficiency of the
manufacturing industry in the Eastern region is close to the national
optimal level. The primary sources of efficiency loss in this region
include inadequate internal management decisions, constraints in
scientific and technological R&D management, and insufficient
development of enterprise innovation culture. In the Central
region, efficiency loss is primarily driven by internal management
factors, along with a lack of technical skills. In the Western region,
the major contributors to efficiency loss are insufficient
technological levels, followed by internal management factors.

3 Results and discussion

Regional innovation efficiency plays a crucial role in China’s
manufacturing industry as it directly influences the overall
productivity and competitiveness of different regions. Understanding
and improving regional innovation efficiency is essential for achieving
balanced and sustainable development across the country. The
manufacturing industry in China exhibits significant regional
disparities in terms of innovation performance. Some regions have
achieved remarkable progress in innovation, while others lag behind.
Identifying the factors that contribute to regional differences in
innovation efficiency and developing strategies to enhance it are of
paramount importance. This article examines the determinants of
regional innovation efficiency in China’s manufacturing industry,
including factors such as technological capabilities, human capital,
infrastructure, and institutional support. By analyzing data at the
regional level and employing appropriate econometric techniques,
this study aims to provide insights into the key drivers of regional
innovation efficiency and propose policy recommendations to foster
innovation and enhance the overall competitiveness of China’s
manufacturing industry. In order to address the issue of
heterogeneity in manufacturing innovation efficiency and promote
balanced regional development, it is imperative to enhance the
exchange and collaboration among regional manufacturing
industries. Efforts should be directed towards gradually narrowing
the gap in innovation development across different regions. To
achieve this, it is crucial to steadfastly implement strategic initiatives
such as the “Rise of Central China” and the “Strategy for the
Development of Western China.” These initiatives aim to provide

TABLE 6 Decomposition and weighting data of regional innovation efficiency losses in China.

LIE mean value TGRI mean value MI mean value TGRI weighting (%) MI weighting (%)

Eastern Region 0.236 0.007 0.229 2.97 97.03

Central Region 0.266 0.084 0.182 31.58 68.42

Western Region 0.422 0.305 0.117 72.27 27.73

National 0.316 0.142 0.174 44.94 55.06
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increased support for scientific and technological innovation in the
central and western regions, thereby strengthening their innovation
capabilities and reducing the innovation gap with the more advanced
Eastern region. Moreover, manufacturing enterprises in the Eastern
region should take the lead by benchmarking against global leaders.
They should actively promote the spillover and diffusion of technology
by sharing their knowledge and expertise. This will contribute to
stimulating and facilitating the innovative development of
manufacturing enterprises in the Central and Western regions.
Leveraging their “latecomer’s advantage,” manufacturing enterprises
in the Western region should focus on adopting new technologies and
management models through a combination of imitation and
innovation. By doing so, they can effectively catch up with more
advanced regions and enhance their overall innovation performance
(Tone, 2001; Gayosa and Cabanda, 2014; Zou and Zhu, 2020; Feng
et al., 2022; Zou et al., 2022; Hou et al., 2023).

By embracing these approaches, they can gradually bridge the gap in
innovation and enhance their competitiveness. In summary, by fostering
collaboration, providing targeted support, and promoting technology
spillover and diffusion, efforts can be made to narrow the regional
innovation development gap in the manufacturing sector and achieve
more balanced and inclusive growth across regions. Based on the
different directions of manufacturing innovation efficiency loss,
manufacturing innovation in the three major regions needs to
implement differentiated innovation initiatives. Manufacturing
innovation in the eastern region to the management of efficiency.
Efficiency analysis and the study of innovation performance have
received significant attention in research. Battese and Rao, (2002)
introduced the concept of a stochastic metafrontier function to
examine the technology gap and efficiency, emphasizing the
importance of considering heterogeneity across regions or firms
when evaluating efficiency. Building on this framework, ODonnell
et al. (2008) developed metafrontier frameworks to analyze firm-level
efficiencies and technology ratios, allowing for a comprehensive
understanding of efficiency performance and the impact of
technology on productivity. Sharma conducted (Sharma and
Thomas, 2008) an inter-country analysis of R&D efficiency, utilizing
data envelopment analysis to gain insights into research and
development efficiency across different countries. Fritsch and
Slavtchev, (2010) focused on the relationship between industry
specialization and the efficiency of regional innovation systems,
highlighting both positive and negative effects of industry
specialization on innovation efficiency and emphasizing the
importance of considering specific regional innovation characteristics.
Gayosa and Cabanda, (2014) conducted a Frontier analysis of
manufacturing efficiency in the Philippines, using data envelopment
analysis to assess efficiency and identify areas for improvement. Feng
et al. (2022) conducted a quantitative empirical study to identify key
research areas and emerging trends in the marine industry, drawing
from Chinese and foreign literature. Zou and Zhu, (2020) investigated
innovation performance in the diverse Yangtze Economic Belt region in
China, examining the impact of regional heterogeneity on innovation
performance. These studies provide valuable insights into efficiency and
innovation, including factors influencing efficiency performance, the
impact of industry specialization, the role of regional heterogeneity, and
the evaluation of innovation performance. Based on these results, the
present research aims to examine the influence of urbanmanagement on
regional innovation efficiency in China’s manufacturing industry, with a

specific focus on modern sustainable energy. This study utilizes a non-
radial distance function method to explore this relationship. By
contributing to the existing literature, this research aims to provide
valuable insights into the connection between urban management,
innovation efficiency, and sustainable energy practices, benefiting
policymakers and practitioners in their efforts to promote sustainable
energy systems and enhance regional innovation efficiency. In order to
drive manufacturing innovation in different regions of China, specific
strategies and approaches are needed. The eastern region should
prioritize the deepening of management reform in manufacturing
enterprises, emphasizing a sense of responsibility and mission among
staff members, and focusing on quality management and efficiency
improvement to achieve lean production. In the central region,
manufacturing innovation should encompass both internal and
external aspects, with a strong emphasis on technology introduction
and learning, as well as the promotion ofmanagement innovation. In the
western region,manufacturing innovation should leverage the benefits of
technology and prioritize improving the innovation environment,
stabilizing innovation initiatives, and enhancing the technological
level of regional innovation. Across all regions, it is important to
encourage the development of “specialty and newness” in
manufacturing innovation, enabling more “small giant” firms to
thrive with their innovative capabilities. The guiding principles of
“two unwavering” and the objectives outlined in “Made in China
2025” and the “Outline of the National Innovation-driven
Development Strategy” should be adhered to, while continuously
optimizing the innovation environment and implementing service-
oriented reforms. Additionally, a gradient cultivation approach
should be adopted, providing precise support and tailored services to
important “small giant” businesses. Strengthening intellectual property
protection and environmental regulations, optimizing the mix of factor
inputs in the manufacturing industry, and avoiding the pitfalls of relying
solely on scientific and technological resources or following the old path
of “polluting first and then treating later” are also crucial considerations.

Sun et al. (2022) investigates regional variations and the
threshold effect of clean technology innovation on industrial green
total factor productivity, providing insights into the relationship
between technological innovation and environmental sustainability
in different regions. The article acknowledges several limitations that
point to areas for future research. It focuses primarily on the impact of
urban management on regional innovation efficiency in China’s
manufacturing industry, specifically in the context of sustainable
energy. The study suggests that exploring the influence of other
factors such as government policies, technological advancements,
and market dynamics on innovation efficiency would be valuable
(Li and Xu, 2018; Sun et al., 2022; Wu and Lin, 2022). Additionally,
expanding the analysis to include international cases would provide
cross-country insights into fostering efficient innovation ecosystems.
This study suggests exploring alternative methodologies and models
for efficiency evaluation to validate the results. Several studies have
been conducted in the fields of innovation, technological forecasting,
environmental sustainability, healthcare planning, and transportation
scheduling. These studies cover a wide range of topics within these
fields. Researchers have proposed models and methods to enhance
semantic matching tasks (Zheng et al., 2022a; Zheng et al., 2022b;
Zheng and Yin, 2022). They have also investigated the correlation
between social perception and urban noise dynamics (Guo et al.,
2022), analyzed regional innovation ability and inequality (Xu et al.,
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2022), and examined the impact of green patent policies on
innovation and environmental sustainability (Xu et al., 2024).
Furthermore, other studies have focused on improving
technological innovation efficiency in the medical manufacturing
sector (Qiu et al., 2023), understanding innovation inequality (Xu
et al., 2023), addressing the challenges in achieving environmental
sustainability (Li et al., 2023), implementing low-carbon city
initiatives, and exploring the role of institutional investors in
promoting sustainable innovation practices. Researchers have also
explored global innovation networks, examined the effects of policy
incentives on technological innovation in new energy vehicle
enterprises, studied digital technology adoption and innovation
efficiency in manufacturing enterprises (Zhao et al., 2023; Hu
et al., 2023; Wu et al., 2023). Additionally, they have investigated
remanufacturing processes, intelligent transportation scheduling,
healthcare spatial accessibility, the relationship between
administrative hierarchy and intercity connections (Jiang and Xu,
2023a; Jiang and Xu, 2023b; Guo et al., 2024), and the carbon sink
potential in urban buildings. Many of these studies offer valuable
insights and empirical evidence in their respective fields, providing
guidance for further research and practical applications (Chen et al.,
2023; Mou et al., 2023; Pan et al., 2023). The models and methods
proposed in these studies contribute to the advancement of semantic
matching tasks by incorporating deep learning techniques, optimizing
semantic representations, and leveraging relational information. Their
aim is to improve accuracy, robustness, and performance in various
applications that require semantic understanding and matching
(Zhao et al., 2023; Luo et al., 2023). Longitudinal studies are
recommended to observe trends and changes in innovation
efficiency over time, as the research relies on data from a specific
timeframe. Lastly, addressing potential overestimation of regional
efficiency values by utilizing standardized and consistent data sources
would enhance the accuracy of the findings. The future research
should consider these limitations and delve deeper into the
multifaceted aspects of urban management and innovation
efficiency for a more comprehensive understanding of the topic.

4 Conclusion

In conclusion, this comparative study provides valuable insights
into the regional innovation efficiency of China’s manufacturing
industry, focusing on the impact of urban management. By
considering the regional heterogeneity of innovation development
across China’s three major regions, this research combines common
Frontier theory with the MSBM model to analyze the innovation
efficiency landscape. Through the application of the non-radial
distance function method and the construction of the MMSBMP
model, incorporating various improved methods proposed by
scholars, the study assesses the innovation efficiency of the national
manufacturing industry from 2017 to 2021. The utilization of the
Luenberger index methodology helps identify sources of efficiency
losses. The findings reveal significant variations in the innovation
efficiency of the manufacturing industry across the three major
regions, both at the common Frontier and the group Frontier.
However, it is important to note that the innovation efficiency
values at the regional frontiers may be affected by variations in
technical reference datasets, which can potentially lead to

overestimation. Furthermore, the analysis of the TGR values shows
distinct development characteristics among the three regions during the
sample period. The eastern region exhibits smaller extremes in TGR,
indicating a more stable development pattern, while the central and
western regions experience larger extremes, suggesting greater
fluctuations in their innovation performance. Importantly, this
research emphasizes the significance of urban management in
shaping regional innovation efficiency. It underscores the need for
continuous improvement in the manufacturing industry’s innovation
performance, considering the opportunities for enhancement identified
in this study. The results contribute to our understanding of regional
innovation efficiency in China’s manufacturing industry and provide a
basis for further exploration and policy interventions aimed at
promoting balanced and sustainable innovation across the regions.
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