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With the continuous promotion of the unified electricity spot market in the southern
region, the formation mechanism of spot market price and its forecast will become
one of the core elements for the healthy development of the market. Effective spot
market price prediction, on one hand, can respond to the spot power market supply
and demand relationship; on the other hand, market players can develop reasonable
trading strategies based on the results of the power market price prediction. The
methods adopted in this paper include: Analyzing theprinciple andmechanismof spot
market price formation. Identifying relevant factors for electricity priceprediction in the
spotmarket. Utilizing a clusteringmodel and Spearman’s correlation to classify diverse
information on electricity prices and extracting data that aligns with the demand for
electricity price prediction. Leveraging complementary ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) to disassemble the electricity price
curve, forming a multilevel electricity price sequence. Using an XGT model to match
information across different levels of the electricity price sequence. Employing the
ocean trapping algorithm-optimized Bidirectional Long Short-Term Memory (MPA-
CNN-BiLSTM) to forecast spot market electricity prices. Through a comparative
analysis of different models, this study validates the effectiveness of the proposed
MPA-CNN-BiLSTM model. The model provides valuable insights for market players,
aiding in the formulation of reasonable strategies based on the market's supply and
demand dynamics. The findings underscore the importance of accurate spot market
price prediction in navigating the complexities of the electricity market. This research
contributes to the discourse on intelligent forecasting models in electricity markets,
supporting the sustainable development of the unified spot market in the
southern region.
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1 Introduction

China’s electricitymarket is growing andmaturing. In recent years, the Chinese government
has deepened the reform of the power industry and gradually realized the opening and
diversification of the power market. In the development of China’s power market, the
southern regional power market has shown great vitality. China’s power market is

OPEN ACCESS

EDITED BY

Jianli Zhou,
Xinjiang University, China

REVIEWED BY

Yiming Ke,
Jinan University, China
Yaxian Wang,
Beijing Wuzi University, China
Qingkun Tan,
Consultant, Beijing, China

*CORRESPONDENCE

Qingbiao Lin,
18101397665@163.com

RECEIVED 07 October 2023
ACCEPTED 04 January 2024
PUBLISHED 24 January 2024

CITATION

Lin Q, Chen W, Zhao X, Zhou S, Gong X and
Zhao B (2024), Research on a price prediction
model for a multi-layer spot electricity market
based on an intelligent learning algorithm.
Front. Energy Res. 12:1308806.
doi: 10.3389/fenrg.2024.1308806

COPYRIGHT

© 2024 Lin, Chen, Zhao, Zhou, Gong and Zhao.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 24 January 2024
DOI 10.3389/fenrg.2024.1308806

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1308806/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1308806/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1308806/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1308806/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1308806&domain=pdf&date_stamp=2024-01-24
mailto:18101397665@163.com
mailto:18101397665@163.com
https://doi.org/10.3389/fenrg.2024.1308806
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1308806


developing rapidly, and the southern regional power market has
become a signaling source, leading the industry’s development. By
the end of 2022, more than 130,000 market players were registered in
the southern region, a 48% year-on-year increase. A total of 738.9 billion
kWh of electricity was traded in the five southern provinces in the
medium- and long-term in 2022, a year-on-year increase of 27%,
accounting for more than 50% of the total.

In terms of the electricity spot market, the southern regional
electricity spot market was the first spot market in the country to
launch a simulated trial run and a settlement trial run. Since 2021, the
market has gone through multiple tests and has gradually become a
benchmarkmodel for the industry. The southern region’s electricity spot
market is characterized by openness and transparency, fewer operational
constraints, and a higher freedom of optimization. Overall, the
development of China’s power market is entering a brand new stage,
and the southern regional power market has shown strong development
momentum and good operation in this stage.

The development of the power market, on one hand, helps
improve the freedom and diversification of the market, but on the
other hand, for the market players in the transaction, the risk is
further increased, so in order to cope with the risks of the market,
power market players need to effectively predict the market risk, in
which the tariff prediction is an effective response to the risks of the
power market, to improve the transaction of the decision-making
program of favorable measures (Beltrán et al., 2022).

Electricity price forecasting refers to the estimation of the price of
electricity in a certain period of time in the future. It is an important
research direction in the field of energy economics, whichmainly involves
the price formation of the electricity market, the forecast of electricity
demand and supply, and policy analysis (Boubaker, 2021). The research
significance of electricity price forecasting is to help power market
participants develop more reasonable power purchase and sales
strategies and improve the transparency and stability of the powermarket.

At present, domestic and foreign researchers have proposed a series
of electricity price prediction methods, including statistical learning,
machine learning, and deep learning. Among them, statistical learning
mainly includes linear regression, support vector regression, and plain
Bayesian classifier, which can effectively deal with time series data and
analyze the influencing factors of electricity price (Dong et al., 2022).
Machine learning methods include decision trees, random forests, and
neural networks, which can automatically extract features from data and
show better generalization performance. Deep learning, as an emerging
machine learning method, has a strong adaptive ability and robustness
and can handle high-dimensional data (Yang and Schell, 2021). There are
several current methods and techniques for electricity price forecasting:

1) Forecasting method based on time series

Time series forecasting is a method of forecasting electricity
prices based on historical data. It focuses on forecasting future prices
by analyzing historical price data and discovering trends and
patterns in them. Commonly used time series forecasting
methods include ARIMA, SARIMA, VAR, and VECM. The
advantage of this method is that it can handle high-noise data
and is highly adaptable to changes in the data (Yang et al., 2022).
However, it ignores the influence of other factors, such as policy
adjustments and weather changes, and therefore has limited
forecasting accuracy (Mohammadzadeh et al., 2022).

2) Machine learning-based forecasting method

The machine learning-based forecasting method is a data-driven
electricity price prediction method based on data (Dong et al., 2023). It
predicts future prices by automatically extracting features from data and
learning patterns from historical data. Commonly used machine
learning-based forecasting methods include decision trees, random
forests, neural networks, and support vector machines (Zhao et al.,
2020). The advantages of this method are that it can automatically
extract features, shows strong generalization performance, and is better
at handling nonlinear data. However, it requires a large amount of
labeled data and has higher requirements for data preprocessing and
greater computational complexity (Wang et al., 2022).

3) Deep learning-based forecasting method

The deep learning predictionmethod is an artificial neural network-
based electricity price prediction method (Elmore and Dowling, 2021).
It abstracts the data layer by layer by constructing a multilevel neural
network structure to predict the future price. Future research can
explore these problems in depth and propose more effective
solutions to provide more power for the development of electricity
price prediction (Jdrzejewski et al., 2021; Yakoub et al., 2023). With the
continuous development of the energy market and the continuous
innovation of data technology, we believe that future research on
electricity price prediction will achieve more significant results.

4) Hybrid method

Hybrid methods are a hot direction in the research of
electricity price prediction in the spot market of electricity in
recent years (Lago et al., 2021). This type of method mainly
improves the prediction accuracy by fusing the advantages of
different algorithms to overcome the shortcomings of a single
method. For example, Zhao et al. (2023) proposed a hybrid
prediction method by fusing a statistical learning-based linear
regression model and a neural network-based deep learning
model. Experiments show that the method has high accuracy
and robustness in electricity price prediction in the electricity
spot market. In addition (Lin et al., 2022), Shi et al. (2021)
integrated support vector regression based on time series
analysis with a neural network model and applied it to
electricity price forecasting in the UK electricity market.

From the research situation at home and abroad, we can see that
the technology of the electricity price prediction is relatively rich and
the applied technology is relatively mature, but we also see that
different technologies still have shortcomings. For example, the
time series cannot respond to the impact of factor changes on the
price of electricity; although machine learning can reflect the
characteristics of the data very well, it has high demand for data
processing, and deep learning algorithms require a large amount of
data. So, this paper, in order to circumvent these shortcomings, uses
hybrid models. The advantages and disadvantages of these three
methods refer to the time series model, machine learning
algorithm and deep learning algorithm. The specific modifications
are as follows :Based on the advantages and disadvantages of time
series, machine learning algorithm and deep learning algorithm, the
concept of hybrid model is adopted.first of all, the use of similar-day
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screening and data preprocessing improve the effectiveness of the
original data to ensure that the information with the forecast date is
more consistent, to eliminate some of the ineffective information on
the impact of the electricity price prediction, and second, the use of
decomposition models to decompose the historical price of electricity
to reduce the volatility of the original curve, but in order to relevant
factors in the role of electricity price prediction, the classification
tree is used to match the decomposition curve with the factors to
maximize the display of the role of factors, and finally, a combination
of machine learning and deep learning is used to provide the
computational ability of the prediction model to achieve the
scientific nature of electricity price prediction.

2 Based on fuzzy cluster
analysis–Spearman correlation-based
similar-day screening for the electricity
spot market

2.1 Analysis of the principles of electricity
price formation in the spot market

In the day-ahead market, market participants are required to
formulate the next day’s trading strategy on the platform of the

trading center based on the released information on the power
system, which generally includes the strategy of quoting quantity
and price (Zhao et al., 2021). The trading center will summarize the
transactions of market participants to achieve the pre-clearing price,
and the results of the current stage of the summarized transactions
will be sent to the dispatch center to do security checks if the results
of such summaries to meet the security of the power system are
passed, and sent to the trading center to form the final clearing price;
otherwise, it will be further aggregated to circulate this step until it
can be bathed in the balance of the power system (David et al., 2021).
Therefore, in the electricity price forecast modeling and forecasting,
to fully consider the supply and demand situation of the power
system, in the multi-big data market, such data will be made public
to the market player (Tschora et al., 2022).

Figure 1 shows that the spot electricity market is the result of the
joint action of various market players and trading institutions, which
is influenced by the balance of supply and demand in the power
system, the behavioral decisions of market players, and the output
characteristics of different market players (Trull et al., 2021). In the
medium- and long-term market, due to the long cycle, the supply
and demand is relatively stable and market players tend to develop
trading strategies based on past market conditions, but the spot
market has a short information effectiveness and high volatility, so
there is a need to make the most accurate judgment with limited

FIGURE 1
Spot market electricity price formation process.
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information. Therefore, there is a need to have new technology to
support the development of trading strategies. The tariff prediction
is a preview of the trend of the electricity price in the spot market,
and it can provide the market players with price. The tariff forecast is
a prediction of the trend of electricity price in the spot market, which
can provide the price for market players.

2.2 Spearman correlation-based integrated
similarity ranking of historical information

The previous section explains the formation of spot market
electricity price, which is formed by the joint action of a variety of
factors. This paper summarizes the research on the following existing
electricity price forecasting factors: historical electricity price, market
demand, thermal power output, new energy output, provincial load
adjustment, and market player strategy (JI et al., 2022).

The history of electricity price, according to the electricity
market before the result, is divided into the day-ahead spot price
and real-time spot prices. The market demand includes the market
main body, the different time scales of market demand, market
demand prediction deviation, intra-provincial transactions and
inter-provincial transactions, etc., between thermal power output
including history and actual output of thermal power, scheduling,
and modulate and participate in peak shaving, and modulate the and
so on (HAN et al., 2023).

New energy output includes the historical output of new energy,
forecast deviation of new energy output, and proportion of new
energy output inmarket demand. Provincial load adjustment mainly
includes medium- and long-term transaction power and inter-
provincial spot transaction power (Zhang et al., 2022).

Combined with the current status of domestic and foreign
electricity price forecasting research and the actual operation of
China’s spot pilot, this paper selects the provincial load, thermal
power output, new energy output, non-market power, and outgoing
power as the correlation factors of electricity price forecasting. These
correlation factors are the inputs of the electricity price forecasting
model and the basis of the screening of the similarity day. In order to
verify the validity of these factors selected in this paper, a province of
the spot pilot was selected to run the actual operation of the
electricity price forecasting model. The correlation coefficient is
calculated herein. In order to verify the validity of the factors selected
in this paper, the actual operating data on a province in the spot pilot
are chosen as the data for factor correlation analysis, and Spearman’s
correlation is used for correlation analysis. Spearman’s correlation
coefficient can also be expressed in terms of rank value. Spearman’s
correlation between two variables can be expressed as the Pearson
correlation between the rank values of two variables. Its main
formula is expressed as follows (Wu et al., 2021):

rs � 1 − 6∑d2
i

n n2 − 1( ). (1)

In the equation, di represents the rank difference between
subjects, n represents the number of observations, and rs
represents the correlation between two subjects.

Through the above equation, the correlations of unified
scheduling load, inter-provincial demand load, new energy
output, non-market output, and thermal power output are

obtained: 0.8214, 0.5790, −0.7954, 0.6254, and 0.9655,
respectively. It can be seen that thermal power space has the
strongest correlation with the spot price, followed by the unified
scheduling load, and finally, the inter-provincial demand load. In the
selection of similar days, the correlation coefficient is taken as the
relevant factor of weight.

2.3 FCM-based similar-day screening

The Fuzzy C-means (FCM) model is a multivariate analysis
method based on partitioning. FCM is a multivariate analysis
method based on division. The general steps of the algorithm can
be divided into data standardization, calibration (establishing a
fuzzy similarity matrix), and clustering (solving a dynamic cluster
diagram matrix) and clustering (dynamic clustering map) (Cheng
et al., 2022).

Data standardization: First, the dataset of correlation factors
of different factors with multiple days is U � x1, x2, . . . , xn{ }
through Spearman’s filtering, and each key correlation factor
has m values constituting. Then, the original data matrix Q is
represented as

Q �
x11 ... x1m

..

.
1 ..

.

xn1 ... xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
In order to unify the magnitude of the data on different

correlation factors, it is necessary to standardize the original data
parameters, and the original factor data matrix is compressed to the
interval [0,1] by using polar transform pairs.

xik
′ �

xik − min
1≤ i≤ n

xik{ }
max
1≤ i≤ n

xik{ } − min
1≤ i≤ n

xik{ } k � 1, 2, ..., m( ). (2)

Calibration (establishment of the fuzzy similarity matrix):
According to the theory of the fuzzy clustering algorithm, in
order to facilitate the analysis and comparison between statistical
indicators, the similarity degree of two elements in the domain U is
calculated as rij � R(xi, xj). The traditional cluster analysis method
of the angle cosine method of the data matrix for fuzzy processing is
used to obtain the fuzzy similarity matrix R of the relevant factors.
Then, the calibration model of the angle cosine method represented
is as follows:

rij � ∑m
k�1xik · xjk															∑m

k�1x
2
ik −∑m

k�1x
2
jk

√ . (3)

Clustering (seeking the dynamic clustering diagram): The fuzzy
similarity matrix has self-inversion and symmetry but not
necessarily transferability. In order to realize the classification of
different relevant factors, it is necessary to convert the fuzzy
similarity matrix R into the fuzzy equivalence matrix R*. The
quadratic method is used to obtain the transfer closure t(R) of
the fuzzy similarity matrix, and the transfer closure t(R) is the
required fuzzy similarity matrix R*, which is t(R) = R*. For different
confidence levels, λ is divided into large and small to obtain the
dynamic clustering diagram of different electricity price-
related factors.
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In order to ensure the accuracy of similar-day screening, this
paper adopts the Spearman–FCMmodel to screen the historical data
and select the historical data that best meet the prediction demand as
the base data for electricity price prediction. The specific steps are
shown below:

1) A collection of factors related to electricity price factors is
constructed. Then, according to the degree of influence of
different factors on the electricity price, the key factors that
best meet the demand for electricity price prediction are
screened. This paper mainly chooses Spearman’s correlation
as the factor screening model.

2) According to the first step to obtain the core key factors of
electricity price forecasting, further screening out the historical
day and forecast day market-related factors most closely match
the data. First, the different key factors are constructed to form
a multi-day factor matrix, and second, the FCM model is used
to cluster the different relevant factors on the forecast day and
the historical day, and the clustering intervals where the
different factors are located are selected.

3) According to the clustering intervals of different factors
obtained in the third step, the aggregated clustered data on
different factors are integrated, and the data with the highest
degree of similarity obtained by clustering are sorted. Then, the
data on the first 50 days are screened out as the basic data for
tariff prediction.

The similar-day screening process is shown in Figure 2.

3 Research on the multi-layer
decomposition model of the electricity
price sequence based on
CEEMDAN-XGT

3.1 CEEMDAN model analysis

Complementary ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) is a signal decomposition method based
on adaptive noise control further developed on the basis of CEEMD.

FIGURE 2
Similar day screening process.
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Different from CEEMD, CEEMDAN employs an adaptive control
strategy in the construction and addition of random noise in order
to better control the size and distribution of the noise, thus improving the
accuracy and stability of the signal decomposition (Iruela et al., 2021).

The basic process of CEEMDAN is as follows:

1) Let the original signal be x(t). A normally distributed
Gaussian white noise is added to obtain k times the
preprocessing sequence xi(t) as in Formula (4):

xi t( ) � x t( ) + εδi t( ), i � 1, 2, 3, ..., k. (4)

In the formula, ε is the noise factor and δi is the noise of the ith
residual component.

2) The input sequence is decomposed using EMD to obtain the
first EMD decomposed component, the mean value is taken as
the decomposed signal component, and the residual
component is calculated, as in Formula (5)–Formula (7):

xik
′ �

xik − min
1≤ i≤ n

xik{ }
max
1≤ i≤ n

xik{ } − min
1≤ i≤ n

xik{ } k � 1, 2, ..., m( ), (5)

I1 t( ) � 1
K
∑K
i�1
Ii1 t( ), (6)

r1 t( ) � x t( ) − I1 t( ). (7)

In the formula, I1(t) is the first signal component (IMF) after
CEEMDAN decomposition; Ii1(t) is the EMD decomposed signal
component; and r1(t) is the residual fraction.

Similar to step 2, the jth residual component is added to the
corresponding Gaussian white noise. After adding the corresponding
Gaussian white noise to the jth residual component, we continue to
decompose the residual signal using EMD. The decomposed signal
components and residual components are shown in Formula (8) and
Formula (9), respectively:

Ij t( ) � 1
K
∑K
i�1
H1 rj−1 t( ) + εj−1Hj−1 δi t( )( )( ), (8)

rj t( ) � rj−1 t( ) − Ij t( ). (9)

In the formula, Ij(t) is the jth component of the
CEEMDAN decomposition; Hj−1 is the EMD decomposed
components; εj−1 is the coefficient of noise; and rj(t) is the
residual fraction.

The above steps are repeated until the extreme point is less than
2 or the artificially set number of components, and then, the
decomposition is finished. At this point, the original signal is
decomposed into K signal components and a residual component
r(t), as in Formula (10):

x t( ) � r t( ) +∑K
i�1
Ii t( ). (10)

In the formula, r(t) is the margin signal and Ii(t) is the ith
signal component.

After CEEMDAN decomposition, a set of IMF functions with
different scales can be obtained, which have good adaptive
properties and can reflect the essential characteristics of the
signal at different time scales and frequencies. Compared with

traditional methods such as wavelet decomposition and spectral
decomposition, CEEMDAN can handle nonlinear and nonsmooth
signals with better adaptability and accuracy.

3.2 XGBoost model analysis

eXtreme Gradient Boosting (XGBoost) is a machine learning
library focusing on gradient boosting algorithms, developed by
Tianqi Chen in February 2014 at the University of Washington.
In his research, he deeply appreciated the computational speed and
accuracy problems of existing libraries and built the XGBoost
project for this reason (Yin et al., 2022).

Suppose we have the following objective function:

object � ∑n
i�1
l yi, ŷ

t( )
i( ) +∑t

k�1
φ fi( ). (11)

At each step, we add a tree to the previous step, and this new tree
is added to fix the deficiencies of the previous tree. We denote the
prediction at step t by y to denote

ŷ 0( )
i � 0,

ŷ 1( )
i � f1 xi( ) � ŷ 0( )

i + f1 xi( ),
ŷ 2( )
i � f1 xi( ) + f2 xi( ) + ŷ 1( )

i + f2 xi( ),
. . .

ŷ t( )
i � ∑t

k�1
fk xi( ) � ŷ t−1( )

i + ft xi( ).
(12)

For the set M � (xi, yi){ }(i � 0, 1, ..., t) of electricity price
correlation factors after data preprocessing, where X xi �
(xi

0, x
i
1, ..., x

i
n) denotes the nth dimensional feature vector of the

ith sample, i.e., the n eigenvalues of the input electricity price
decomposition curve, and y denotes the labeled value of the ith
sample; the correlation factor M is inputted into XGBoost for
training to obtain a K-tree, which can be represented as

ŷi � ∑K
k�1

fk xi( ), fk ∈ F,

F � f x( ) � wq x( ){ }, (13)

where ŷi denotes the prediction result of the ith sample; F is the base
learner, i.e., the set of K-trees; fk denotes the kth regression tree; and
wq(x) denotes the fraction of the leaf node q. The objective function
during the training process is as follows:

O � ∑t
i�0
l yi, ŷi( ) +∑K

k�1
φ fi( ), (14)

where l is the loss function used to calculate the error between the
predicted value and the true value,φ is a function that represents the
complexity of the tree. The smaller the value, the lower the
complexity and the stronger the generalization ability. Its
expression is represented as follows:

φ fi( ) � γN + 1
2
μ w‖ ‖2, (15)

whereN denotes the number of leaf nodes andw denotes the value of
the node. Intuitively, the goal is to keep the prediction error as small
as possible, the number of leaf nodes N as small as possible, and the
value of nodes w as less extreme as possible.
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By continuously optimizing in the gradient direction, the
objective function becomes lower and lower because the
predicted value ŷi can be obtained after the Tth iteration by
adding the sum of the output values of the previous T-1
iterations and the value fT(xi) of the tree structure computed in
the Tth iteration so that the objective function O is converted into

OT � ∑t
i�0
l yi, ŷ

T−1( )
i + fT xi( )( ) + φ fT( ) + C, (16)

where C is a constant and the above equation can be optimized by a
second-order Taylor expansion:

OT � ∑t
i�0

l yi, ŷ
T−1( )
i( ) + gifT xi( )) + 1

2
hifT

2 xi( )[ ] + φ fT( ), (17)

where gi � ∂ŷ(T−1)l(yi, ŷ(T−1)i ) is the first-order derivative
of the prediction error with respect to the current model and
hi � ∂ŷ(T−1)2 l(yi, ŷ(T−1)i ) is the second-order derivative of many
prediction errors with respect to the current model.

Since the residuals of the model at T-1 are known at the Tth
iteration, the objective function is converted into the form of leaf-
node accumulation by removing the constant term l(yi, ŷ(T−1)i and
expanding the above equation as follows:

OT � ∑N
j�1

Gwj + 1
2

H + μ( )w2
j[ ] + γN, (18)

G � ∑
i∈I

gi, (19)

H � ∑
i∈I

hi, (20)

where I denotes the set of samples on each leaf node, Ij � i|q(xi) � j{ },
q(xi) is the tree structure function, wj denotes the output of each leaf
node of the tree fraction, N denotes the number of leaf nodes in the split
tree, and γ is the weight factor, which are used to control the weights of
the corresponding parts.

After creating the boosted decision tree, the feature importance
of each feature is obtained by calculating the gain. Similar to the
information gain and Gini index in decision trees, the XGBoost
algorithm adds a gain to the existing leaves at each attempt. The
XGBoost algorithm calculates the gain of selected features every time
it tries to add a partition to an existing leaf. The XGBoost algorithm
calculates the gain of the selected feature every time it tries to add
segmentation to an existing leaf.

Gain � 1
2

G2
L

HL + ∂
+ G2

R

HR + ∂
+ GL + GR( )2
HL +HR + ∂

[ ] − γ, (21)

where the subscripts L and R denote the left and right subtrees,
respectively; G2

L
HL+∂ denotes the left subtree score; G2

R
HR+∂ denotes the

right subtree score; and (GL+GR)2
HL+HR+∂ denotes the score of the current

node that is not split.
The importance of a feature is calculated in a single boosted tree

by the gain of each feature split point; the larger the gain, the larger
the weight. The more lifting trees a feature is selected from, the more
important the feature is. Finally, the results of a feature in all the
boost trees are weighted and averaged to obtain the importance
score. After sorting the features in the descending order of

importance score, m (m < n) important features affecting
electricity price are filtered out by setting different thresholds.

3.3 Construction of the CEEMDAN-XGT
tariff decomposition model

Since the spot market is a short-term market, the spot market
price shows strong volatility, and this volatility is mainly due to the
rapid change in market information. At the same time, this large
volatility will affect the accuracy of the electricity price prediction, so
this paper adopts the CEEMDAN-XGT model to decompose the
similar-day dataset to obtain the historical data that can reflect the
characteristics of the electricity price so as to provide the accuracy of
the prediction model, and the specific steps are as follows:

1) The historical electricity prices in the similar-day data are
decomposed using CEEMDAN to form multiple
decomposition curves, which represent the trend of
electricity prices;

2) The different decomposition curves obtained through step
1 can reduce the error of electricity price prediction to a
certain extent, but different decomposition curves have
different structures of influencing factor composition. So,
for different decomposition sequences, the XGT model is
used to screen to obtain the most consistent with the
requirements of each decomposition curve factor ranking as
the input for the next step of prediction.

3) Different decomposition curves of electricity price and the
corresponding factor relationships are brought into the
prediction model, which can reduce the influence of
electricity price volatility on the prediction model error and
also find the degree of influence of different factors on
different days.

The electricity price curve decomposition process is shown
in Figure 3.

4 Construction of the MPA-CNN-
BiLSTM electricity price prediction
model considering market information
volatility

4.1 Marine predators optimization algorithm

The marine predators algorithm (MPA) is a new meta-heuristic
optimization algorithm proposed by Afshin Faramarzi et al. in 2020.
MPA optimization is divided into three stages: the initialization
stage, optimization stage, and fish aggregation device (FAD) effect or
eddy current stage [28]. The specific MPA optimization process can
be described as follows:

1) Initialization phase: The algorithm parameters are set to
initialize the location of the prey within the search scope. It can
be described as

X0 � Xmin + rand Xmax −Xmin( ). (22)
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In Formula (22), Xmax and Xmin denote the search space of the
prey and rand() is a random number within [0,1].

2) Optimization stage: The optimization phase is divided into
early iteration, middle iteration, and late iteration. At
the beginning of the iteration, the current iterations are less
than 1/3 of the maximum iterations. Predators are faster than
their prey and updating prey through Brownian
random movement.

stepsicei � RB ⊗ Elitei − RB ⊗ preyi( )
preyi � preyi + P·RB ⊗ stepsicei

{
Iter< 1

3
max Iter. (23)

In Formula (23), stepsice is the step size, RB is the Brownian
random walk vector with normal distribution, preyi is the prey matrix
with the same dimension as the static matrix, Elitei is the elitist matrix
constructed by the top predator, ⊗ is a multiplicative operation item by
item, P equals 0.5, and R is a [0,1] uniform random vector. N is the
population size, and Iter and max Iter represent the current and
maximum iterations, respectively.

In the middle of an iteration, the current iteration is less than 2/
3 of the maximum. The population is divided into two parts, in
which the prey does the levy movement and is responsible for the
algorithm development in the search space. Predators perform
Brownian motion, responsible for the algorithm to explore in the
search space, and gradually develop from exploration to a
development strategy.

At the end of the iteration, the current iteration number is more
than 2/3 of the maximum iteration number. In particular, to
improve the local development, the predator is slower than the

prey, and predator roaming is based on the Levy distributed
random vector.

stepsicei � RL ⊗ RL ⊗ Elitei − preyi( )
preyi � Elitei + P · CF ⊗ stepsicei

{
Iter> 2

3
max Iter. (24)

In the above equation, RL is the Levy distributed random vector
and CF � (1 − Iter/max Iter)2Iter/max Iter is the adaptive parameter
controlling predator movement compensation.

3) FAD effect or eddy current: Fish aggregation devices (FADs)
or vortex effects often change the behavior of marine predators,
which enables the MPA to overcome the premature convergence
problem and adjust the local extremum.

preyi � preyi + CF Xmin + RL ⊗ Xmax −Xmin( )[ ] ⊗ U, r≤FADs,
preyi + FADs 1 − r( ) + r[ ] preyr1 − preyr2( ), r>FADs.

{
(25)

In Formula (25), FAD is the influence probability, which is 0.2;
U is the binary vector; r is the random number in [0,1]; and r1 and
r2 are the random indexes of the prey matrix.

4.2 Principles of convolutional neural
network modeling

A convolutional neural network (CNN) consists of five parts,
namely, the input layer, convolutional layer, pooling layer, fully
connected layer, and output layer, in which the alternation of the
convolutional layer and pooling layer can better extract the local

FIGURE 3
Electricity price curve decomposition process.
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characteristics of the data and reduce the feature dimensions; the
sharing of weights not only reduces the number of weights but also
the complexity of the model [29]. The formula of convolution is

Vl
j � δ ∑

S∈Mj

Vl−1
s ·Kl

sj + blj⎛⎝ ⎞⎠, (26)

where the prescribed input layer is layer l − 1, Vl−1
s denotes the sth

feature of the input layer, the output layer is layer l, Vl
j denotes the

jth feature of the output layer, Kl
sj denotes the elements of the

convolution kernel, blj is the bias term, and σ is the
activation function.

4.3 Principles of BiLSTM modeling

LSTM has special memory and forgetting patterns; thus, flexibly
adapting to the basic cell structure of the LSTM network includes
input gates, output gates, and forgetting gates.

The specific formula is as follows:

it � ρ Wixxt +Wihht−1 + bi( ), (27)

ft � ρ Wfxxt +Wfhht−1 + bf( ), (28)

gt � φ Wgxxt +Wghht−1 + bg( ), (29)
ot � ρ Woxxt +Wohht−1 + bo( ), (30)

Ct � gt ⊗ it + Ct−1 ⊗ ft, (31)
ht � φCt ⊗ ot, (32)

where it, ft, and ot are states of input gates, oblivion gates, and output
gates, respectively; gt, Ct, and ht are states of input nodes, state units,

and intermediate outputs, respectively; ρ is the sigmoid function; φ is
the tanh function;W is the corresponding gate weights; bi, bf, bg, and
bo are the corresponding biases of the corresponding gates; and ⊗ is the
element-by-element multiplication.

The structure of BiLSTM is shown in Figure 4, which consists
of two LSTM networks in the forward and reverse directions, and
can utilize the before-and-after change rule of the data to make a
bi-directional prediction. BiLSTM has more advantages than
LSTM for the information feature extraction of the complex
power data in the spot tariff prediction, and it has not
increased the requirements for the amount of data. Therefore,
using BiLSTM for electricity price prediction can improve the
model prediction accuracy.

4.4 Constructing an MPA–CNN–BiLSTM
electricity price prediction model for market
information volatility

The generation of electricity price in the spot electricitymarket has a
large uncertainty and contains a large amount of uncertainty
information, which leads to a lot of parameters affecting the
prediction accuracy of the prediction model. Therefore, the
prediction of electricity price for the spot electricity market cannot
rely on a single model and requires an effective data processing method
and a scientific combination of themodel, which identifies the interplay
of factors, reduces the error, and improves the prediction accuracy.

Therefore, this paper adopts a three-stage structure to construct
the electricity price prediction model for the spot electricity market
based on the consideration of the volatility of market information.
The first stage is optimizing the original data and extracting similar-
day information. The FCM–Spearman method is mainly used to

FIGURE 4
Structure of BiLSTM algorithm.
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classify and evaluate the original dataset and the relevant factor
information on the forecast day, and select the days with the highest
trend of change in the relevant information on the forecast day as the
training set of the forecast day; the second section improves the
interaction characteristics between the relevant factors and the
electricity price, and reduces the impact of the stronger volatility
of the electricity price on the prediction of the electricity price. In
this part, CEEMDAD is mainly used to decompose the original
electricity price data, and the volatility of the original electricity price
data is hierarchically divided into sequences. Then, the XGT model
is used to match the different decomposition sequences with the
relevant factors, and the factor with the closest influence of each
relevant factor is selected as the data input for the next segment. In
the third segment, the data on different segments in the second
segment are inputted into the MPA–CNN–BiLSTM model, which
can realize the complementary characteristics of the model and
achieve the effect of error reduction compared with the traditional
single model, and at the same time, optimization using the MPA
algorithm can realize the rationalized configuration of the model
parameters.

The first two breaks of this paper were elaborated in the previous
sections, and this section further analyzes the process of
MPA–CNN–BiLSTM. When the electricity price prediction is
carried out, the BiLSTM model will be trained by extracting the
local features from the CNN, which can make the two models
complement each other and obtain better prediction results. The
CNN–BiLSTMmodel is optimized by theMPA algorithm, and then,
the CNN–BiLSTM model is constructed for electricity price
prediction. The CNN model consists of two convolutional layers
and two maximum pooling layers, and the ReLU function is used as
the activation function.

The MPA–CNN–BiLSTM algorithm flow is shown below:

Step 1: The decomposition data on similar days are divided into a
training set and test set and performed dimensionless.

Step 2: The model with the number of hidden layer units, the
learning rate, and the convolution kernel in the model is initialized
as the optimization object, and the MPA is initialized.

Step 3: The fitness of the model is calculated based on the local
optimum and the dissuasion optimum of the MPA algorithm, and
the mean square error (MSE) is selected as the evaluation criterion.

Step 4: The MPA is iteratively updated using formula (23) to
calculate the latest optimized position.

Step 5: When the iteration is completed or the optimal position is
searched, then the termination condition is satisfied, and the optimal
hyperparameters are obtained. If it is not satisfied, step 3 is repeated
to iterate again.

Step 6: A CNN–BiLSTM model is constructed using the optimal
hyperparameters.

Step 7: The CNN performed feature extraction of the
electricity price.

Step 8: The processed data are input into the BiLSTM model,
and model training is performed to output the final
prediction results.

In this paper, in order to verify the effectiveness of the
model, the performance of the electricity price prediction model
using the root mean-square error (RMSE), mean absolute
percentage error (MAPE), mean absolute error (MAE), and
R2. The formula for the specific effectiveness evaluation
index is shown below:

ERMSE �
												
1
n
∑n
i�1

Pi − pi( )2√
, (33)

EMAPE � 1
n
∑n
i�1

Pi − pi

∣∣∣∣ ∣∣∣∣
PZ

× 100%, (34)

EMAE � 1
n
∑n
i�1

Pi − pi

∣∣∣∣ ∣∣∣∣, (35)

R2 � ∑n
i�1 Pi − �pi( )2∑n
i�1 pi − �pi( )2. (36)

The specific flow of the electricity price prediction model
proposed in this paper considering market information is shown
in Figure 5.

5 Simulation analysis

5.1 Scenario description

According to the characteristics of electricity price formation in
the spot electricity market, this paper proposes an electricity price
forecasting model considering market volatility. In order to verify
the validity of the model proposed in this paper, the operation data
on a provincial spot pilot in China are used. Compared with the
construction of a foreign electricity market, the diversity of China’s
electricity market is more representative. Therefore, the data on
China’s spot pilot can not only reflect the operation characteristics of
China’s electricity market but also meet the business needs of
different electricity market players in our country, which is of
practical significance. Some of the data are shown in Figure 6.

The above is part of the original dataset selected for this paper,
mainly the selected thermal power output, new energy output, non-
market output, outgoing power, and provincial load data. In order to
further show the relevance of these data and the market price trend,
this paper intercepts the simultaneous electricity price trend data, as
shown in Figure 6F.

In order to implement the model proposed in this paper,
MATLAB 2020B is used as the implementation tool, and the
computer uses Windows 10, running memory 16 GB, and a hard
disk capacity of 2 TB.

5.2 Electricity price prediction model
implementation

The dataset selected in this paper is the day-ahead electricity
price data on a provincial spot pilot from 1 January 2022 to 31 May
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2023. The time granularity of the electricity price is 15-min nodes,
i.e., 96 points per day. At the same time, in order to show that the
model proposed in this paper can achieve effective electricity price
forecasting and apply it to practical work, 31 May 2023 is selected as
the forecasting day for comparative analysis. According to the model
process mentioned above, the steps of similar-day screening,
electricity price sequence decomposition, and electricity price
forecasting are carried out to form a complete electricity price
forecasting validity verification. The forecast day market
information is shown in Figure 7.

Electricity price forecasting is a comprehensive technology, which
includes computer information processing technology, and information
technology emphasizes that correct input can produce correct output.
Therefore, electricity price forecasting needs to ensure the accuracy of
the data. In order to achieve this goal, it is necessary to screen out the
historical days with similar market conditions as the basic data. This is
the role of similar-day screening. This paper chooses Spearman–FCM
as the similar-day screening model.

In the previous section, the Spearman model was used to screen
out the relevant factors, which will not be repeated here. The focus is
to use the FCM model to find the most similar dates of different
related factors for the selected related factors. The specific screening
diagram is shown in Figure 8.

Figure 8A shows that the running FCM model divides the
forecast day into historical similar day scenario 1. The thermal
power output in the historical similar day scenario presents two
peaks compared with other scenarios, but compared with the sixth
scenario, the trough runs higher, indicating that the day’s new

energy is still unable to meet the needs of the market during the
period of large-scale development, and thermal power is needed to
ensure the operation of the market. At the same time, according to
the scene classification of historical similar days, there are 186 days
of data that can meet the similar scenes of the forecast day. These
data will be used as the basic data source for comprehensive
discrimination.

According to Figure 8B, the new energy output of the forecast day is
divided into historical similar scene 1. The new energy output of the
historical similar scene conforms to the general characteristics of the new
energy output. Historical similar scene 1 and historical similar scene
5 have the opposite operation trend. Scene 1 is less in the early morning
and more in the evening. Scene 5 is the opposite. This is mainly due to
seasonal differences. Historically similar scenario 3 combines the
changing trends of scenarios 1 and 5. In a historically similar
scenario 1, there are 157 historically similar days as alternatives.

According to the above Figure 8C, the non-market output shows
a lot of uncertainty. This part of the electricity is mainly caused by
the instability of the system. The division of the forecast day is
mainly concentrated in the similar day scenario 1, with a total of
213 days of similar output.

Figure 9A shows that there is some similarity in the historical
similarity scenarios 1, 2, and 3, with lower demand during the early
morning hours and higher during the midday hours. However, there
are many differences in the trends of the three scenarios in the peak
period, which leads to the inconsistency in the market’s supply and
demand. The judgment of the similarity of outgoing power needs to
be combined with the supply and demand of the outer provinces,

FIGURE 5
Spot market electricity price forecasting modelling process.
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FIGURE 6
Basic scenarios.

FIGURE 7
Forecast day market information.
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and outgoing power on the forecast day is classified into similarity
scenario 1, and there are a total of 151 days.

Figure 9B shows that the provincial load has a certain degree of
regularity, and the trend of fluctuation has a certain degree of

similarity. The main difference is that the local volatility is
different; the number of peaks presented and the location of the
inconsistency, which indicates that the corresponding provincial
load is stable as a whole, and the forecasting day of this paper are

FIGURE 8
The specific screening diagram.
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classified into the historical similarity day scenario 2, with a total of
82 similarity days.

Through the clustering of various factors above, the historical
similarity days of different factors are formed, and these similarity

days can only represent the degree of similarity of the respective
factors in the history, while the electricity price is the result of the
integrated effect. So, it is necessary to further sort out the historical
similarity days of various related factors to form the integrated

FIGURE 9
Similar day screening.
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historical similarity days as the data source of electricity price
prediction. The specific steps are shown as follows.

The same dates of different historical similarity days are
screened out to form a comprehensive historical similarity day
dataset; this is because only the historical information about the
same day can have a direct impact on the electricity price on that
day. The above results show that the total number of historical
similarity days of thermal power is 186, the total number of
historical similarity days of new energy is 157, the total number
of historical similarity days of non-marketed output is 213, the
total number of similar days of external transmission load is 151,
and the total number of similar days in history of provincial load
is 82.

These similar days in history are extracted from the original data
source, and the total number of days that meet the requirements is
65. Second, the integrated historical similar-day dataset of 65 days is
sorted according to the degree of deviation of different factors, and
the smaller the deviation, the higher degree of similarity, which is
mainly calculated as

Zi � 1 − ∑65
i ∑5

j yj − xj
i( ) − min∑65

i ∑5
j yj − xj

i( )
max∑65

i ∑5
j yj − xj

i( ) − min∑65
i ∑5

j yj − xj
i( ). (37)

In the above equation, Zi denotes the degree of composite
similarity of the historical day, yj denotes the correlation factor

of the jth similarity factor of the prediction day, and xj
i denotes the

jth similarity factor of the historical composite similarity day of the
ith day. The higher the degree of composite similarity, the higher the
adoption of information on that day. The specific consolidated
ranking results are shown in Table 1.

The following conclusions can be obtained through the similar-
day screening model: a) the Spearman model shows that the two
factors that have a greater impact on the price of electricity are
thermal power and new energy, which is mainly due to the fact that,
at present, the largest market subject is still thermal power, and
second, the new energy belongs to the full consumption, so it has a
greater impact on the price of electricity; b) the province’s thermal
power outlets, new energy outlets, and the provincial loads have a
certain degree of regularity, which indicates that the market is
relatively stable, and the installed capacity of new energy has no
changes, which is in line with the current status quo of the province’s
current development of the electricity market. The sorting of similar
days is shown in Figure 9C.

In this paper, 40 days of historical days with a high similarity are
screened according to the similar-day screening model, and these data
are used as inputs to the CEEMDAD–XGT–MPA–CNN–BiLSTM
model. Among them, CEEMDAD–XGT, as the second stage of
tariff prediction, decomposes the raw tariff data, and then uses XGT
to screen the different decomposition curves for their respective
correlations, which is described in detail in the next part of this paper.

TABLE 1 Similarity and ranking of similar days.

Ranking Time Similarity Ranking Time Similarity

1 2023/5/10 0.8863 21 2023/1/4 0.7735

2 2023/5/17 0.8678 22 2022/10/7 0.7717

3 2023/4/9 0.8499 23 2022/11/27 0.7635

4 2023/5/28 0.8468 24 2023/2/11 0.7541

5 2023/5/25 0.8442 25 2022/10/18 0.7533

6 2023/4/25 0.8350 26 2022/11/9 0.7423

7 2022/3/27 0.8078 27 2023/4/30 0.7375

8 2023/3/20 0.8003 28 2022/10/25 0.7356

9 2023/4/4 0.7902 29 2022/10/20 0.7336

10 2023/4/30 0.7880 30 2022/10/29 0.7284

11 2022/3/21 0.7870 31 2022/11/10 0.7256

12 2022/7/10 0.7878 32 2023/4/27 0.7154

13 2023/4/22 0.7864 33 2023/5/4 0.7062

14 2023/4/15 0.7837 34 2022/3/10 0.6983

15 2023/4/21 0.7827 35 2022/1/13 0.6945

16 2023/4/4 0.7824 36 2022/3/5 0.6746

17 2023/4/2 0.7845 37 2022/1/23 0.6734

18 2022/12/15 0.7844 38 2023/3/10 0.6559

19 2022/12/8 0.7828 39 2023/3/20 0.6468

20 2022/12/10 0.7758 40 2023/3/31 0.6323
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In this paper, there are a total of 40 days of historical electricity
price as the main sequence and five related factors as the secondary
sequence of input, but the volatility of the original electricity price is
large and will affect the impact of the learning ability of the
prediction model. So, decomposition–refactoring reduces the
impact of volatility on the prediction model but retains the trend
of changes in the original sequence, so this paper chooses the
CEEMDAD decomposition. Part of the decomposition curve is
shown in Figure 10.

Figures 10A,B show the curves of CEEMDAD and EEMD of
the same-day electricity price, respectively. The above results
show that the number of IMFs of the two kinds of decomposition
is different, indicating that the gradual decomposition of the
electricity price curve is different. Compared with the
traditional model, the IMF sequence obtained by the
CEEMDAD model selected in this paper is more and more
detailed. At the same time, the final reintegration of the data is
relative to the EEMD of the bias of the reduction of the data is
applied to ensure that the original sequence of the
characteristics of the original sequence.

Figure 10C represents the box plot of the number of internal
envelope iterations for CEEMDAD; Figure 10D represents the box
plot of the number of internal envelope iterations for EEMD. The
box plots represent the minimum, lower quartile, median, upper
quartile, and maximum values of different IMF iterations.

CEEMDAD decomposes a total of seven IMFs and one RES, and
EEMD decomposes a total of five IMFs and one RES. The box plot
distributions of the initial decomposition curves and the final
decomposition curves of the two decompositions have the same
integral, but the intermediate several decomposition curves are very
different, which is mainly caused by the different processing abilities
for noise.

The above results show that the CEEMDAD used in this paper is
more explicit than the traditional EEMD of the tariff curve. The
error of the decomposition reconstructed curve is relatively small,
and the number of iterations of each decomposition curve is
relatively stable. Since XGT mainly extracts the relevant factors
from the main sequence to match different curves, the role of the
relevant factors is similar to that of the Spearman model in the
previous section. Next, this paper predicts the different
decomposition curves to form the final electricity price
prediction results.

According to the previous description, this paper takes
40 days of similar-day data as the basic data for tariff
prediction, and decomposes these 40 days of tariff data using
the CEEMDAD model and matches different factors to
decompose the curves one by one using the XGT model to
form different combinations of model inputs, forming a multi-
input model. The third stage of the tariff prediction model
adopts the MPA–CNN–BiLSTM model. The model MPA

FIGURE 10
Comparison of results from different tariff decomposition models.
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belongs to the heuristic algorithm. In order to ensure the
reasonableness of the optimization algorithm, this paper sets
the basic parameters of the MPA model to the maximum
number of iterations, 1,000, the number of search groups is
set to 50, and the FADs are set to 0.3. In addition, in order to
verify the effectiveness of the model proposed in this paper, the
number of the EEMD–MPA–CNN–BiLSTM, CNN–BiLSTM,
BiLSTM, LSTM, and other models is increased for
comparative analysis.

Figure 11 shows that the model proposed in this paper predicts
the trend of electricity price, and the actual electricity price is
basically consistent, which, to a certain extent, is in line with the
needs of the power market players to make trading decisions. At the
same time, Figure 11 shows that the absolute error of the model

proposed in this paper is relatively low, especially in the morning
and evening hours, and the main error is distributed in the midday
hours, which is mainly due to the midday hours being subjected to
the new energy output uncertainties. This is mainly due to the
uncertainty of the new energy output in the noon time, so the model
proposed in this paper has certain applicability.

5.3 Analysis of model validity

In order to better verify the validity of the model proposed in this
paper, different models are used for comparison,
i.e., EEMD–MPA–CNN–BiLSTM, CNN–BiLSTM, BiLSTM, and
LSTM. On one hand, it is verified that the decomposition proposed

FIGURE 11
CEEMDAD-MPA-CNN-BiLSTM electricity price forecast curve.

FIGURE 12
Comparison of prediction effects of different prediction models.
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in this paper is superior to the traditional decomposition, and on the
other hand, it is verified that the prediction model proposed in this
paper is superior to the traditional model of the same series. The
prediction results of these models are shown in Figure 12.

Figure 12 shows that the model proposed in this paper is closer to
the real electricity price curve than the other models, especially in the
evening and night, followed by the EEMD–MPA–CNN–BiLSTM
model prediction results. The predicted curves are slightly worse

FIGURE 13
Prediction bias of different prediction models.
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than those of the model proposed in this paper but better than those of
the CNN–BiLSTM, BiLSTM, and LSTM models, which indicates that
the structure of the prediction model proposed in this paper is effective
and can meet the needs of the electric price forecasting. However, the
prediction results of the noon hour are slightly in error compared with
those of the other hours, which ismainly due to the increase of output of
new energy at noon, which leads to the increase of load uncertainty. In
order to further illustrate the advantages of the model proposed in this
paper, the prediction results of different models are next fitted with the
actual results to verify the validity, and the specific results are shown
in Figure 13.

The fitting results given in Figure 13 show that themodel proposed
in this paper has the highest fit, followed by
EEMD–MPA–CNN–BiLSTM, which indicates that the model
chosen in this paper, as well as the structure of the constructed
tariff prediction model, is more reasonable and can meet the needs of
tariff prediction, and at the same time, Figure 13 shows that the basic
model adopted in this paper, BiLSTM, also has a certain prediction
advantage, which indicates that the model in this paper meets the
basic needs of electricity price prediction. From this, we obtain the
order of the prediction result advantage as follows:
CEEMDAD–MPA–CNN–BiLSTM >
EEMD–MPA–CNN–BiLSTM > CNN–BiLSTM > BiLSTM > LSTM.

To better illustrate the advantages of the model proposed in this
paper, SSE, MSE, RMSE, and R2 are used to verify that the error of
the proposed prediction model is low. The errors of the prediction
model in this paper are all lower than those of the other four
prediction models. Compared with the model of EEMD
decomposition, SSE is reduced by 0.6706 and MSE is reduced by
0.007, which indicates that the prediction error of this model is lower
and can provide price reference for market players. The specific
error results are shown in Table 2.

Table 2 shows that the model errors of this paper are all the
lowest, and the results of R2 are better among the five models, which
shows that the model of this paper has a certain degree of
sophistication. At the same time, combined with the prediction
curves of different models in the previous section, the following
conclusions can be obtained: first, China’s electricity market is still in
the development stage, resulting in the existence of great volatility in
electricity prices, and the historical market scenario is more
dispersed, which leads to the fact that there is still a certain
amount of error in the prediction of electricity prices, and
second, all the current models present a high level of error at the
midday hours, which is mainly due to the fact that China still
prioritizes the consumption of new energy. The new energy output

at noon has a great impact on the electricity price, so we should focus
on the development of new energy in the future. Third, the evening
peak price of electricity is calibrated by several models, and future
market players can focus on the trend of electricity prices during
these hours.

6 Conclusion

In this paper, a similar daily screening model is proposed based
on the improved Spearman–FCM model by analyzing the relevant
factors of the spot market and further screening the raw data to
ensure the reasonableness of the forecast data. By introducing
CNN–BiLSTM and MPA models, the
Spearman–FCM–CEEMDAD–MPA–CNN–BiLSTM model is
constructed on the basis of considering the components of
CNN–BiLSTM. The model is validated by spot electricity price
proposed previously, and the prediction results of five models,
including EEMD–MPA–CNN–BiLSTM, CNN–BiLSTM, BiLSTM,
and LSTM, are compared, and the following conclusions are drawn.

Screening the raw data using the Spearman–FCM model to
obtain the number of historical days similar to the market scenario
on the prediction date can optimize the raw data structure, ensure
the accuracy of the input data on the prediction model, reduce the
generalization ability of the strengthened prediction model, and
improve the prediction accuracy of the prediction model.

Combined with the relevant data on the spot market, the five
models are predicted, and it is verified that
Spearman–FCM–CEEMDAD–MPA–CNN–BiLSTM can handle the
peak tariffs better than the other models, realizing the requirement of
the full-cycle prediction, and avoiding the prediction problem of a single
model that can only deal with the less volatility.

Both the proposed model and the validation model in this paper
have errors, and the errors are concentrated in the outliers of themarket
electricity price, which indicates that in the process of electricity price
prediction, not only should the public information released by the
market trading institutions be taken into account but also the behavioral
characteristics of the market players. The factors such as the power
system security scheduling should also be considered, which will affect
the trend of the market electricity price.

At present, China’s spot market is in the primary stage of
construction, the trend of electricity prices is not stable, and
there will be the problem of electricity price adjustment.
Therefore, in the process of electricity price forecasting,
corrections should be made according to market characteristics.

TABLE 2 Different model errors.

Model of this paper EEMD–MPA–CNN–BiLSTM CNN–BiLSTM BiLSTM LSTM

SSE 0.5828 1.2534 3.9727 4.1063 7.8186

MSE 0.0061 0.0131 0.0414 0.0428 0.0814

MAE 0.0474 0.0734 0.1378 0.1379 0.2139

RMSE 0.0779 0.1143 0.2034 0.2068 0.2854

R2 0.9466 0.885 0.6357 0.6017 0.2262

sum of squares due to error(SSE); root mean-square error (RMSE); mean absolute percentage error(MAPE); mean absolute error (MAE); R-square(R2).

Frontiers in Energy Research frontiersin.org19

Lin et al. 10.3389/fenrg.2024.1308806

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1308806


Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

QL: conceptualization, project administration, supervision,
validation, and writing–original draft. WC: conceptualization, formal
analysis, software, validation, and writing–original draft. XZ:
investigation, methodology, software, validation, and writing–review
and editing. SZ: data curation and writing–original draft. XG:
writing–review and editing. BZ: resources and writing–original draft.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

Authors QL and WC were employed by China Southern Power
Grid Co., Ltd. Author SZ was employed by Guangdong Power Gird
Corporation. Author XG was employed by Guangdong Power
Trading Center Co., Ltd. Author BZ was employed by Beijing
QU Creative Technology Co., Ltd.

The remaining author declares that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Beltrán, S., Castro Airizar, I., Naveran, G., and Yeregui, I. (2022). Framework for
collaborative intelligence in forecasting day-ahead electricity price. Appl. Energy 306,
118049. doi:10.1016/j.apenergy.2021.118049

Boubaker, H. (2021). Forecasting electricity price under seasonal long-run
dependence using hybrid models. Ann. Operations Res. doi:10.48550/arXiv.2204.09568

Cheng, T., Li, X., and Li, Y. (2022). Hybrid deep learning techniques for providing
incentive price in electricity market. Comput. Electr. Eng. 99, 107808. doi:10.1016/j.
compeleceng.2022.107808

David, M., Boland, J., Cirocco, L., Lauret, P., and Voyant, C. (2021). Value of deterministic
day-ahead forecasts of PV generation in PV + Storage operation for the Australian electricity
market. Sol. Energy 224, 672–684. doi:10.1016/j.solener.2021.06.011

Dong, J., Dou, X., Bao, A., Zhang, Y., and Liu, D. (2022). Day-ahead spot market price
forecast based on a hybrid extreme learning machine technique: a case study in China.
Sustainability 14, 7767. doi:10.3390/su14137767

Dong, J., Dou, X., Liu, D., Bao, A., Wang, D., Zhang, Y., et al. (2023). Energy trading
support decision model of distributed energy resources aggregator in day-ahead market
considering multi-stakeholder risk preference behaviors. Front. Energy Res. 11,
1173981. doi:10.3389/fenrg.2023.1173981

Elmore, C. T., and Dowling, A. W. (2021). Learning spatiotemporal dynamics in
wholesale energy markets with dynamic Mode decomposition. Energy 232, 121013.
doi:10.1016/j.energy.2021.121013

Han, S., Hu, F., Chen, Z., Zhang, L., Bai, X., et al. (2023). GCN-LSTM-based marginal
electricity price prediction in the day-ahead market. Chin. J. Electr. Eng. (042-009),
2022. doi:10.13334/j.0258-8013.pcsee.202548

Iruela, J. R. S., Ruiz, L. G. B., Capel, M. I., and Pegalajar, M. C. (2021). A TensorFlow
approach to data analysis for time series forecasting in the energy-efficiency realm.
Energies 14, 4038. doi:10.3390/EN14134038

Jdrzejewski, A., Marcjasz, G., and Weron, R. (2021). Importance of the long-term
seasonal component in day-ahead electricity price forecasting revisited:
parameter-rich models estimated via the LASSO. Energies 14 (11), 3249. doi:10.
3390/en14113249

Ji, X., Ruomei, Z., Yumin, Z., Feng, S., Pengkai, S. U. N., and Guohang, Z. (2022).
CNN-LSTM short-term electricity price prediction based on attention mechanism.
Power Syst. Prot. Control 50 (17), 125–132. doi:10.19783/j.cnki.pspc.211472

Lago, J., Marcjasz, G., Schutter, B. D., and Weron, R. (2021). Forecasting day-ahead
electricity prices: a review of state-of-the-art algorithms, best practices and an open-
access benchmark. Appl. Energy 293, 116983. doi:10.1016/j.apenergy.2021.116983

Lin, J., Ma, J., Zhu, J., and Cui, Y. (2022). Short-term load forecasting based on LSTM
networks considering attention mechanism. Int. J. Electr. Power and Energy Syst. 137,
107818. doi:10.1016/j.ijepes.2021.107818

Mohammadzadeh, N., Truong-Ba, H., Cholette, M. E., Steinberg, T. A., and
Manzolini, G. (2022). Model-predictive control for dispatch planning of

concentrating solar power plants under real-time spot electricity prices. Sol. Energy
248, 230–250. doi:10.1016/j.solener.2022.09.020

Shi, W., Wang, Y., Chen, Y., and Ma, J. (2021). An effective Two-Stage Electricity Price
forecasting scheme. Electr. Power Syst. Res. 199, 107416. doi:10.1016/j.epsr.2021.107416

Trull, O., García-Díaz, J.-C., and Troncoso, A. B. (2021). One-day-ahead electricity
demand forecasting in holidays using discrete-interval moving seasonalities. Energy 231,
120966. doi:10.1016/j.energy.2021.120966

Tschora, L., Pierre, E., Plantevit, M., and Robardet, C. (2022). Electricity price
forecasting on the day-ahead market using machine learning. Appl. Energy 313,
118752. doi:10.1016/j.apenergy.2022.118752

Wang, X., Li, B., Wang, Y., Lu, H., Zhao, H., and Xue, W. (2022). A bargaining game-
based profit allocation method for the wind-hydrogen-storage combined system. Appl.
Energy 310, 118472. doi:10.1016/j.apenergy.2021.118472

Wu, S., He, L., Zhang, Z., and Du, Y. (2021). Forecast of short-term electricity price based
on data analysis. Math. Problems Eng. 2021, 1–14. doi:10.1155/2021/6637183

Yakoub, G., Mathew, S., and Leal, J. (2023). Intelligent estimation of wind farm
performance with direct and indirect ’point’ forecasting approaches integrating several
NWP models. Energy, 263. doi:10.1016/j.energy.2022.125893

Yang, D., Wang, W., and Hong, T. (2022). A historical weather forecast dataset
from the European Centre for Medium-Range Weather Forecasts (ECMWF) for
energy forecasting. Sol. Energy 232, 263–274. doi:10.1016/j.solener.2021.12.011

Yang, H., and Schell, K. R. (2021). Real-time electricity price forecasting of wind farms
with deep neural network transfer learning and hybrid datasets. Appl. Energy 299,
117242. doi:10.1016/j.apenergy.2021.117242

Yin, H., Ding, W., Chen, S., Zhang, Z., Zeng, Z., Meng, A., et al. (2022). Day-ahead
tariff prediction for the market day containing a high proportion of new energy power
based on long and short-term memory network-vertical and horizontal crossover
algorithms. Grid Technol. 46 (2), 9. doi:10.13335/j.1000-3673.pst.2021.1056

Zhang, T., Tang, Z., Wu, J., Du, X., and Chen, K. (2022). Short term electricity price
forecasting using a new hybrid model based on two-layer decomposition technique and
ensemble learning. Electr. Power Syst. Res. 205, 107762. doi:10.1016/j.epsr.2021.107762

Zhao, H., Wang, X., Siqin, Z., Li, B., and Wang, Y. (2023). Two-stage optimal
dispatching of multi-energy virtual power plants based on chance constraints and data-
driven distributionally robust optimization considering carbon trading. Environ. Sci.
Pollut. Res. 30, 79916–79936. doi:10.1007/s11356-023-27955-6

Zhao, H., Wang, X., Wang, Y., Li, B. K., Lu, H., et al. (2020). A dynamic decision-making
method for energy transaction price of CCHPmicrogrids considering multiple uncertainties.
Int. J. Electr. Power and Energy Syst. 127, 106592. doi:10.1016/j.ijepes.2020.106592

Zhao, Y., Zhang, G., Zhao, J., Hao, Z., Yicun, L., et al. (2021). Short-term electricity
price forecasting based on variational modal decomposition and improved particle
swarm algorithm optimized least squares support vector machine. Electr. Technol. 22
(10), 6. doi:10.3969/j.issn.1673-3800.2021.10.002

Frontiers in Energy Research frontiersin.org20

Lin et al. 10.3389/fenrg.2024.1308806

https://doi.org/10.1016/j.apenergy.2021.118049
https://doi.org/10.48550/arXiv.2204.09568
https://doi.org/10.1016/j.compeleceng.2022.107808
https://doi.org/10.1016/j.compeleceng.2022.107808
https://doi.org/10.1016/j.solener.2021.06.011
https://doi.org/10.3390/su14137767
https://doi.org/10.3389/fenrg.2023.1173981
https://doi.org/10.1016/j.energy.2021.121013
https://doi.org/10.13334/j.0258-8013.pcsee.202548
https://doi.org/10.3390/EN14134038
https://doi.org/10.3390/en14113249
https://doi.org/10.3390/en14113249
https://doi.org/10.19783/j.cnki.pspc.211472
https://doi.org/10.1016/j.apenergy.2021.116983
https://doi.org/10.1016/j.ijepes.2021.107818
https://doi.org/10.1016/j.solener.2022.09.020
https://doi.org/10.1016/j.epsr.2021.107416
https://doi.org/10.1016/j.energy.2021.120966
https://doi.org/10.1016/j.apenergy.2022.118752
https://doi.org/10.1016/j.apenergy.2021.118472
https://doi.org/10.1155/2021/6637183
https://doi.org/10.1016/j.energy.2022.125893
https://doi.org/10.1016/j.solener.2021.12.011
https://doi.org/10.1016/j.apenergy.2021.117242
https://doi.org/10.13335/j.1000-3673.pst.2021.1056
https://doi.org/10.1016/j.epsr.2021.107762
https://doi.org/10.1007/s11356-023-27955-6
https://doi.org/10.1016/j.ijepes.2020.106592
https://doi.org/10.3969/j.issn.1673-3800.2021.10.002
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1308806

	Research on a price prediction model for a multi-layer spot electricity market based on an intelligent learning algorithm
	1 Introduction
	2 Based on fuzzy cluster analysis–Spearman correlation-based similar-day screening for the electricity spot market
	2.1 Analysis of the principles of electricity price formation in the spot market
	2.2 Spearman correlation-based integrated similarity ranking of historical information
	2.3 FCM-based similar-day screening

	3 Research on the multi-layer decomposition model of the electricity price sequence based on CEEMDAN-XGT
	3.1 CEEMDAN model analysis
	3.2 XGBoost model analysis
	3.3 Construction of the CEEMDAN-XGT tariff decomposition model

	4 Construction of the MPA-CNN-BiLSTM electricity price prediction model considering market information volatility
	4.1 Marine predators optimization algorithm
	4.2 Principles of convolutional neural network modeling
	4.3 Principles of BiLSTM modeling
	4.4 Constructing an MPA–CNN–BiLSTM electricity price prediction model for market information volatility

	5 Simulation analysis
	5.1 Scenario description
	5.2 Electricity price prediction model implementation
	5.3 Analysis of model validity

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


