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This research presents a novel methodology for tackling the combined thermal-
wind economic load dispatch (ELD) issue in contemporary power system. The
proposed approach involves hybridizing active-set algorithm (ASA), interior point
algorithm (IPA) and sequential quadratic programming (SQP) into grey wolf
optimization (GWO) algorithm, while effectively incorporating the intricacies
associated with renewable energy sources (RES). A more accurate model is
made possible by hybridization for complex systems with memory and
hereditary characteristics. The GWO is used as a tool for global search while
ASA, IPA and SQPmethods are used for rapid local optimization mechanism. The
performance evaluation of the design heuristics is carried out on 37 thermal and
3 wind power generating units and outcomes endorse the effectiveness of the
proposed scheme over state-of-the-art counterparts. The worthy performance
is further validated on statistical assessments in case of thermal-wind integrated
ELD problem in terms of measure of central tendency and variation on cost and
complexity indices.
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1 Introduction

There has been observed a drastic increasing demand of electrical energy due to
recent developments in domestic, commercial and industrial infrastructures over the
past few decades. In this regard, public utility electric supply companies are forced to
operate power grid nearly at full load capacities. Under such heavily stressed
conditions there will be substantial generational, operational and maintenance
costs. Furthermore, there will be an increased power losses, stability and power
breakdown matters. In today’s modern power system optimal ELD has been given
considerable importance owing to the increased electrical energy generation cost and
depletion of fossil fuels used in thermal power generating units. The basic aim of ELD
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problem is to optimally allocate the active power generation
output from thermal power generating units while taking care of
the operational constraints associated with power system. By
reducing the generation cost and increasing system’s reliability
through optimal active power allocation, the overall energy
capabilities of electrical energy generation increase. The
research community has greater interest to approach the
conventional ELD problem realistically due to numerous
practical scenarios associated with power system. The input-
output fuel cost generation curve is basically non-differentiable,
non-convex and non-linear owing to the multilevel steam
generating valves associated with modern steam operated
thermal power generating units commonly known as VPLE.
The systematic opening of these steam valves generates
ripples in fuel-cost characteristics curve and can be modelled
by imposing absolute sine term in main quadratic function of
ELD problem (Kaboli and Alqallaf, 2019). There has been
observed a greater emission of toxic gases such as carbon-
mono-oxide (CO), Sulphur oxide (SO) and nitrogen oxide
(NOx) as a result of electrical power generation from fossil
fuels operated thermal power generating units. Due to these
hazardous environmental concerns, mathematical formulations
have been developed to reduce generation cost and emission
levels of above-mentioned toxic gases simultaneously (Yu et al.,
2018). The addition of alternate energy resources such as wind
and solar energies have rectified the concerns of higher
generation cost and emission levels of toxic gases to a greater
extent. The integration of renewable energy resources into
thermal power plants has led to modifications of conventional
quadratic fuel cost characteristic equation by adding Beta and
Weibull distribution functions that addresses the stochastically
varying behavior of solar and wind power availability
respectively (Jiang et al., 2015a; Jadoun et al., 2018). There
are some physical limitations associated with some of the
generating unit shaft’s bearings due to amplified vibrations
occurring in some regions of shaft’s rotational axis. These
prohibited operating zones (POZs) are encountered by
introducing disjoint sub regions in input-output fuel cost
characteristics function making it non-convex and non-linear
optimization problem (Jeddi and Vahidinasab, 2014). The
physical phenomenon associated with dynamic ELD problem
is encountered by using ramp rate handling strategy during
different hours of the day by including upper and lower ramp
limits for thermal power generating units (Sattar et al., 2020).
Conventional based numerical techniques are not able to solve
constrained optimization problems owing to the stiff situations
introduced as a result of considering practical constraints in
conventional ELD problem. These techniques are unable to
produce global optimum outcomes and are often trapped in
local optimum regions. In this regard various nature inspired
global optimum techniques have been developed over the years
to address global optimum stagnation. Particle swarm
optimization (PSO) is metaheuristic nature inspired global
technique adopted to find optimal results of ELD integrated
with stochastic wind (SW) forming hybrid energy generating
units (Eberhart and Kennedy, 1995; Jeyakumar et al., 2006; Jiang
et al., 2015b; Pandit et al., 2015). Genetic algorithm (GA) is
exploited to deal with ELD integrated with physical constraints

where numerical techniques failed to give global optimum
outcomes (Chopra and Kaur, 2012). More stable and précised
results were recorded using hybrid genetic algorithm (HGA) by
appropriate scheduling of active power generation outputs
(Balamurugan et al., 2014). Combined economic emission
multi-objective load dispatch problem is implemented using
differential evolution (DE) based strategy (Balamurugan et al.,
2014). IEEE 03, 06 and 13 thermal generating based ELD
problem is implemented using Improved tabu search
algorithm (ITSA) in (Senthil and Manikandan, 2010).
Evolutionary programming (EP) strategy has been found an
effective mechanism to counter non-linear and stiff scenarios of
ELD problems in (Sinha et al., 2003). Six units-based hybrid
energy generating units are exploited using modified version of
ant colony optimization (ACO) in (Gopalakrishnan and
Krishnan, 2013). Recently developed hybrid imperialistic
competitive sequential quadratic programming (HIC-SQP)
has been applied to optimize the stochastic behavior in terms
of direct cost, overestimated cost and underestimated cost of
wind power availability integrated with thermal power
generating units in order to reduce generation cost as well as
emission of toxic gases simultaneously (Morshed and
Asgharpour, 2014). Additionally, recently developed meta-
heuristics-based searching algorithms have been applied in
power and energy sectors reported in (Abbassi et al., 2019;
El-Fergany et al., 2019; Mohseni et al., 2019; Zhang et al.,
2020a; Fathy, 2020; Yang et al., 2020).

Development of biological inspired meta heuristic strategy of
GWO developed by Mirjalili (Mirjalili et al., 2014; Faris et al.,
2018) is fascinating methodology to be applied to stiff scenarios
of practical ELD problem. Numerous preponderant problems of
optimization are addressed using GWO (Alzubi et al., 2019;
Salgotra et al., 2019; Zhang et al., 2020b) that includes feature
selection (Chantar et al., 2020), vehicular adhoc networks
(Fahad et al., 2018), power system stabilizer design
(Shakarami and Davoudkhani, 2016), hydro-power prediction
(Dehghani et al., 2019) and energy management (Jiang, 2021;
Yang et al., 2022).

In proposed research, the global optimum capabilities through
biological inspired meta-heuristics paradigm of GWO algorithm
integrated with SQP, ASA and IPA are effectively applied on hybrid
energy generating units of thermal and wind power. According to
recent survey, the metaheuristic strategy of GWO has not been
applied so far on SW problems of ELD. The salient features of
proposed research can be categorized as.

• To optimally allocate the active power generation output from
thermal generating units and wind power units to reduce the
overall fuel generation cost and wind power generation cost.

• Comparative studies of GWO heuristics hybridized with SQP,
ASA and IPA outcomes with up-to-date solvers for validating
and verifying the strength of proposed hybridized schemes.

The paper is laid out as follows.
The paper is organized with mathematical formulation for ELD

problem with VPLE and integrated SW in Section 2 followed by
methodologies of GWO algorithm and applications for ELD and SW
in Sections 3, 4 respectively.
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2 System model formulation

This study involves system model of 40 thermal power
generating units containing VPLE and 37 thermal power
generating units with an integration of renewable energy in the
form of 3 wind power producing plants.

2.1 Quadratic fuel cost function

The main objective/fitness function reflecting input output
characteristics between active power generation in MW and fuel
generation cost in $/hr. Can be modelled using quadratic fuel cost
function as expressed in Eq. 1 (Kaboli and Alqallaf, 2019).

C1 � ∑tg
m�1

Am + BmPm + CmP
2
m( ). (1)

C1 is total fuel cost generation in $/hr. whereas tg is total number
of thermal power generating units. Generation coefficients reflecting
the social, economic and other related terms are being shown by
coefficients “A”, “B” and “C” formth thermal power generating unit
in quadratic fuel cost formulation.

2.2 Quadratic fuel cost function
including VPLE

For flexible power generation operation, each thermal unit is
equipped with a series of steam operated valves that allows
controlled injection of steam on turbines as per load demand
(Kaboli and Alqallaf, 2019). This physical phenomenon can
bemodelled with an introduction of absolute and sine terms in
quadratic fuel cost function making it non smooth function due to
ripples involved with VPLE as shown in Eq. 2.

C2 � ∑tg
m�1

Am + BmPm + CmP
2
m + abs Em. sin Fm Pm,min−Pm( )( )( )( ).

(2)
Where Em and Fm are generation coefficients

involved with VPLE.

2.3 Wind power generation availability
cost function

The significant advantage of integrating SW power in
thermal power generating units is reflected by economic and
environmentally friendly electrical power generation. In power
generation system comprising of both thermal and wind power
generating units, there have been developed various models for
characterizing the scheduling of real power generation and
operational generation cost. Due to inherent random speed of
wind power, power generation operator is uncertain regarding
its availability. He may overestimate wind power availability
where actual power is less than that of power predicted and extra
power is purchased to fulfill the load requirements. Sometimes

due to underestimation of wind power availability some extra
power is available and compensation is provided to wind power
supplier’s cost for not utilizing the complete wind power
available. Total generation cost of wind power can be
modelled as shown in Eq. 3 (Morshed and Asgharpour, 2014).

C3 � ∑wg
n�1

CW.P DIR,n( )( ) + CW.P OE,n( )( ) + CW.P UE,n( )( )[ ] (3)

C3 is total wind power generation cost and wg is total number of
wind power generation units. CW. P (DIR, n), CW. P (OE, n) and CW. P

(UE, n) are terms associated with direct cost, over-estimated cost and
under-estimated cost associated with wind power generating units.
Output wind power generation is directly proportional to CW. P (DIR, n)

and can be expressed mathematically for nth wind power generation
unit as expressed in Eq. 4.

CW.P DIR,n( ) � ∑wg
n�1

qn*W.Pn( ) (4)

In Eq. 4 qn is coefficient expressing direct electrical energy cost
from nth wind power generating unit in $/MWh whereas W. Pn is
real electrical output power in MW from nth wind power generating
unit. CW. P (OE, n) is unbalanced over-estimated cost as a result of
overestimation of wind power availability, so some extra real power
in MW is purchased due to electrical power shortage from wind
power generating units and can be expressed mathematically as
shown in Eq. 5.

CW.P OE,n( ) � ∑wg
n�1

Crw,n*X Voe,n( )( ). (5)

Crw, n is cost coefficient for overestimation in $/MWh for nth
wind power generating unit whereas X (VOE, n) is expected value of
wind power overestimation for nth wind power generating unit and
can be expressed mathematically in Eq. 6.

X VOE,n( ) � W.Pn 1 − exp −V
Kn
IN,n

CKn
n

( ) + exp −V
Kn
OUT,n

CKn
n

( )[ ]
+ W.Pr,n*VIN,n

Vr,n − VIN,n
+W.Pn( ). exp −V

Kn
IN,n

CKn
n

( ) − exp −V
Kn
1,n

ckmn
( )[ ]

+ W.Pr,n*Cn

Vr,n − VIN,n
( ) Γ 1 + 1

Kn
,

V1,n

cn
( )Kn⎡⎣ ⎤⎦ − Γ 1 + 1

Kn
,

VIN,n

Cn
( )Kn⎡⎣ ⎤⎦⎧⎨⎩ ⎫⎬⎭ .

(6)

VIN, VOUT and Vr are cut-in, cut-out and rated speed of wind
in meters per second whereas V1 = VIN+(Vr-V IN) *W. P1/W. Pr
being intermediary parameter. Cn and Kn are coefficients of
Weibull distribution reflecting scale and shape factor for nth
wind power generating unit. W. Pn and W. Pr are generated and
rated electrical power in MW for nth wind power generating unit.
Moreover, the incomplete gamma function having two
parameters and can be mathematically expressed in Eq. 7 as
follow (Liu and Xu, 2010a).

Γ p, c( ) � 1/Γ c( )*∫
p

0

tc−1e−tdt. (7)

While a standard gamma function involves a single parameter
expressed as shown in Eq. 8.
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Γ p( ) � ∫
p

0

tp−1e−pdt. (8)

CW. P (UE, n) is the penalty cost imposed as a result of
underestimating the availability of wind power where the
actual active power available out of wind power generating
units is more than that of predicted active power.
Compensation in this regard is provided to wind power
supplier’s cost as expressed in Eq. 9.

CW.P UE,n( ) � ∑wg
n�1

Cew,n*Y VUE,n( )( ). (9)

Cew,n is cost coefficient for underestimation in $/MWh for nth
wind power generating unit, Y (VUE,n) is expected value of wind
power underestimation for nth wind power generating unit and can
be expressed in Eq. 10.

Y VUE,n( ) � W.Pr,n −W.Pn( ) exp −V
Kn
r,n

CKn
n

( ) − exp −V
Kn
OUT,n

CKn
n

( )[ ]
+ W.P1,n*VIN,n

Vr,n − VIN,n
+W.Pn( ). exp −V

Kn
r,n

CKn
n

( ) − exp −V
Kn
1,n

cknn
( )[ ]

+ W.Pr,n*Cn

Vr,n − VIN,n
( ) Γ 1 + 1

Kn
,

V1,n

cn
( )Kn⎡⎣ ⎤⎦ − Γ 1 + 1

Kn
,

Vr,n

Cn
( )Kn⎡⎣ ⎤⎦⎧⎨⎩ ⎫⎬⎭ .

(10)

2.4 Overall objective function

The overall objective function can be modelled by combining
quadratic fuel cost function involving V.P.L.E (C2) and wind power
generation availability cost function (C3) as total generation cost
(TGC) in $/hr as shown in Eqs 11, 12.

TGC � C2 + C3. (11)

TGC � ∑tg
m�1

Am + BmPm + CmP2
m+

abs Em sin Fm Pm,min − Pm( )( )( )[ ]
+∑wg

n�1

qn*W.Pn( ) + (Crw,n*X Voe,n( )+
Cew,n*Y VUE,n( )([ ] (12)

2.5 Operational constraints

2.5.1 Load demand constraint
The most important constraint to be handled properly while

optimizing total generation cost is that the total active power
generation output from different thermal and wind power
generating units should be equal to total load demand as
expressed in Eq. 13.

∑tg
m�1

Pm( ) +∑wg
n�1

W.Pn( ) � Pdemand. (13)

2.5.2 Active power generation’s constraint
Active power generation output from each thermal and wind

power generating unit should be less than or equal to its maximum
generation limit and should be greater than or equal to its minimum
generation limit such that.

Pm,min ≤Pm ≤Pm,max. (14)
0≤W.Pn ≤W.Pr,n. (15)

In Eq. 14 “Pm, min” and “Pm, max” are active power generation
limits for mth thermal power generating unit while “W. Pr, n” is rated
active power generation for nth wind power unit in Eq. 15.

3 Design methodology

Global search-based technique dependent on GWO
algorithm hybrid with local search-based techniques of SQP,
ASA and IPA adopted for rapid local convergence is applied to
solve constrained optimization problem of power generating
system. For evaluating the efficiency and performance of
designed hybridized scheme two case studies consisting
40 thermal generating units and 3 wind power generating
units are considered. Figure 1 shows proposed work
methodology.

3.1 Grey wolf optimization (GWO)

GWO algorithm is newly developed population based meta
heuristic algorithm proposed by Mirjalili (Mirjalili et al., 2014).
GWO algorithm gets its inspiration from social hierarchy of grey
wolves (Canes lupus) which belongs to Canidae family. They
usually are known as apex predators meaning they are among top
of ranking in food chain. Usually, they live in a pack consisting of
5–12 members on an average. It has been observed that grey
wolves usually adopt very strict socially dominating hierarchy.
The leaders in a pack are alphas. They are responsible for making
decisions regarding sleeping, time to wake, and hunting, etc.
Decisions made by alphas are strictly implemented throughout
the pack. However, some democratic system is also implemented
regarding some issues in which alpha follows the decisions of
other wolves in a pack. All other wolves acknowledge the
dominancy of alphas in a pack by holding their tails down.
Alpha wolves in a pack may not be considered as a strongest
wolf in a pack but the best one in managing the daily basis affairs
of the pack. Alphas are responsible for maintaining strength and
discipline in a pack.

The subordinate wolves in a pack are betas. They are second
in line after alphas, playing role of advisors to alphas and help
alphas in decision making. Betas may be either male or female
and are responsible for implementing decisions made by alphas
to other wolves in downstream and gives regular feedback
regarding decision’s implementation to alphas. Betas are
considered as fittest candidates to replace alphas in case if
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alphas die or get too old. Third in line after alphas and betas are
delta wolves. Delta follows the command and instructions laid
down by alphas and betas. Caretakers, hunters, scouts, elders and
sentinels belong to this category. Caretakers take care of weak
and wounded wolves whereas scouts keep an eagle eye on all
boundaries and generate an alert in case of any danger. Sentinels
make sure the safety of entire pack. Fourth in line and bottom of
hierarchy comes omega wolves. Omegas has to follow all
commands and instructions by all dominating wolves. They
usually receive food and all other incentives in last. Among all
social activities, hunting is the most important and interesting
activity of grey wolves. Keeping in mind the hunting behavior of
grey wolves, GWO algorithm is implemented in which initial
population of grey wolves is generated and these wolves move in
multi-dimensional search space in search of prey. The position

vectors of these search agents i-e grey wolves are considered to be
the problem’s variables whereas the distance between search
agent and its prey is considered to be the fitness value of
required objective function. In GWO algorithm each search
agent moves in hyper dimensional place and updates its
position with respect to its prey over the course of its
iterations. The remaining search agents down the hierarchy
update their positions with reference to the best individual
search agents obtained. The main aim of GWO algorithm is to
find the shortest possible path between search agents and prey.
Hunting process mainly follows to track, chase and approach
prey. Once approach the prey, encircle and start harassment the
prey till it gets stationary and finally attacking the prey. GWO
mimics the hunting mechanism by mathematical model for
searching, approaching, encircling and attacking the prey.

FIGURE 1
Graphical representation of propose GWO algorithm.
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3.2 Exploration phase

In designing the mathematical model for GWO algorithm,
the fittest candidates for required solutions are considered as
alphas. The second and third best candidates in terms of
required solutions considered are betas and deltas
respectively. All three candidates guide and assist the hunting
mechanism of GWO algorithm. The lowest candidate
considered is omega and is compelled to follow alphas, betas
and deltas. While exploring the search space, the search agents
diverge from one another and readjust their position vectors in
hyper dimensional search space while searching for the prey.
Coefficient vector Av provides different random generated
values that compel search agents to diverge from the position
of prey. While vector Cv provides random generated weights.

Exploration of search space by vectors Av and Cv make sure the
global optimum solutions by GWO algorithm and are
mathematically expressed as shown in Eqs 16, 17.

�AV � 2 × �p1 × �c1 − �p1. (16)
�CV � 2 × �c2 (17)

Component P1 of coefficient vector Av linearly decreases from
2 to 0 during successive iteration whereas C1 and C2 being random
vectors in the range of 0–1.

3.2.1 Prey encircling phase
Once the prey is approached by search agents during

exploration, they start encircling the prey. The best search agents
in terms of positions are alphas, betas and gammas while rest of
search agents in a pack update their positions with respect to the
positions of best search agents obtained so far. The following Eqs 18,
19 has been proposed tomimic the encircling behavior of search
agents round the prey.

�Ds � abs �Cv × �Xprey n( ) − �Xwolf n( )( ). (18)
�Xwolf n + 1( ) � �Xprey n( ) − �Av × �Ds (19)

Ds is linear distance between search agent and prey and indicates
the fitness value of each search agent during the course of iteration.
Lesser the distance between search agent and the prey more is the
fitness value and vice versa. Xprey and Xwolf are position vectors for
prey and search agents respectively.

3.3 Hunting mechanism

The search agents have the potential to track the location of
prey and once approached it encircle the prey. Alphas for the
instant are best search agents and leads the hunting process while
rest of search agents in a pack update their positions with respect

TABLE 1 Comparison of variants of GWO algorithm for case study 1.

Methodology Search agents’ number Time (sec) Fuel cost ($/hr.)

GWO-1 500 17.41 123135.1420

GWO-2 1000 77.29 122610.4835

GWO-3 1500 102.52 122455.3325

GWO-4 2000 242.34 122034.4184

GWO-5 2500 170.12 122044.6518

GWO-6 3000 433.80 122300.5862

GWO-7 3500 120.84 122183.2661

GWO-8 4000 578.98 121979.8310

GWO-9 4,500 229.64 122048.0780

GWO-10 5000 472.74 122064.5881

FIGURE 2
Fitness curve of best variant GWO-8 for case study 1.
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to alphas. Due to diverged search space, we are not sure about
optimum location of prey, we therefore consider the positions of
alphas, betas and gammas as best solutions and rest of search
agents update their positions accordingly. Following formulas
regarding the subject matter has been proposed as mentioned in
Eqs 20–27.

�Dsα � abs �Cv1 × �Xprey n( ) − �Xwolf,α n( )( ) (20)
�Dsβ � abs �Cv2 × �Xprey n( ) − �Xwolf,β n( )( ) (21)
�Dsδ � abs �Cv3 × �Xprey n( ) − �Xwolf,δ n( )( ) (22)
�Xwolf,α n + 1( ) � �Xprey n( ) − �Av1 × �Dsα (23)
�Xwolf,β n + 1( ) � �Xprey n( ) − �Av2 × �Dsβ (24)
�Xwolf,δ n + 1( ) � �Xprey n( ) − �Av3 × �Dsδ (25)

�Xwolf n + 1( ) �
�Xwolf,α n + 1( ) + �Xwolf,β n + 1( ) + �Xwolf,δ n + 1( )

3
(26)

3.4 Exploitation phase

Hunting mechanism led by search agents is compiled by attacking
the prey when it comes in stationary position. In exploitation phase the
value of component P1 of coefficient vector Av is linearly decreased from
2 to 0 over the course of iteration. The decrease in P1 is hence set
responsible and set fluctuation range for Av. This decrement makes sure
that next position for search agent can be anywhere between the position
of search agent and position of prey for random values of Av in the
range −1 to 1. Exploration takes place for values of Av >1 and search

TABLE 2 Statistical results for execution time and fuel generation cost for case study 1.

Variants Mean STD

Time (sec) Fuel cost ($/hr.) Time (sec) Fuel cost ($/hr.)

GWO-1 17.23 124150 0.12 546.7175

GWO-2 124.34 123630 55.90 598.3160

GWO-3 164.10 123370 66.49 446.4370

GWO-4 223.29 123070 78.10 430.9066

GWO-5 271.01 123020 84.16 395.1835

GWO-6 287.06 123020 93.58 442.9326

GWO-7 121.20 122930 0.64 404.4325

GWO-8 378.55 122780 131.57 402.4765

GWO-9 397.30 122740 143.58 344.7325

GWO-10 411.54 122760 148.71 389.6495

FIGURE 3
Independent runs and histogram observations of variant GWO-8 for case study 1.
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agents diverge from its prey whereas exploitation takes place for values of
Av <1 and search agents are forced to converge towards the prey and
attack them.

Summary of GWO algorithm is presented below.

• Set initial population of search agents i-e wolves. Population size
is set by the number of wolves. Each wolf is considered as a
candidate solution to the given problem and problem variables
are defined by the position vector of each search agent in one

dimensional, two dimensional and higher dimensional
search space.

• For each search agent in initial generated population, set
position vectors by assigning lower and upper bounds and
also set maximum number of iterations as stopping criteria.

• The fitness value of each search agent is evaluated by passing each
agent from objective function and its fitness value is evaluated based
on the distance between search agent and prey. The best fitness of
each search agent is categorized in order of alpha, beta and gamma.

TABLE 3 Comparison of hybridized variants of GWO algorithm for case study 1.

Methodology Search agents No Including VPLE

Time Iterations FC Fuel cost ($/hr.)

GWO-IPA-1 500 1.10 107 8879 121593.1550

GWO-IPA-2 1000 2.24 232 19156 121600.6300

GWO-IPA-3 1500 2.21 210 17369 121641.2474

GWO-IPA-4 2000 1.21 97 8152 121490.9526

GWO IPA-5 2500 1.64 129 10803 121451.9279

GWO-IPA-6 3000 1.34 126 10463 121456.4441

GWO-IPA-7 3500 1.45 146 12101 121426.8340

GWO-IPA-8 4000 1.02 87 7294 121452.9140

GWO-IPA-9 4500 0.97 87 7265 121468.7313

GWO-IPA-10 5000 1.05 97 8067 121448.1173

GWO-SQP-1 500 0.90 128 10772 121805.6164

GWO-SQP-2 1000 0.83 115 9704 121586.7937

GWO-SQP-3 1500 0.85 115 9856 121681.5235

GWO-SQP-4 2000 1.13 148 12408 121533.5530

GWO-SQP-5 2500 0.78 97 8269 121521.5972

GWO-SQP-6 3000 0.78 98 8236 121534.8218

GWO-SQP-7 3500 1.01 132 11040 121548.9509

GWO-SQP-8 4000 0.95 127 10626 121551.3529

GWO-SQP-9 4500 1.08 113 9465 121777.5099

GWO-SQP-10 5000 0.91 103 8697 121448.6012

GWO-ASA-1 500 4.38 726 30666 121578.9584

GWO-ASA-2 1000 7.59 1,000 82288 121674.7828

GWO-ASA-3 1500 5.52 662 54605 121568.0814

GWO-ASA-4 2000 1.94 242 19845 121637.3382

GWO-ASA-5 2500 1.20 152 12739 121617.7429

GWO-ASA-6 3000 1.18 140 11703 121591.5375

GWO-ASA-7 3500 1.51 194 16618 121647.9019

GWO-ASA-8 4000 1.92 231 19892 121498.2729

GWO-ASA-9 4500 2.45 315 26083 121649.2449

GWO-ASA-10 5000 1.49 185 15343 121765.0747
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• Each search agent updates its position over the course of
successive iteration.

• GWO algorithm is terminated once pre-defined tolerance or
maximum number of iterations are reached.

• Set initial population of search agents.

• Set position vector of each search agents by setting �p1,
�AV and �Cv.

• Evaluate the fitness level of each search agent by

passing through desired objective function.

• �Xwolf,α =Best fitness evaluation is of search agent alpha.

• �Xwolf,β =Second Best fitness evaluation is of

search agent beta.

• �Xwolf,δ = Third Best fitness evaluation is of search

agent delta.

• while (n<iterations)
• for each search agent update the position using

equation (26)

• end for loop

• Update position vector of each search agent by updating

values for �p1, �AV and �Cv.

• Evaluate fitness value of all search agents

�Xwolf,α, �Xwolf,β and �Xwolf,δ

• Update

• n=n+1

• end while loop

Algorithm 1. GWO Algorithm.

3.5 Application of GWO to solve ELD-VPLE
and ELD-VPLE-SW problems

Step 1: Initializing population of grey wolves.
Random initial population of search agents, i.e., grey wolves

consisting of alpha, beta and gamma wolves is generated. Each

search agent of initial population provides feasible solutions to
constrained optimization problem of ELD. The position vector of
each search agent represents active power generation in KW or
MW within its upper and lower bound of each power generating
unit. The position of each search agent is set by the initialization
of sets of controlled variables in terms of active power generation.
Initial population of grey wolves in terms of active power
generation of each power generating unit for ELD problem
containing SW is presented below.
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(27)

Where “m” and “n” are total numbers of thermal power
generating units and wind power generating units respectively
whereas “z” represents population size of grey wolves.

Step 2: Evaluating fitness level of grey wolves.
After the generation of initial population of grey wolves, the

fitness level of each set of search agents is evaluated based on its
fitness value by passing them through required objective
functions in Eq 2 and Eq. 3. The fitness value of each search
agent reflects how far is its position from prey in terms of
generation cost in $/hr.

Step 3: Sorting in terms of its fitness levels.
The fitness value of each search agent reflecting total

generation cost in $/hr. is sorted and is placed in order such
that alpha wolves having the best fitness value while second and
third best fitness values are for beta and gamma wolves
respectively.

TABLE 4 Comparison of proposed hybrid GWO algorithm for case study 1.

Algorithm Fuel cost ($/hr.) Algorithm Fuel cost ($/hr.) Algorithm Fuel cost ($/hr.)

GA-ASA-1 [34] 122,749 EP-SQP [35] 122324 GA-PS-SQP [42] 121458.14

GA-ASA-2 [34] 122,719 NPSO- RLS [36] 123094.98 QPSO [43] 121448.21

GA-ASA-3 [34] 122,683 EP-SQP [37] 122324 BBO [44] 121426.953

GA-ASA-4 [34] 122,369 PSO-LRS [38] 122035.7946 SA-PSO [45] 121430.00

GA-ASA-5 [34] 122,353 NPSO [38] 121704.7391 IGAMU [46] 121819.25

GA-ASA-6 [34] 122,175 NPSO-LRS [38] 121664.4308 ESO [47] 121630.96

GA-ASA-7 [34] 123,062 CBPSO-RVM [39] 121555.32 MHSA [48] 121690.271

GA-ASA-8 [34] 122,796 ACO [40] 121532.41 MFO-IPA-7 [49] 121998.6318]

GA-ASA-9 [34] 122,646 SOH-PSO [41] 121501.14 GWO-IPA-7 121426.8340

EP-SQP [35] 122324 EP-SQP [35] 122324 EP-SQP [35] 122324

NPSO- RLS [36] 123094.98 NPSO- RLS [36] 123094.98 NPSO- RLS [36] 123094.98
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Step 4: Position updating mechanism.
During the course of iteration in GWO algorithm, each

search agent is motivated to update its current position with
respect to prey based upon searching, prey encircling followed
by hunting and attacking. In this regard different positions
adopted by each search agent represents the possible
controlled variables of real power output in MW for each
power generating unit to reduce total generation cost in
dollars per hour.

Step 5: Checking inequality constraint violation.
If the position of any search agent violates its limits, bring back to its

limits. These limits reflect the minimum and maximum power
generation limits for each power generating unit.

Step 6: Stopping criteria.
If there is no comprehensive change of fitness. or predefined

number of iterations have reached, the execution of GWO
algorithm is stopped else return to Step 2.

TABLE 5 Statistical results of hybridized variants of GWO algorithm for case study 1.

Methodology Search agents’
number

Mean STD

Time
(sec)

Iterations F.C Fuel
cost ($/hr.)

Time
(sec)

Iterations F.C Fuel
cost ($/hr.)

GWO-IPA-1 500 1.86 174 14405 122480.9528 0.69 65 5297 454.6729

GWO-IPA-2 1000 1.73 164 13559 122209.2272 0.67 65 5303 407.6212

GWO-IPA-3 1500 1.57 146 12151 122084.3843 0.45 43 3549 333.7528

GWO-IPA-4 2000 1.48 136 11325 121944.3904 0.47 42 3425 306.4992

GWO-IPA-5 2500 1.58 147 12227 121862.0788 0.48 43 3539 269.4663

GWO-IPA-6 3000 1.49 138 11421 121902.4361 0.47 45 3665 292.4632

GWO-IPA-7 3500 1.44 136 11300 121878.6558 0.44 40 3316 292.2390

GWO-IPA-8 4000 1.43 132 10987 121840.3937 0.39 38 3091 261.0680

GWO-IPA-9 4500 1.49 137 11383 121836.4156 0.51 45 3669 246.7808

GWO-IPA-10 5000 1.35 127 10524 121862.6348 0.38 34 2,826 233.4188

GWO-SQP-1 500 0.99 71 8485 123480.0961 3.95 149 28710 883.9448

GWO-SQP-2 1000 0.50 43 4,612 123194.9258 1.72 81 14181 791.2862

GWO-SQP-3 1500 0.89 60 7617 122956.3071 3.80 147 28999 640.4511

GWO-SQP-4 2000 0.31 25 2,734 122861.3539 1.05 55 7975 553.1321

GWO-SQP-5 2500 0.26 27 2,460 122771.4704 0.38 51 4,213 617.2696

GWO-SQP-6 3000 0.20 21 1880 122836.9971 0.32 43 3578 602.8919

GWO-SQP-7 3500 0.20 20 1867 122775.3941 0.36 49 4,034 488.6978

GWO-SQP-8 4000 0.54 32 4,252 122584.0724 3.26 107 22426 496.3900

GWO -SQP-9 4500 0.14 12 1,122 122651.9729 0.24 31 2,568 384.4202

GWO -SQP-10 5000 0.25 17 2038 122649.9914 0.99 44 7134 448.6538

GWO-ASA-1 500 2.62 418 17965 122517.5889 1.67 245 10461 449.8072

GWO-ASA-2 1000 2.42 274 23079 129899.3058 1.83 214 18492 12067.8520

GWO-ASA-3 1500 2.50 280 23563 128054.4276 1.77 205 17747 10557.9744

GWO-ASA-4 2000 2.16 238 19933 131523.8284 1.63 183 15176 12949.7432

GWO-ASA-5 2500 2.24 247 20658 132209.2469 1.83 202 16755 13759.8316

GWO-ASA-6 3000 2.10 230 19363 131525.7229 1.83 200 17361 12536.3359

GWO-ASA-7 3500 2.32 254 21466 133686.6134 1.84 202 17470 15024.7445

GWO-ASA-8 4000 2.54 280 23353 129529.7149 1.89 218 18207 12022.2646

GWO-ASA-9 4500 2.34 258 22002 133765.3417 2.03 233 20610 14027.2637

GWO-ASA-10 5000 2.26 247 20876 131707.2241 1.84 201 17500 13954.7923
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FIGURE 4
Comparison of 100 independent trials among hybridized variants of GWO algorithm for case study 1.

FIGURE 5
Statistical observations of hybrid GWO algorithm for case study 1.
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4 Case studies and simulation results

In order to show the effectiveness of nature-inspired
computational paradigm via grey wolf optimization (GWO)
algorithm, two case studies dependents upon ELD-VPLE
and ELD-VPLE-SW have been proposed. For rapid local
convergence the optimized results of GWO algorithm have been
hybridized with local search-based techniques of SQP,
ASA, and IPA.

4.1 Case study 1

This case study consists of 40 thermal power generating units
whose fuel cost coefficients have been taken from (Morshed and
Asgharpour, 2014) and power demand considered is
10,500 MW. The physical phenomenon reflecting the realistic
behavior of power system dynamics has been included by
considering VPLE. In case study 1 GWO is applied through
variants that ranges from 500 search agents’ number to 5000.
The randomness of the optimized simulation results of GWO
algorithm cannot be ignored owing to its stochastically varying
behavior. In this regard 100 independent trials for each variant
of GWO algorithm with 1,000 iterations have been applied to
closely monitor the probability of deviations in optimized
results. The best fuel cost value in $/hr. for each variant of
GWO algorithm among 100 independent trials along with its
execution time is tabulated in Table 1. Among all ten variants of
GWO algorithm, comparatively GWO-8 showed better
convergence for minimum fuel cost of 121979.8310 $/hr. with
execution time of 578.98 s. The learning curve for the best
variant recorded is shown in Figure 2, while the values for
deciding variables in terms of active power generations

output in MW for GWO-8 variant is shown in
Supplementary Appendix Table SA1 table A1 of appendix.

Inputs: The best individual search agents sorted by GWO

Algorithm for 40 generating units for ELD-VPLE and ELD-

SW. Mathematically can be represented as follows:

PGWO � P1 ,P2 ,P3,.....,Pm( )
P1,P2,P3 ,.....,Pm ,W.P1 ,W.P2,.....W.Pn( )[ ]

Output: The best individual search agents sorted by GWO

for 40 generating units are further refined by local

search techniques.

PGWO−SQP � P1,P2 ,P3 ,.....,Pm( )
P1 ,P2 ,P3,.....,Pm,W.P1,W.P2 ,.....W.Pn( )[ ]

PGWO−ASA � P1,P2,P3 ,.....,Pm( )
P1 ,P2 ,P3 ,.....,Pm,W.P1 ,W.P2 ,.....W.Pn( )[ ]

PGWO−IPA � P1,P2,P3 ,.....,Pm( )
P1 ,P2 ,P3 ,.....,Pm,W.P1 ,W.P2 ,.....W.Pn( )[ ]

Initialization: Parameters, assignments and

constraints of local search (SQP, ASA and IPA)

techniques are initialized.

Termination: Stopping criteria for all local search

techniques are set as follows:

• Max Function Evaluations=300000;

• Max Iterations=1000;

• Tolerance Function=1e-12;

• Tolerance X=1e-10;

• Algorithms

o ’interior-point’,

o ’active-set’,

o ’SQP’;

•Finite Difference Type=’central’;

• Tolerance Con=1e-12;

While (Stopping criteria satisfied) do

Cost Calculation: Calculate fuel cost for ELD-WV

function usingequation 2and total cost of integrated

stochastic wind for ELD-VPLE-SW usingequation 12

Stoppage: Exit from the main loop if all stopping

criteria are met else continue.

End:

Algorithm2. Local Search Algorithms (SQP, ASA and IPA).

Furthermore, the statistical results for execution time in seconds
and fuel generation cost among 100 independent trials for each
variant are placed in Table 2. The 100 independent trials for best
variant of GWO and histogram are shown in Figure 3. The mean
value of fuel cost goes on decreasing while computational
complexity goes on increasing with each successive set of
increased search agent’s number. Moreover, the standard
deviation reflects dynamics of search space increases by
increasing search agent’s number.

The optimized results of each variant of GWO were given to
local based search techniques of SQP, ASA and IPA for further
refinement. Table 3 consists of the best simulation results among
100 independent trials for each hybridized scheme of GWO
algorithm in terms of computational execution, function counts

FIGURE 6
Fitness curve of best variant GWO-6 for case study 2.
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(FC), iterations and fuel generation cost. The stopping criteria for
each local based search techniques are presented in Algorithm 2.
Among hybridized variants of GWO algorithm with IPA, the prime
optimized outcomes with regard to fuel generation cost of
121426.8340 $/hr. were recorded for GWO-IPA-7 while in case

of SQP and ASA the prime optimized outcomes with regard to fuel
generation cost of 121448.6012 $/hr. and 121498.2729 $/hr. were
recorded for GWO-SQP-10 and GWO-ASA-8 respectively. The
hybridized scheme of GWO algorithm with IPA gave minimum
fuel cost of 121426.8340 $/hr. compared to SQP and ASA

FIGURE 7
Independent runs and histogram observations of variant GWO-6 for case study 2.

TABLE 7 Statistical results for execution time and total generation cost for case study 2.

Methodology Search agents no Mean STD

Time (sec) Total cost ($/hr.) Time (sec) Total cost ($/hr.)

GWO-1 500 14.49 136299.4133 0.39 615.5426

GWO-2 1000 29.37 135704.2748 0.54 483.2496

GWO-3 1500 43.83 135487.696 0.72 518.3162

GWO-4 2000 58.93 135237.4796 1.25 487.0783

GWO-5 2500 76.00 135169.0305 1.57 457.3314

GWO-6 3000 90.32 135157.1608 1.64 545.4567

GWO-7 3500 105.21 134892.5012 3.06 403.5863

GWO-8 4000 137.00 134833.5954 5.07 406.1086

TABLE 6 Comparison of variants of GWO algorithm for case study 2.

Methodology Search agents no Time (sec) Fuel cost ($/hr.) Wind power cost ($/hr.) Total cost ($/hr.)

GWO-1 500 13.97 118553.4724 16629.3891 135184.8935

GWO-2 1000 30.11 117920.6849 16682.9697 134608.9942

GWO-3 1500 43.31 117776.2226 16698.4225 134481.9588

GWO-4 2000 60.33 117706.0629 16621.4011 134329.6809

GWO-5 2500 79.38 117589.1806 16621.6584 134217.8542

GWO-6 3000 91.94 117293.6596 16613.5577 133910.1427

GWO-7 3500 103.63 117442.6352 16644.0790 134087.8705

GWO-8 4000 121.38 117503.3867 16618.8767 134122.3280
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algorithms. The values for deciding variables i-e active power
generation outputs in MW in case of GWO-IPA-7 variant are
shown in Supplementary Appendix Table SA2.

In case of ELD problem with VPLE, outcomes were collate
with benchmark solvers that includes GA-ASA-1 to GA-ASA-9
(Jamal and MenKhanRaja, 2019), EP-SQP (Attaviriyanupap
et al., 2002), NPSO-RLS (Selvakumar and Thanushkodi,
2007a), EP-SQP (Chiang, 2007a), PSO-LRS (Kuo, 2008),
NPSO (Kuo, 2008), NPSO-LRS (Kuo, 2008), CBPSO-RVM
(Selvakumar and Thanushkodi, 2007b), ACO (Pereira-Neto
et al., 2005a), SOH-PSO (Vlachogiannis and Lee, 2009), GA-
PS-SQP (Chiang, 2007b), QPSO (Lu et al., 2010), BBO (Liu and
Xu, 2010b), SA-PSO (Panigrahi et al., 2008), IGAMU
(Hosseinnezhad and Babaei, 2013), ESO (Pereira-Neto et al.,
2005b), MHSA (Arul et al., 2013), MFO-8 (Khan et al., 2021),
MFO-IPA-7 (Khan et al., 2021), MFO-SQP-6 (Khan et al., 2021)
and MFO-ASA-2 (Khan et al., 2021) in Table 4. Among reported
results the best results were found for BBO (Liu and Xu, 2010b)

while the proposed GWO-IPA-7 performed even better in terms
of fuel cost giving value of 121426.8340 $/hr. compared to that of
BBO of 121426.953 $/hr.

The statistical results for all hybridized schemes of GWO
algorithm based on 100 independent trials in terms of mean and
standard deviations for execution time, iterations, FC and fuel
cost are tabulated in Table 5. In case of GWO-IPA-7 the values of
mean and standard deviations for execution time, iterations, FC
and fuel cost recorded are 1.44 ± 0.44, 136 ± 40, 11300 ± 3316 and
121878.6558 ± 292.2390 respectively Simulation results in terms
of fuel cost values for best recorded hybridized variants of GWO
algorithm i-e., GWO-IPA-7, GWO-SQP-10 and GWO-ASA-
8 for 100 independent trials are shown in Figure 4.
Furthermore, the statistical performance indices among best
variants in case of hybridized GWO algorithm with local
search algorithm of IPA was aided with histogram, boxplot
and cumulative density function (CDF) based analysis
presented in Figure 5. Histogram based analysis shows that

TABLE 8 Comparison of hybridized variants of GWO algorithm for case study 2.

Methodology Search
agents no

Time
(sec)

Iterations
no

F.C Fuel
cost ($/hr.)

Wind power
cost ($/hr.)

Total
cost ($/hr.)

GWO-IPA-1 500 3.22 155 12851 117063.12200 16609.44323 133672.5659

GWO-IPA-2 1000 35.00 221 18361 117070.88545 16609.44323 133680.3289

GWO-IPA-3 1500 6.27 109 9105 116848.25746 16609.44323 133457.7020

GWO-IPA-4 2000 11.41 135 11189 116882.88438 16609.44323 133492.3302

GWO-IPA-5 2500 4.81 103 8601 116845.96990 16609.44323 133455.4127

GWO-IPA-6 3000 5.83 137 11385 116880.50953 16609.44323 133489.9531

GWO-IPA-7 3500 4.86 121 10003 116790.84878 16609.44323 133400.2927

GWO-IPA-8 4000 6.10 129 10739 116778.50040 16609.44323 133387.9413

GWO-SQP-1 500 5.47 139 11683 116985.59300 16609.44323 133595.0361

GWO-SQP-2 1000 7.02 153 13058 117028.76016 16609.44323 133638.2073

GWO-SQP-3 1500 7.07 138 11612 116904.77801 16609.44323 133514.2202

GWO-SQP-4 2000 10.61 205 17090 117044.36284 16609.44323 133653.8055

GWO-SQP-5 2500 5.04 141 11880 116866.78669 16609.44323 133476.2280

GWO-SQP-6 3000 4.66 130 10954 117146.27217 16609.44323 133755.7130

GWO-SQP-7 3500 4.20 116 9742 116888.98573 16609.44323 133498.4302

GWO-SQP-8 4000 4.18 106 8952 116948.88903 16609.44323 133558.3302

GWO-ASA-1 500 30.57 416 34385 117190.34985 16609.44323 133799.7932

GWO-ASA-2 1000 60.91 608 50646 117121.19443 16609.44323 133730.6371

GWO-ASA-3 1500 13.849 349 29440 117072.82717 16609.44323 133682.2681

GWO-ASA-4 2000 23.14 209 17796 116978.28437 16609.44323 133587.7278

GWO-ASA-5 2500 71.37 642 52888 116964.04330 16609.44323 133573.4870

GWO-ASA-6 3000 26.11 207 17464 116958.03777 16609.44323 133567.4827

GWO-ASA-7 3500 16.17 310 25947 116955.04867 16609.44323 133564.4956

GWO-ASA-8 4000 30.64 359 30746 116792.10294 16609.44323 133401.5454
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majority of independent runs have occurred around the mean
value of Gaussian fit while the mean values tabulated in Table 5
are reflected by the median lines of boxplot. Whereas
70–75 percent results were found accurate as it is well obvious
from boxplot analysis.

4.2 Case study 2

A modified case study of ELD-VPLE of 40 generators is
considered by taking 37 thermal power generating units of case
study 1 and last three units of wind power generating units are
considered for case study 2. ELD-VPLE containing SW is
incorporated by using system model formulation of Eq. 3. Total
generation cost is incorporated using Equation (11). Units’ data for
thermal and wind power generating units have been taken from
(Morshed and Asgharpour, 2014). Hundred independent trials for
each variant of GWO algorithm with 1,000 iterations have been
applied. The best total cost value in $/hr. along with its fuel cost
value, wind power cost and execution time for each variant of
GWO algorithm among 100 independent trials is tabulated
in Table 6.

Comparatively the pre-eminent simulation outcomes of total
cost of 133910.1427 $/hr. were recorded in case of GWO-6 with fuel
cost and wind power costs of 117293.6596 and

16613.5577 respectively. The learning curve for GWO-6 is shown
in Figure 6, while the values for deciding variables in terms of active
power generations output in MW for GWO-6 variant is shown in
Supplementary Appendix Table SA3. The 100 independent trials
and histogram for best variant of GWO, i.e., GWO-6 are shown in
Figure 7. The analysis is further based on statistical results for
execution time and fuel cost in terms of mean and standard
deviations among 100 independent trials for each variant and are
placed in Table 7. The mean value of total cost goes on decreasing
while computational complexity goes on increasing with each
successive set of increased search agent’s number. Moreover, the
standard deviation reflects dynamics of search space increases by
increasing search agent’s number.

Furthermore SQP, ASA and IPA were incorporated with
each variant of GWO algorithm i-e. GWO-1 to GWO-8 for
refinement of global optimum outcomes of GWO. The best
optimized results for each hybridized variant of GWO
algorithm among 100 independent trials is presented in
Table 8. Algorithm 2 presents stopping criteria for SQP, ASA
and IPA. Among hybridized scheme methodology of GWO-
IPA-8 gave better convergence result with total cost of
133387.9413 $/hr. having fuel cost of 116778.50040 $/hr. and
wind power cost of 16609.44323 $/hr. The 100 independent
trials data for each scheme of hybridized GWO variants were
analyzed in terms of statistical performance indices. The total

FIGURE 8
Comparison of 100 independent trials among hybridized variants of GWO algorithm for case study 2.
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cost for all hybridized schemes of GWO variants against
100 independent trials are shown in Figure 8, while Table 9
shows the numerical outcomes of statistical performance indices
in terms of mean and standard deviations for time, iterations,
function count and total cost. The findings for computational
time, iterations, function counts and fuel generation cost
through mean and standard deviation operators are 8.62 ±
7.12, 138 ± 39, 11468 ± 3188 and 133876.62 ± 312.8869,
respectively for GWO-IPA-8. In case of GWO-SQP-5, the
values for time, iterations, function count and fuel cost are
0.93 ± 1.54, 22 ± 46, 2038 ± 3791 and 134960.52 ± 614.5898,
respectively. Total generation cost based on 100 independent
trials in case of each hybridized variant of GWO algorithm was
analyzed for statistical observations aided with histogram,
boxplot and CDF based studies. These statistical based
observation plots are presented in Figure 9. The occurrence

of most of independent trials data is around the mean value of
Gaussian fit in histogram based analysis. Table 9 reflects the
occurrence of median values closest to the mean values of median
lines for boxplots excluding outliers. Reasonable accuracy for
100 independent trials with probability occurrence of more than
0.8 is investigated using CDF plots. The results of the proposed
variant of GWO hybrid with SQP, IPA and ASA to solve the ELD
problem with VPLE involving SW impact were compared with
the state-of-the-art reported solvers including HIC-SQP
(Morshed and Asgharpour, 2014), MFO-9 (Khan et al., 2021),
MFO-SQP-10 (Khan et al., 2021), MFO-ASA-10 (Khan et al.,
2021), MFO-IPA-9 (Khan et al., 2021), PWTED1 (Azizipanah-
Abarghooee et al., 2012), DWTED1 (Azizipanah-Abarghooee
et al., 2012) and are listed Table 10. Among the reported
results, the best was found for MFO-IPA-9 with total cost
133809.3271$/hr. having fuel cost of 117199.8838$/hr. and

TABLE 9 Statistical results of hybridized variants of GWO algorithm for case study 2.

Methodology Search
agents no

Mean STD

Time
(sec)

Iterations
no

F.C Total
cost ($/hr.)

Time
(sec)

Iterations
no

F.C Total
cost ($/hr.)

GWO-IPA-1 500 3.92 178 14815 134621.9385 1.75 67 5526 521.4935

GWO-IPA-2 1000 11.24 159 13178 134319.3752 63 5141 418.3703

GWO-IPA-3 1500 11.22 165 13729 134177.1715 8.81 58 4,717 403.9840

GWO-IPA-4 2000 11.16 159 13216 134055.5508 8.87 49 4,039 353.4225

GWO-IPA-5 2500 10.16 148 12283 133998.6195 8.05 62 5116 347.9615

GWO-IPA-6 3000 9.74 149 12329 134109.9154 6.79 49 4,011 407.5784

GWO-IPA-7 3500 8.76 138 11429 133946.7597 5.50 39 3206 300.1547

GWO-IPA-8 4000 8.62 138 11468 133876.6169 7.12 39 3188 312.8869

GWO-SQP-1 500 2.38 59 5069 135563.8653 4.12 71 5915 974.4272

GWO-SQP-2 1000 1.56 31 2,725 135332.4864 2.24 53 4,431 716.8357

GWO-SQP-3 1500 1.27 32 2,843 135153.0475 1.99 58 4,765 734.6508

GWO-SQP-4 2000 4.47 51 8061 135012.5427 19.50 174 35048 591.9517

GWO-SQP-5 2500 0.93 22 2038 134960.5155 1.54 46 3791 614.5898

GWO-SQP-6 3000 1.81 25 3466 135018.8958 11.13 106 20684 622.9246

GWO-SQP-7 3500 1.09 21 1931 134742.569 1.97 47 3903 533.8159

GWO-SQP-8 4000 0.69 11 1,072 134735.8766 1.11 28 2,346 474.6967

GWO-ASA-1 500 24.56 319 26655 140769.6966 20.40 217 18039 11219.2687

GWO-ASA-2 1000 22.12 312 26163 141804.2457 16.38 231 19432 12697.2654

GWO-ASA-3 1500 23.74 289 24624 140063.1124 18.28 213 18750 10212.9230

GWO-ASA-4 2000 22.30 286 23862 139914.5327 19.19 224 18579 10219.7670

GWO-ASA-5 2500 24.78 275 23148 141871.1348 24.25 210 17735 12296.7052

GWO-ASA-6 3000 23.74 256 21860 140911.3517 19.75 209 19131 10821.2086

GWO-ASA-7 3500 22.56 262 22316 142172.0309 20.68 232 20615 11541.6844

GWO-ASA-8 4000 24.41 264 22263 142423.0414 25.49 198 16655 12750.8630
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FIGURE 9
Statistical observations of hybrid GWO algorithm for case study 2.

TABLE 10 Comparison of proposed hybrid GWO algorithm for case study 2.

Algorithm Fuel cost ($/hr.) Wind power cost ($/hr.) Total cost ($/hr.)

HIC-SQP (Morshed and Asgharpour, 2014) 119664.5367 16716.8463 136381.3831

MFO-SQP-10 (Khan et al., 2021) 117668.1916 16609.44323 134277.6348

MFO-ASA-10 (Khan et al., 2021) 117739.1102 16609.44323 134348.5534

MFO-IPA-9 (Khan et al., 2021) 117199.8838 16609.44328 133809.3271

PWTED1 (Azizipanah-Abarghooee et al., 2012) NA NA 137984.38

DWTED1 (Azizipanah-Abarghooee et al., 2012) NA NA 137190.31

Best Compromise (Azizipanah-Abarghooee et al., 2012) NA NA 143587.9

GWO-6 117293.6596 16613.5577 133910.1427

GWO-IPA-8 116778.50040 16609.44323 133387.9413

GWO-SQP-5 116866.78669 16609.44323 133476.2280

GWO-ASA-8 116792.10294 16609.44323 133401.5454
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wind power cost of 16609.44328$/hr. Among the proposed
variants of GWO algorithm, GWO-6 outperformed by
optimizing total generation cost to 133910.1427 $/hr. with fuel
cost of 117293.6596 $/hr. and wind power cost of 16613.5577
$/hr. Among hybridized schemes of each variant of GWO
algorithm with local search-based algorithms, GWO-IPA-
8 performed better in terms of total generation cost of
133387.9413 $/hr. having fuel cost of 116778.50040 $/hr. and
wind power cost of 16609.44323 $/hr. The second-best results
among hybridized schemes were found for GWO-ASA-8 with
total generation cost of 133401.5454 $/hr. having fuel cost of
116792.10294 $/hr. and wind power cost of 16609.44323$/hr.
followed by GWO-SQP-5 with total generation cost of
133476.2280 $/hr.

5 Conclusion

This work makes a significant contribution to the field of
power system optimization by using the hybrid GWO method to
solve the challenging ELD problem. Our study’s methodology has
demonstrated a significant decrease in fuel generating costs and
an improvement in the operational efficiency of the power
system. The hybrid GWO algorithm has resulted in notable
improvements in performance. However, it is critical to
identify potential roadblocks and avenues for more research.
Concluding remarks are listed as follows.

• Total generation cost of hybrid energy generating units in terms
of fuel generation cost and stochastically varying wind power
cost is efficiently optimized by exploring and exploiting the
searching capabilities of GWO algorithm.

• The effectiveness of proposed GWO algorithm is tested based
on different variants. Each set of GWO variant is depending
upon the population size of search agents. For further
refinement the global outcomes of GWO algorithm are
used as starting points for local search-based algorithms of
SQP, ASA, and IPA.

• Two case studies involving 40 thermal generators and 3 wind
power generators have been considered to show the
effectiveness of proposed GWO algorithm.

• For case study 1, GWO-8 variant gave better result for fuel
generation cost of 121979.8310 $/hr., while GWO-IPA-
7 showed better results of 121426.8340 $/hr.

• For case study 2, GWO-6 variant showed better optimized
results for total generation cost of 133910.1427$/hr. with
fuel generation cost of 117293.6596 $/hr. and wind power
cost of 16613.5577 $/hr. while total generation cost of
133387.9413$/hr. with total generation cost of
116778.50040 $/hr. and wind power cost of 16609.44323
$/hr. were recorded for GWO-IPA-8.

• The performance of proposed case studies was performed
based upon 100 independent trials data through statistical,
histogram, boxplot and cdf based analysis.

The approach adopted in the present research work may be
utilized in the significant areas pertaining to electric power system
(Cui et al., 2020; He et al., 2020; Zhou et al., 2020) including
integrated hydro-thermal-wind systems (Wang et al., 2019).
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