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With the objective of achieving “double carbon,” the power grid is placing greater
importance on the security of transmission lines. The transmission line corridor
has complex situations with external force targets and irregularly featured objects
including smoke. For this reason, in this paper, the high-performance YOLOX-S
model is selected for transmission line corridor external force object detection
and improved to enhance model multi-object detection capability and irregular
feature extraction capability. Firstly, to enhance the perception capability of
external force objects in complex environment, we improve the feature
output capability by adding the global context block after the output of the
backbone. Then, we integrate convolutional block attention module into the
feature fusion operation to enhance the recognition of objects with random
features, among the external force targets by incorporating attentionmechanism.
Finally, we utilize EIoU to enhance the accuracy of object detection boxes,
enabling the successful detection of external force targets in transmission line
corridors. Through training and validating themodel with the established external
force dataset, the improved model demonstrates the capability to successfully
detect external force objects and achieves favorable results in multi-class target
detection.While there is improvement in the detection capability of external force
objects with random features, the results indicate the need to enhance smoke
recognition, particularly in further distinguishing targets between smoke and fog.
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1 Introduction

China is undergoing rapid modernization, and one of the fundamental aspects of this
process is the expansion of the power transmission network. The electric power industry, as a
crucial component of the national infrastructure, plays a significant role in the development of
the country’s economy. China has established explicit goals of achieving “carbon peaking” by
2030 and “carbon neutrality” by 2060. Consequently, the country will prioritize promoting
adjustments in its industrial and energy structure. Additionally, the power grid will
increasingly integrate a significant share of clean energy sources, such as wind and
photovoltaic power (Hu, et al., 2022; Tian et al., 2022; Xiao and Zheng, 2022). As a
result, there will be an increased need for secure operation of the transmission line
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corridor. These transmission line corridors connect power production
sources to the load, necessitating their secure operation. Given the
vastness of China, variations in climate, and other environmental
conditions, the establishment of transmission line corridor poses
unique challenges. Consequently, the security of the transmission
line corridor is frequently compromised. The destruction of
transmission line is caused not only by fires but also by various
other factors (Gu, et al., 2020; Sheng et al., 2021). Additionally, the
presence of large tower cranes and engineeringmachinery also poses a
significant risk. Statistical data indicates that the primary causes of
transmission line tripping, in order, are lightning strikes, external
force damage, wind deviation, and ice damage, among others. Among
these causes, external force damage accounts for 21.4% of
transmission line trips, second only to those caused by lightning
strikes. Furthermore, an analysis of faults in transmission lines of
220 kV and above in the provincial power grid revealed that external
force damage accounted for 12.36% of all transmission line tripping,
resulting in a low success rate of tripping and reclosing at only 44.7%
(Liang, 2014; Lu, et al., 2016). Additionally, the outage durations
typically range between 2 and 3 h. It can lead to damage to the grid
infrastructure, which can disrupt production, leading to avoidable
economic losses. Additionally, it poses a risk to the safety of civilians,
staff, and individuals in close proximity to the electrical equipment.

In current method for ensuring safety, manual inspection is
predominantly utilized as the primary method for preventing
external force damage. Nonetheless, this method is time-
consuming, and the constraint of limited number of workers
makes it challenging to continuous inspection (Wang, et al., 2019;
Wang, et al., 2021; Ma, et al., 2022). The researcher conducted
monitoring of external force in transmission lines using helicopter
and drone video surveillance (Golightly and Jones, 2003; Larrauri
et al., 2013; Lin, et al., 2019; Wei, et al., 2022). This method has the
potential to enhance monitoring efficiency and reduce labor
requirements. However, it is important to note that the patrol
monitoring method is unable to provide real-time monitoring of
moving targets within a specified area. Hence, it is not applicable for
detecting unauthorized construction machinery operating within
transmission line corridors. The reference (Zhang and Deng, 2020)
obtains the external force vibration signal of transmission pole and the
vibration signals of transmission towers under different wind
excitation conditions. The vibration signals are preprocessed by
adopting delay inlay technology to turn the original signal into a
two-dimensional form and sent that into convolutional neural
network to feature extraction, and achieve vibration pattern
recognition by employ the relevance vector machine (Cui, et al.,
2023). However, this method has limitations when it comes to
recognizing different types of external force.

Detecting external force in transmission line corridor through
image analysis enables the reduction of manual labor, effectively
alerting against potential threats and preventing external force
incidents. The continuous development and application of deep
learning in the field of image recognition has proven invaluable for
identifying external force damages in transmission lines
(Krizhevsky, et al., 2012; Redmon, et al., 2016; Zhang, et al.,
2018; Liu, et al., 2019; Ma, et al., 2021; Long, et al., 2022; Wu,
et al., 2022; Dong, et al., 2023). The reference (Wei, et al., 2021) uses
bounding box annotation instead of partial mask annotation in the
process of dataset annotation and improves the average accuracy of

recognizing common categories of external force. The reference
(Tian, et al., 2021) employs an enhanced K-means algorithm to
determine suitable anchor box from the image. Subsequently, the
CSP Darknet-53 residual network is used to extract the deep-seated
network feature data of the images, and the feature map is processed
by the SPP algorithm. The algorithm, when applied to real-time
monitoring pictures of transmission line, demonstrates its ability to
detect external force damage accurately and promptly.

Nowadays, the monitoring devices can collect and transfer
image. The devices equipped with target recognition model
enable target detection in real-time images Nevertheless, most
image monitoring systems solely recognize targets exhibiting
distinct features, such as prominent engineering machinery and
construction scenes. They often fail to identify targets with irregular
characteristics like smoke. In this study, we enhance the
performance of the YOLOX-S model by incorporating the global
context block (GC block) to enhance the feature output capacity of
the backbone network. Additionally, we introduce the convolutional
block attention module (CBAM) in the feature fusion process to
improve the recognition of randomly featured targets, among
externally damaged objects. Finally, we employ the EIoU to
enhance the accuracy of target detection box and achieve the
detection of complex external force targets in transmission
lines corridor.

2 Improved YOLOX-S

2.1 YOLOX-S

The YOLOX-S is a high-performance one-stage object detection
network (Ge, et al., 2021). The network incorporates significant
advancements in object detection, including decoupled heads, data
augmentation, and anchor free, into the YOLO architecture. The
model is composed of three main components. The backbone
feature extraction network utilizes the CSP darknet architecture.
The Neck enhances the feature extraction network through the use
of the path-aggregation network (PANet). The prediction part
employs three decoupled heads.

The backbone conducts low-level feature extraction on the input
image, resulting in three feature layers. The Neck subsequently
performs high-level feature extraction on these layers. Finally,
three decoupled heads are employed for object detection, and the
detection results are obtained accordingly.

The mosaic data augmentation algorithm is applied in the input
layer. Its primary purpose is to combine four images, each
accompanied by its respective box. Once the four images are
spliced, a new image is generated, along with its corresponding
box. Subsequently, the newly generated image is fed into the network
for learning.

In addition to YOLOX-S, YOLOX has other types of networks,
namely, YOLOX-Nano, YOLOX-Tiny, YOLOX-M, YOLOX-L,
YOLOX-X. The performance of these models on the coco dataset
is shown in Table 1. As shown in the table, YOLOX-Nano and
YOLOX-Tiny are lightweight networks, so there are fewer network
parameters and poorer performance at AP (%). In the rest models,
the model accuracy improves as the model parameters increase, but
the latency also increases. The application scenario in this study is
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characterized by two main features: 1) it is applied in outdoor
environments, close to the edge end, and 2) the detection requires
high real-time performance. For these two reasons, it is necessary to
choose a base model that is moderate in model size, recognition
accuracy and latency. The two lightweight models have fewer
parameters and there is no dataset enhancement step in the
training phase, which makes it difficult to meet the requirements
for recognition accuracy. By comparing the rest of the models,
YOLOX-S with fewer parameters is easier to deploy on devices used
outdoors and meets the real-time requirements for recognition as
well as the needs in detection accuracy.

2.2 Global context block

In transmission line corridors characterized by complex
environments and a multitude of targets to be identified. The
convolutional operation of the backbone network models the
context within a limited range, and creating a confined receptive
field. The global context block incorporates both the non-local
network (NL Net) and squeeze excitation networks (SE Net).
Additionally, in the GC block, the NL block is simplified to
decrease the computational load. The GC block serves a dual
purpose: extracting global information from the backbone
convolutional network, thereby facilitating feature fusion with the
linked neck part, and reducing computation cost. Therefore,
incorporating the GC block into the network enables the
extraction of global contextual information pertaining to external
force targets in complex background (Cao, et al., 2019).

2.2.1 Simplified NL block
The NL block conducts inter-pixel correlation analysis by

utilizing the current pixel in the given position along with
feature-similar pixels of equal size to establish connections
between features and global information. The output of the NL
block zi and the inter-pixel correlation wij are calculated using Eq. 1
and Eq. 2:

zi � xi +Wz∑Np

j�1

f xi, xj( )
C x( ) Wv · xj( ) (1)

wij � f xi, xj( )
C x( ) � e Wqxi( )T Wkxj( )

∑∀m e Wqxi( )T Wkxm( )
(2)

Where, Wv,Wk,Wq and Wz represent the convolution
operations. xi represents the pixel at the current location, while
Np represents the set of all pixels. Additionally, xj comprises pixels
with similar features and an equal size as the location of xi. f(xi, xj)
denotes the relationship between position i and j, and has a
normalization factor C(x).

The NL block computational cost in the global feature extraction
process necessitates structural simplification before fusion with the
GC block. As can be seen in Figure 1, the main simplifying
operations include: omitting any further operations on xi and
solely considering the global pixel-feature correlation; removing
the Wq convolution operation; substituting Wz with Wv, and not
retaining the convolution operation of Wv. The context modeling
module is composed of the simplified NL block. The mathematical
expression for the simplified block is presented in Eq. 3.

zi � xi +Wv∑Np

j�1

eWkxj

eWkxm
xj (3)

2.2.2 Transform module
Simplifying the operation of the NL block decreases the

computational effort of the module but has an impact on the
accuracy of the training results. To address this accuracy loss and
effectively utilize the feature information from the convolution
operation on the channel, the transform module within the SE
block is introduced. Additionally, incorporating layer normalization
before applying the ReLU nonlinear activation can enhance the
generalization capability of the network. The output of transform
module zi,tran is as Eq. 1:

zi,tran � Wv2ReLU LN Wv1 ∑Np

j�1

eWkxj

eWkxm
xj⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (4)

Where, Wv1,Wv2 represent the convolution operations. ReLU
represents the nonlinear activation function, and LN denotes layer
normalization. The reconstruction of the transform module in the
GC block is shown in Figure 2.

The GC block integrates the context modeling module from the
simplified NL block, introduces the standardized transform module
within the SE block, substitutes theWv convolution operation in the
simplified NL block, and conducts feature fusion through a sum
operation. Figure 3 illustrates the final module, and its output is
obtained as Eq. 5:

TABLE 1 Comparison of YOLOX in terms of AP (%) on COCO. YOLOX-Nano and YOLOX-Tiny are tested at 416 × 416 resolution, else are tested at 640 ×
640 resolution.

Models AP (%) Parameters (M) Latency (tested on tesla V100)

YOLOX-Nano 25.3 0.91 /

YOLOX-Tiny 32.8 5.06 /

YOLOX-S 39.6 9.0 9.8 ms

YOLOX-M 46.4 25.3 12.3 ms

YOLOX-L 50.0 54.2 14.5 ms

YOLOX-X 51.2 51.2 17.3 ms
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zi � xi +Wv2ReLU LN Wv1 ∑Np

j�1

eWkxj

eWkxm
xj⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (5)

The GC block reduces computational parameters and
computation by simplifying the NL block. The simplified block
can still learn the global context. The SE block adopts rescaling to
recalibrate the importance of channels but inadequately models
long-range dependency. Finally, the GC block completes the feature
fusion by addition to the original feature map.

2.3 Convolutional block attention module

In the context of recognizing external force object in
transmission lines corridor, the task involves identifying both

obvious features like engineering machinery and random
features like smoke. To enhance the recognition ability for
smoke, a convolutional attention mechanism is incorporated
into the network. This module enables the network to
simultaneously attend to multiple types of external force
targets across channels and spatial dimensions during
feature fusion.

The structure of the convolutional block attention module
model incorporates the channel attention module (CAM) and the
spatial attention module (SAM). Figure 4 depict the convolutional
block attention module (Woo, et al., 2018). Channel attention
focuses on the classification of the object in the image through
the channel relations of the features. Max pooling can strengthen the
unique object feature, so CAM completes the object feature
extraction by average pooling and max pooling. Spatial attention
focuses on the localization of the target in the image. Pooling
operations along the channel axis can effectively highlight
information regions, so average pooling and max pooling are
applied along the channel axis in SAM. CAM and SAM are
placed in a sequential manner, highlighting the location of the
target in the image. The sequential arrangement enables the
channel and spatial attention modules to achieve complementary
attention and accomplish attentional enhancement.

2.3.1 Channel attention module
The channel attention module starts by applying a global

average pooling and a global max pooling method to the input’s
individual feature layers. The outcomes of these pooling methods are
then fed into a shared fully connected layer. The results from both
pooling methods are summed, and the Sigmoid activation function
is applied to obtain a weighted value (from 0 to 1) for each channel
in the incoming feature layer. After obtaining the weight, we
multiply it by the original input feature layer to obtain the
feature map processed by the channel attention module. The
formula for the output of channel attention module Mc(F) is as
Eq. 6:

FIGURE 1
Simplified NL block.

FIGURE 2
Transform module in GC block.
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Mc F( ) � σ MLP AvgPool F( )( ) +MLP MaxPool F( )( )( )
� σ W1 W0 Fc

avg( )( ) +W1 W0 Fc
max( )( )( ) (6)

Where, F represents input feature, σ represents the Sigmoid
function, Fc

avg and Fc
max refer to the feature maps obtained through

average pooling and max pooling, respectively, multilayer
perceptron (MLP) is the shared network in CBAM, and W1 and
W2 represent the weights of the hidden layer and output layer in the
multilayer perceptron, respectively.

2.3.2 Spatial attention module
Max pooling and average pooling are performed over the feature

layer channels which come from the channel attention module. The
pooling results are concatenated, and the channel number is adjusted
using a convolution kernel with the size of 7 × 7. After applying the
Sigmoid activation function, the weights (from 0 to 1) for each feature
of the input layer are obtained. The formula for the spatial attention
module Ms(F′) and the output of CBAM F″ is as is as Eqs 7–9:

F′ � Mc F( ) ⊗ F (7)
Ms F′( ) � σ f 7×7 AvgPool F( );MaxPool F( )[ ]( )( )

� σ f 7×7 Fs
avg ; F

s
max[ ]( )( ) (8)

F″ � Ms F′( ) ⊗ F′ (9)

Where, F′ represents channel-refined feature, σ donates the
Sigmoid function, Fs

avg and Fs
max refer to the feature maps after two

pooling operations,f7×7 represents a convolution operation with the
filter size of 7 × 7.

In the improved YOLOX-S model, GC blocks are
incorporated after the output of the backbone to augment the
model’s ability to perceive global features. Additionally, the
CBAM is introduced to improve attention towards the
external force target before the up-sampling in the feature
fusion operation and before the feature contact. The
modification leads to the final improved network structure of
YOLOX-S, as depicted in Figure 5.

2.4 Loss function

The loss function in the YOLOX-S model is derived by
combining the bounding box loss, object classification loss,
and confidence loss. The IoU loss function is the earliest one
used in the bounding box loss function. It is computed by taking
the intersection over union ratio of target box and anchor box. In
order to accurately represent the relative positions of the two
boxes, the GIoU loss function was proposed. This function
considers the non-box area by setting the minimum bounding
rectangle that encloses both target box and anchor box. It
comprehensively considers the overlapping areas between
target box and anchor box. However, if the anchor box
completely contains the target box, the GIoU will be

FIGURE 4
Convolutional block attention module.

FIGURE 3
GC block.
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equivalent to the IoU. So, the paper focuses on optimizing the
accuracy of the loss function by introducing the EIoU bounding
box loss function, which provides a comprehensive description
of the positional relationship between target box and anchor box
(Zhang, et al., 2022). Figure 6 illustrates the principle of EIoU
calculation. The EIoU loss function comprises three
components: overlap loss, center distance loss, and width and
height loss between the target box and the anchor box, which are
computed by Eq. 10.

LEIoU � LIoU + Ldis + Lasp

� 1 − IoU + ρ2 b, bgt( )
cw( )2 + ch( )2 +

ρ2 w,wgt( )
c2w

+ ρ2 h, hgt( )
c2h

(10)

Where, b and bgt represent the centroids of the anchor box and
the target box, respectively; ρ(·) denotes the Euclidean distance
between the two centroids; cw and ch refer to the width and height of
the smallest outer rectangle of the target box and the anchor box,
respectively; w and h represent the width and height of the anchor
box, while wgt and hgt represent the width and height of
the target box.

3 Experiment

3.1 Data set

In order to validate the effectiveness of the proposed model for
recognizing the external force objects and smoke objects,
transmission towers, excavators, bulldozers, concrete mixer, tower
cranes, cranes, and engineering trucks; and smoke targets are
selected as the recognition objects. Images captured by
monitoring equipment in a specific province serve as the data
source for constructing a sample library. This library comprises
15,485 images depicting the external force scenario of the
transmission line corridor. We selected clear targets with diverse
angles and backgrounds for labeling in the collected images. For
smoke, smoke generated by a fire source was selected as a labeled
target. A total of 4,003 images containing recognized object were
labeled through object setting and screening, resulting in a total of

FIGURE 5
Improved YOLOX-S structure.

FIGURE 6
EIoU principle of calculation.
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10,129 labeled targets. The label names and corresponding numbers
of these labeled targets are displayed in the Table 2.

The training and validation sets were derived from the image
sample library, with 80% of the job images randomly assigned to the
training set and the remaining 10% allocated to the validation set.
Consequently, 3,202 images were used for training, while the
validation set comprised 401 images. The rest of the images serve
as a test set. In order to speed up training and prevent the weights
from being corrupted, the model is trained with pre-trained weights
and the 50 epochs are set to freeze training. The model was trained
using python 3.7 and PyTorch on Ubuntu 18.04. The training was
run on a single GeForce GTX 1080 with CUDA 10.1.

3.2 Visualization of attention maps

In order to demonstrate the enhanced effect on smoke which
have random features, we utilize grad class activation map (Grad-
CAM) for attention visualization (Selvaraju et al., 2017). The Grad-
CAM is employed to depict the attention of target positions within

the convolutional layers. By pooling the average of gradients across
the entirety of the final convolution layer, weights can be calculated
for each channel. These weights are then applied to the feature map
to generate a class activation map. The CAM assigns importance to
each pixel in relation to the classification result. The Figure 7 depicts
a comparison between the pre-improvement and post-improvement
states (the darker middle portion of the figure indicates increased
attention on the object). It is evident from the figure that the
improved model extends attention to a wider range of features
within the smoke region. This indicates that the improvement
effectively enhances the model’s feature extraction capability and
enables improved extraction of irregular features.

3.3 Training result

The training process is shown in Figure 8. The loss function of
the proposed model continuously decreases with iterative training,
exhibiting a rapid decrease at the beginning and at the 50th epoch,
then stabilizes around the 200th epoch, indicating good convergence
performance. During the model training, the overall accuracy curve
follows a similar trend as the loss function curve. The overall precision
stabilizes around 200 epochs, reaching approximately 81.7%.

As shown in Figure 9, the experimental results demonstrate that
the improved YOLOX-S achieves external force target recognition in
complex scenarios. To validate the effectiveness of the improved
model, a sample of images from the dataset is randomly selected and
tested for detecting external force targets. The recognition results
obtained using the original network and the improved network are
presented below.

As depicted in the Figure 10, both YOLOX-S and the improved
YOLOX-S successfully recognize the external force targets in
scenario A. However, when compared to the YOLOX-S, the
improved YOLOX-S exhibits superior confidence in detecting
each target. Nonetheless, the results from the YOLOX-S network
contain instances of missed detections. The missed targets

TABLE 2 A detailed description of image database of external force object.

Object Label name Number

Pole and Tower ganta 2,587

Excavator wajueji 2,183

Bulldozer tuituji 849

Concrete mixer jiaobanche 683

Tower crane tadiao 1,035

Crane diaoche 840

Trucks fandouche 1,359

Smoke yanwu 593

FIGURE 7
Grad-CAM attention map. (A) YOLOX-S, (B) Improved YOLOX-S.
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correspond to smaller external force objects (trucks) or objects with
color features resembling the environment (towers), resulting in
missed detections. These findings highlight the efficacy of the
global context block and attention module in enhancing target
recognition.

For comparison, the two-stage network Faster R-CNN is
selected (Ren, et al., 2015). In external force scenario B, both
Faster R-CNN and the improved YOLOX-S successfully
recognize all the targets in the Figure 11. However, the
original network exhibits a missed detection for the smaller

FIGURE 8
Variation curve of loss function (A) and accuracy curve (B) in training process.

FIGURE 9
External force object detection result.

FIGURE 10
External force object detection result in scenario (A) YOLOX-S detection result (B) Improved YOLOX-S detection result.
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target at a distant location (Excavator). Conversely, the double-
stage network misdetects the closer bulldozer target, while both
the original network and the improved YOLOX-S accurately
detect the target. The improved YOLOX-S demonstrates
higher confidence. The Table 3 presents the average
recognition precision of various network for identifying
targets. The table reveals that the improved YOLOX-S
achieves superior average precision in identifying external
force object. The improved YOLOX-S surpasses the Faster
RCNN in detecting all external force recognition targets. The
improved YOLOX-S enhances the recognition precision of each
external force target compared to the original network. For
engineering apparatus targets such as excavators and
bulldozers, target recognition with rich feature information
can be improved by 4%–5%. Due to the variety of tower types
and differences in their structure, the recognition accuracy
improvement is not very good, only 2.09%. Specifically, there
is a 3.39% improvement in accuracy in recognizing smoke. This
suggests that the inclusion of the GC block and CBAM in the
network can enhance recognition accuracy for irregularly
featured targets. The improved network demonstrates slightly
higher overall recognition accuracy compared to Yolov7 in
external force scenarios (Wang et al., 2023). However,

Yolov7 achieves slightly higher accuracy in concrete mixer
recognition. The improved YOLOX-S outperforms the other
three networks in terms of recognizing smoke.

Smoke exhibits varying concentrations and profiles at different
stages. The Figure 12 demonstrates that the improved YOLOX-S
effectively captures the smoke and locates its main components.
This aids in evaluating the potential risks of smoke within
transmission corridors.

To further evaluate the model’s recognition precision of
targets in the transmission corridors, an ablation study is
conducted. The ablation study compares the impact of each
improvement component on object recognition precision. The
Table 4 illustrates that GC block enhances network precision by
1.38%, while CBAM improves it by 2.24%. GC bolck enables
targets in complex outdoor contexts to be attended to globally,
slightly improving recognition accuracy. The attention
mechanism improves the model recognition accuracy more,
making the model pay more attention to the external broken
target in both channel and space. Conversely, EIoU has a minor
impact on precision, affecting it by merely 0.45%. The EIoU is
mainly designed to describe the position of the anchor and
target boxes well and provide more help to the model
training process.

FIGURE 11
External force object detection result in scenario B (A)Original image (B) Faster R-CNN detection result (C) YOLOX-S detection result (D) Improved
YOLOX-S detection result.
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4 Conclusion

This study focuses on the recognition of external force targets
in transmission line corridors, characterized by complex
backgrounds, various object types, and irregular features. To
achieve this, the model was improved. Conclusions can be
drawn based on the model training and recognition results
obtained from the dataset:

(1) The improved YOLOX-S effectively identifies external force
targets, exhibiting superior performance in complex
environments and multi-target scenarios. The
enhancements provided by the module improve global
perception and target recognition capabilities, particularly
for targets with distinct features. The recognition precision
of such targets is enhanced by approximately 3% compared to
the original model.

(2) The improved network significantly enhances the recognition
precision of smoke with random features. The attention heat
map generated by Grad CAM demonstrates that the improved
module effectively focuses on irregular targets, further refining the
network’s ability to recognize smoke with non-uniform
characteristics. The model demonstrates improved performance
in recognizing smoke at various stages and exhibits enhanced
tracking capabilities for dynamically changing smoke.

This study incorporates the global context block, attention
mechanism, and a new loss function to enhance the YOLOX-S
network, resulting in an improved ability to recognize external force
object. In light of the aforementioned research, the ensuing research
will concentrate on two primary objectives. Firstly, to enhance the
recognition precision of external force object and broaden the
spectrum of recognizable types. Secondly, to develop an effective
assessment of threats to external force transmission lines corridor
and conduct an in-depth analysis of their operational environment.
Specifically, it was found that the accuracy of smoke recognition
needs to be further improved. With frequent changes in ambient
wind direction, it is difficult to identify and localize the location of
smoke generation. The situation is similar to natural fog, so there is a
need to more clearly distinguish between fog and smoke and to more
precisely locate smoke. We will analyze the effect on the light
reflection effect in terms of the difference between the material
composition and composition ratio of smoke and fog, and to use it as
a new feature input to distinguish between smoke and fog. Next, we
will use the number of various types of external force in the image,
the distance and the working range of engineering machinery as the
main transmission line external force threat assessment basis.

TABLE 3 Comparison of detection results under different target detection models.

Model Average recognition precision of different external force targets (AP%) mAP
%

Pole and
tower

Excavator Bulldozer Concrete
mixer

Tower
crane

Crane Trucks Smoke

Faster RCNN 80.65 87.37 88.21 77.36 83.45 76.26 76.37 58.13 78.47

YOLOX-S 81.34 85.16 87.11 76.73 84.63 75.46 74.78 57.72 77.87

YOLOv7 82.12 87.63 88.42 79.24 86.24 77.48 78.19 58.21 79.69

Improved
YOLOX-S

83.43 90.77 91.96 78.44 88.93 79.35 79.91 61.11 81.74

FIGURE 12
The smoke detection result in different stages. (A) Starting stage (B) smoke growth (C) heavier smoke.

TABLE 4 Ablation study.

GC block CBAM EIoU mAP%

\ \ \ 77.87

√ \ \ 79.25

\ √ \ 80.11

√ √ \ 81.29

√ √ √ 81.74
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