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The forecast of wind speed and the power produced from wind farms has
been a challenge for a long time and continues to be so. This work introduces
a method that we label as Wavelet Decomposition-Neural Networks (WDNN)
that combines wavelet decomposition principles and deep learning. By merging
the strengths of signal processing and machine learning, this approach aims
to address the aforementioned challenge. Treating wind speed and power as
signals, the wavelet decomposition part of the model transforms these inputs,
as appropriate, into a set of features that the neural network part of the model
can ingest to output accurate forecasts. WDNN is unconstrained by the shape,
layout, or number of turbines in a wind farm. We test our WDNNmethods using
three large datasets, with multiple years of data and hundreds of turbines, and
compare it against other state-of-the-art methods. It’s very short-term forecast,
like 1-h ahead, can outperform some deep learning models by as much as
30%. This shows that wavelet decomposition and neural network are a potent
combination for advancing the quality of short-term wind forecasting.

KEYWORDS

deep learning, machine learning, power forecasting, spatio-temporal, wavelet
decomposition, wind farm

1 Introduction

With governments around the world attempting to reduce carbon emissions into the
atmosphere and dependence on fossil fuels, renewable energy sources have steadily gained
popularity. According to the US Energy Information Agency, by 2050 renewables will
be the largest contributor to US electricity needs. Wind power plays a leading role and
could provide nearly 35% of that contribution (Center, B. P, 2020). Wind power, for all its
benefits, has the undesirable effect of introducing variability into the energy portfolio due
to the non-stationary nature and nonlinear character of wind (Calif and Schmitt, 2012).
To appreciate the large variability in wind data, please see the visualization of wind speed
and wind direction in Figure 4.4 of (Ding, 2019, Page 106). To reduce/mitigate the negative
effects of this variability in supply, it behooves suppliers to take necessary action to ensure
that they can meet the terms of their supply agreements and generate additional revenue
where possible. The ability to accurately forecast wind speed and power, therefore, becomes
important.
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Wind forecasting can be broadly categorized into physics-
driven and data-driven approaches (Nedaei et al., 2018; Ding, 2019).
Physics-driven methods involve physical atmospheric models and
are collectively known as Numerical Weather Prediction (Kimura,
2002), as is used in our daily weather forecasts. Data-drivenmethods
do not make explicit use of physical models but use the weather
and environmental measurements to build statistical or machine
learning models. We focus on the data-driven approaches in this
article, which are generally used for short-term forecast from a few
minutes to a few hours (Ding, 2019).

Research on data-driven methods is very active, as evidenced
by many approaches that have been proposed in the past few years.
A survey of the current landscape on short-term forecasting (we
delay the detailed literature review to Section 2) would inescapably
leave one with the impression that most of the current proposed
methods are deep learning-based. Some of these deep learning-
based works have shown good performance, thereby, encouraging
further works using deep learning.While there are complaints about
deep learning’s lack of interpretability, a legitimate concern in certain
areas of application, the persistent success achieved by deep learning
indicates that such success is, perhaps, not happening by chance. It
is certainly worthwhile, however, to continue the study on how and
why deep learning works.

What hampers the effort to understand why and how a
deep learning-based method works is the lack of reusability and
reproducibility of deep learning-based forecasting methods. Due
to stochasticity in data and in the ways that a neural network
can be initialized, computed, and then stopped, the outcomes
can be rather different. Also, deep learning models are generally
complicated (way more complicated than typical statistical learning
models), making it difficult to replicate others’ deep learning
algorithms unless the original authors share their data and code.
The reality is that most of the publications of research done in
this area are not accompanied by open source code. In the course
of our research, we came across a good number of deep learning
methods but found the code only for one of the methods. We
contacted a handful of authors but almost none of them shared
their code.

Beyond the reusability and reproducibility issues are the
problems that some of the deep-learning methods may hinge on the
layout of wind farms or the availability of certain kinds of data. Some
methods are designed for certain wind farm layouts, rendering them
unusable for wind farms laid out in a different fashion. An example
of that is the predictive spatio-temporal network (PSTN) (Zhu et al.,
2019) which is designed for turbines laid out in a rectangular grid.
This is a consequence of using a convolutional neural network
(CNN), which is easy to implement on such a rectangular grid.

Another crucial problem, regardless of deep-learning or not, is
that a newly proposed method is often tested on a single dataset in
one particular setting to substantiate the claims by the proposers.
This is the case for nearly all methods referenced in Section 2.
We understand that gathering diversified datasets is not easy and
running the extra analysis is time consuming and computationally
expensive. But the problem with one-dataset/one-setting testing is
also obvious. We find through our own experience that one method
that performswell on one datasetmaynot performwell on a different
dataset. In order to find a robust solution, the bar to demonstrate
superiority needs to be set higher. Unfortunately, there are relatively

few comprehensive studies that truly showcase the capabilities of the
existing methods.

We hereby propose theWavelet DecompositionNeural Network
(WDNN) method that seeks to address some of the limitations
of the existing methods. The basic scientific motivation behind
our development is the understanding that an essential part of
statistical/machine learning models is the quality of input data they
are fed. More often than not, transformation is done to raw data
before it is fed into a model to ensure the desired output. This is
referred to as feature transformation or engineering (Guyon et al.,
2008). Signal processingmethods have been known to “break down”
signals into its constituent parts, such that valuable insights can be
gleaned. To materialize this concept, we use wavelet decomposition
as a vehicle for feature engineering, transforming wind and power
data into multiple informative features. These features are arguably
what make the method work, as they distill the raw data to its
essence, extracting features that, when fed into the neural network,
produce competitive forecasts. Because of the power of feature
engineering, the neural network used in our approach is the
simplest feedforward neural network, which uses fewer parameters
and runs less expensive computations than many deep-learning
counterparts. In summary, we believe that this work makes the
following contribution:

1. This work shows that wavelet decomposition and neural
network make a potent combination that improves the short-
term wind forecast. We believe that our proposal is one of the
first in exploring how best to combine feature engineering with
a simple neural network for wind power forecasting.

2. The proposedWDNN is not restricted by the strict rectangular
layout requirements of wind turbines. The method also
supports the use of simple neural network rather than
complicated deep learning.

3. The merit of WDNN is supported by a comprehensive study
using three large datasets on both onshore and offshore wind
farms and spanning multiple years. To our best knowledge,
this is one of the largest public studies in wind power
forecasting research.

4. In order to promote open science and reproducibility in wind
energy research, all the data and code utilized in this work,
both for WDNN and for the methods it is compared with, are
made public through the Zenodo data/code sharing platform
at https://zenodo.org/record/7699252.

The rest of the article unfolds as follows. Section 2 looks at the
research that has come before this and laid the groundwork for
this work. Section 3 explains the thought processes and outlines the
procedure for the proposed WDNN algorithm. Section 4 presents
the datasets used to validate the method and the analysis of the
results obtained. Finally, Section 5 provides a recap of the proposed
method and the insights gleaned from it.

2 Review of previous work

While it is generally agreed that the methods for forecasting
power can be broadly categorized as physical and data-driven
methods, the categorization of data-driven methods into sub-
groups is viewed differently by different researchers. For instance,
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Wang et al. (2019) posit that the data-driven methods could be
categorized as statistical, artificial neural network, and hybrid,
while Zhu et al. (2019) posit statistical, probabilistic, and artificial
intelligence.These are by nomeans the only kinds of categorizations.
Due to increased interest in data science andmachine learning in the
last decade, there has been a lot of work done in data-driven short-
term wind speed and power forecasting. There are works based on
conventional time series models such as Auto Regressive Integrated
Moving Average (ARIMA) in Box et al. (2015) and Chang (2014).
The disadvantage of these models is that they only extract the linear
dynamics of time series, which may cause large errors. Other time-
series based models such as Liu et al. (2010) and Erdem and Shi
(2011) also have a similar drawback as the recent information that
could bemore informative in forecasting is sometimes overwhelmed
by the long training period. Spatio-temporal models such as Dowell
and Pinson (2015) perform well when wind farms in a local region
resemble each other or turbines resemble each other. Other spatio-
temporal models such as Pourhabib et al. (2016), Ezzat et al. (2018)
and Ezzat et al. (2019) might require environmental variables in
addition to wind speed (such as wind direction), similarity in the
turbines being dealt with or some other factors to work.

Other forecasting approaches include nonparametric algorithms
such as Support Vector Regression (SVR), random forest and
Markov models. For SVR, Mohandes et al. (2004) show that
SVR outperforms Multilayer Perceptron (MLP) neural networks.
However, Wang et al. (2015) pointed out that the forecasting
accuracy of SVR greatly depends on its hyperparameters, and it
also does not outperform a variety of other methods, hence it
does not stand out among forecasting methods. Also, Markov
chain-like models are widely studied due to their unique modeling
structure and broad applications in optimization (Kwon et al., 2015).
Markov chain-based models such as Jafarzadeh et al. (2010) and
Catalão et al. (2011) work well for short-term forecasting with h ≤ 2
(h is defined in Section 3) as theMarkov chains can decently capture
the short-term data change based on the current value. However, the
Markov chain-like models turn out to be stationary as prediction
terms become longer.This results in poor predictions, as the models
fail to capture the seasonality.

Models based on decomposition techniques, methods popular
in signal processing, have also been developed and studied. The
Seasonal and Trend decomposition using Loess (STL) method,
developed in 1990, while a reasonable method, only provides
facilities for additive decomposition (Cleveland et al., 1990).
Inspired by this idea, Meta (previously Facebook) proposed the
Prophet model (Wang et al., 2017) that decomposes the time
series to season, trend and residual. This model makes up for
the defect of STL and improves accuracy as well as adaptability
appreciably. There are also methods that are based on other signal
processing methods, which decompose time series into high
and low frequencies. Common decomposition approaches are
Fourier Transform (FT), Wavelet Transform (WT) (Mallat, 1989),
Empirical Mode Decomposition (EMD) (Huang et al., 1998), and
Variational Mode Decomposition (VMD) (Dragomiretskiy and
Zosso, 2013).The forecastingmodels based on signal decomposition
usually contain three steps: decompose, train and forecast, and
reconstruct. These models capture the fact that after decomposing
the original data series, each decomposed data series may capture
certain characteristics of the original series. Predictions for each

decomposed series are then combined to form a forecast for the
original signal. However, the total prediction error would increase
when the number of decomposed layers increases, as the prediction
error for each layer gets compounded. Also, these models did not
consider the correlations between different layers.

There are also forecasting models that are based on Artificial
Neural Network (ANN). Neural network methods have been
growing rapidly in the last decade or so, due to the improvements in
our computational abilities, and have found extensive use in various
fields due to their ability to model nonlinear relationships well. In
2018, DeepMind/Google blogged about applying neural network
training methods to 700 megawatts of wind power capacity in the
central United States and has boosted its wind energy forecasting by
roughly 20 percent (Witherspoon and Fadrhonc, 2019). The basic
ANN algorithm is a series of “neurons” connecting input to output,
with optimization done using Back Propagation (BP) in conjunction
with the gradient descent method, was first introduced in 1960s
and almost 30 years later reintroduced into popular consciousness
(Rumelhart et al., 1986). More complex forms of neural networks,
for dealing with different types of problems, have been developed
since then. Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN) were developed to improve accuracy for
image and series data respectively. More and Deo (2003) proposed
two methods based on RNN, which are found to be more accurate
than traditional statistical time series analysis. Long Short Term
Memory (LSTM), a special RNN, was proposed in 1997 to make
RNN capable of learning long-term dependencies (Schmidhuber
and Hochreiter, 1997). Gangwar et al. (2020) found that LSTM is
more effective compared to the SVM in wind speed forecasting. It
was also found that the Temporal Convolutional Network (TCN)
is more efficient than RNN, as it can shorten processing and
training time, be more flexible, and avoid gradient explosion and
disappearance. Deep Forecast (DF) is a framework that models
spatio-temporal information by a graph whose nodes are data
generating entities and its edges model how these nodes are
interacting with each other. It creatively uses LSTMs and obtains
forecasts of all nodes of the graph at the same time (Ghaderi et al.,
2017). However, while DF may work well in predicting wind speed
in certain instances, it may not generalize well. Spatio-Temporal
Attention Networks (STAN) is a recent method that employs a
multi-head self-attention mechanism to obtain spatial correlations
among wind farms and a Sequence-to-Sequence (Seq2Seq) model
with a global attentionmechanism to extract temporal dependencies
(Fu et al., 2019). STAN predictions will be shown in this work to
be competitive. Predictive spatio-temporal network (PSTN) is a
method that integrates a CNN and a LSTM for turbines situated in
a regular grid (Zhu et al., 2019). The PSTN is a powerful method,
as this work will show, with its limitation being our inability to
use it for situations where turbines are not situated in regular
orthogonal grids.

There are also methods that combine elements of more
conventional methods mentioned earlier, such as ARMA, with
neural networks. Examples of these would be ARIMA-ANN
(Cadenas and Rivera, 2010), WT-NN (Liu et al., 2019; Zhang et al.,
2019; Peng et al., 2021), and several others. Recently, many models
that are based on a combination of wavelet analysis and a
deep learning method have been developed (Catalão et al., 2011;
Guo et al., 2012; Liu et al., 2012; Chen et al., 2013; Wang et al.,
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2017). In Liu et al. (2012) and Guo et al. (2012), EMD-FNN and
EMD-ANN models are provided to forecast wind speed. It shows
that they are efficient tools for operation, planning and dispatching
of wind farms. However, most of the hybrid methods fail to
capture the fact that components in wavelet decomposition are
potentially correlated. Thus, the inverse decomposition that was
used in Catalão et al. (2011) and Wang et al. (2017) may not be a
reliable way of forecasting.

Motivated by the foregoing, in this work we develop short-term
wind speed and power forecasting algorithms, WDNN. We provide
novel wavelet-based neural network forecasting models without
making the linearity and independence assumption of decomposed
layers, or regard to the specific placement of turbines in a farm, or
similarity of turbines, that provide forecast results of high accuracy.
WDNN, for wind speed prediction and for power prediction, is
trained and tested with multiple years of data from three different
wind farms, with multiple hundred turbines in total. The results
obtained are compared with results obtained using basic methods
such as persistence and binning, and more sophisticated methods
such as DF, STAN, and PSTN, trained on the same data. These
comparisons will show that WDNN methods are accurate, reliable,
and implementable at scale.

3 Methodology

WDNN can be used for forecasting wind speed or power. When
forecasting wind speed, the input is the historical wind speed, and
output is the forecasted wind speed. When forecasting wind power,
the inputs are the historical wind speed, the first derivative of
historical wind speed, and historical wind power, and the output
is the forecasted wind power. While the difference in inputs and
output, the method’s inner architecture stays the same.Themethods
are split into two steps, namely, the wavelet decomposition step
and the machine learning step. In the wavelet decomposition step
an input is transformed into a set of features that the subsequent
machine learning model would find more informative than just the
original input. The machine learning step involves the employment
of a neural network model that utilizes the results of the wavelet
decomposition as input step to obtain predictions of wind speed
or power.

3.1 The wavelet decomposition step

The idea to use wavelet decomposition to transform raw wind
speed and power data is motivated by the desire to de-construct
the original wind speed and power signals into good quality input
for a machine learning model. Wavelet decomposition is easy to
implement and tends to compute quickly since most of its energy
is concentrated in a small fraction of its coefficients.

The general idea of the wavelet decomposition is to decompose
the original signal wave into a series of wavelets. There are multiple
types of “mother” wavelets (or wavelet filters), such as Haar,
Daubechies (db), Coiflets (coif), Biorthogonal (bior), and Reverse
biorthogonal. After transforming the original data signal using a
particularmother wavelet, we will end up having a series of daughter
wavelets with different frequencies and locations. Each daughter

wavelet is associated with a corresponding coefficient that specifies
how much the daughter wavelet at that frequency contributes to
the original signal at that location Mallat (1989). Therefore, these
coefficients contain information about the original signal and can
be used as inputs of the neural network later.

Let us introduce some notations first. For a single turbine i,
let Sj(i) and Pj(i) represent the wind speed and power, respectively,
recorded at time j, where i = 1,2,…,N turbines and j = 1,…,T hours.
Also, let S′j (i) represent the first derivativewind speed corresponding
to Sj(i). In the following discussion, the time index t, is reserved to
denote the present time, while other time indices would always be
referred to relative to t. For instance, a power forecast is to bemade at
t+ h for h = 1,2,…,H, where h is the forecast horizon, and could be
as far asH hours ahead of the present time. In this work,H goes as far
as 12, i.e., half of a day.The inputs are Sj(i) and S

′
j (i) for a wind speed

prediction model, and Sj(i), S
′
j (i), and Pj(i). For a power prediction

model. In order to account for the fact that these data observations
are not independent but in a time continuum with observations
before them, a lag, L, is defined. L is the number of observations used
in the decomposition process for each observation. That is, in order
to decompose St(i), observations St−L+1(i),St−L+2(i),…,St(i) would
be included. An L value of 6 was used in this work.

The wavelet decomposition is done according to the Discrete
Wavelet Transform (DWT) technique credited to the seminal
groundwork of Mallat (1989) and extended by Daubechies (1988).
Themain step of the DWT is to decompose the original signal using
a particular wavelet filter with a decomposition level k, into multi-
resolution representations. We will end up having “approximation”
coefficients A and “detail” coefficients D.

The Daubechies 4 (db4) wavelet is used as the default wavelet
filter with a decomposition level of four in this work. One reason
for this choice of wavelet is that comparison of the impact
of different wavelet filters on prediction quality in Section 4.3.1
supports the use of db4 to be the default choice. Daubechies
(1992) and Matlab documentation (MathWorks, 2022) present
details of the Daubechies family wavelet transforms. A comparison
similar to the one done for the wavelet family in Section 4.3
would also show that the chosen level of decomposition is the
optimal choice.

The approximation coefficients hold the general trend of
the original signal, and the detail coefficients consist of the
high-frequency components of the original signal (Reis and
Da Silva, 2005). One can further decompose the approximation
signal into another pair of approximation and detail signals.
If we keep decomposing the signal for k times, we then end
up having k+ 1 signals (Ãk, D̃k, D̃k−1,…, D̃1), where Ãk is the
remaining approximation signal and D̃d is the detail signal on
dth decomposition. Figure 1A depicts what the decomposition
looks like. However, the lengths of Ãk and D̃i are not the
same. To guarantee that they have the same number of data
samples, we utilize the Inverse Discrete Wavelet Transform
(IDWT) of (Ãk, D̃k, D̃k−1,…, D̃1) to obtain a new set of wavelets
and (Ak,Dk,Dk−1,…,D1) with |Ak| = |Dk| =… = |D1| = n and
n being the number of sample points for the original signal,
i.e., training or testing data, since both datasets will be
decomposed.

The output of the wavelet decomposition step is a
matrix of dimension of n× Lq (k+ 1), where q is the
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FIGURE 1
Wavelet decomposition and the neural network. (A) Diagram showing wavelet decomposition with k = 3, adapted from Matlab one-dimensional
wavelet decomposition documentation (MathWorks, 2023). (B) Neural networks for wind speed and power prediction, where β = Lq (k+ 1).

number of inputs. For wind speed forecasting, q = 2 because
only past wind speed and the derivative of past wind
speed are used, whereas for power forecasting, q = 3 as
past wind speed, derivative of past wind speed, and past
power are used.

3.2 The neural network step

The choice of neural networks here is because deep
learning models are quite adept at dealing with nonlinear
data and their success in the recent wind forecasting effort
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does not appear entirely by chance, as we argued in the
Introduction section.

For the power prediction model, the response variable, y, is
the h-hour ahead original power data, scaled to a range of 0–1.
For the forecasting of wind speed, the computation is similar
except for the absence of wind power in the input as well as
in the response variable. While it is possible to include other
environmental variables in the WDNN model, this work restricts
predictive variables to wind speed and past power, not only
because they have an outsize influence in wind power production
(Ding, 2019) but also because wind speed is the commonly
available measurements for all wind farms. Other environmental
measurementsmay ormaynot be available, especially for some small
wind farms.

The ANNs used in our algorithm are made up of fully-
connected input, three hidden, and output layers as depicted
in Figure 1B. The dimensions of the input into the ANNs
(i.e., the number of features resulting from the decomposition
step) denoted by β, vary depending on the type of prediction
to be done—power or speed—and satisfies β = Lq (k+ 1).
The hidden layers of the ANNs use a Rectified Linear
Unit (ReLU) activation function are comprised of 3L, 10,
and 10 nodes each, and the output layer uses the sigmoid
activation function.

3.3 Choice of the neural network
architecture

For time series problems, researchers would tend to go
with a neural network that can take previous data points into
account during the feedforward process such as RNN or more
complex forms of it like LSTM or the Gated Rectilinear Unit
(GRU). These methods tend to provide better results in such
cases. In this work, however, that is not the case. This is due
to the fact that the wavelet decomposition step shuffles the
data, consequently nullifying the positive effects that models
like RNN, LSTM, and GRU might have. A simple feedforward
neural network was deemed sufficient and this work shows that
it outperforms the RNN-based and LSTM-based methods in
every metric.

The numbers of layers and neurons in these layers were
chosen by using a Bayesian optimization algorithm (Snoek et al.,
2012), which works by constructing a posterior distribution of
functions (Gaussian process) that best describes the function one
wants to optimize. As the number of observations grows, the
posterior distribution improves, and the algorithm becomes more
certain of which regions in parameter space are worth exploring
and which are not. This process is designed to minimize the
number of steps required to find a combination of parameters
that are close to the optimal combination. To do so, this method
uses a proxy optimization problem (finding the maximum of
the acquisition function) that is computationally cheaper than
grid search. It is implemented in the BayesianOptimization
Python library (Nogueira, 2014). We call the BayesianOptimization
function which gives us the optimized outcome for the neural
network design.

3.4 The algorithm

Step-by-step details of the WDNN models for wind power and
wind speed are given in Algorithms 1, 2. A demonstrative graph
of the WDNN model for power prediction is provided in Figure 2.
The graph shows the algorithm working for one turbine. So, for
the simplification of notation in this subsection, let all Sj(i), S

′
j (i)

and Pj(i) be Sj, S
′
j and Pj respectively. It can be observed that the

original data series of wind speed (St−L+1,…,St), (S
′
t−L+1,…,S

′
t ) and

wind power (Pt−L+1,…,Pt) are first decomposed into k+ 1 layers.
The decomposed components are then inversely decomposed and
used as features for the ANN model for predicting the wind power
Pt+h at time t+ h. For the WDNNmodel for wind speed prediction,
the demonstrative graph will be similar, except for the absence of
Pi(j) and the forecast is Ŝt+h. It is noteworthy that our prediction
model is different from models proposed in Catalão et al. (2011)
and Wang et al. (2017) in which the prediction values for each
decomposed layer are linearly combined to form a forecast for the
original series (for which these models assume that decomposed
layers are independent). Here, we directly use Pt+h as the response
for the ANN model without predicting for each decomposed layer.
By doing this we can avoid summing over the prediction errors for
each layer. It is also important to know that the ANNmodel here can
potentially capture the correlations between different layers.

4 Analysis and discussion

This section provides the analysis of the WDNN method using
three large datasets.Wewill proceedwith explaining the datasets and
performance metric used first, followed by an analysis to support
the choice of design parameters used in WDNN, and then a study
comparing the short-term forecasting performance of WDNN and
several alternative methods.

4.1 Datasets

Data from three wind farms is used to test the algorithms.
Dataset-1 andDataset-2 containwind speed andpower information,
while Dataset-3 contains only wind speed. All datasets are
available through the data/code sharing platform Zenodo. The
original Dataset-3 is maintained by the National Renewable Energy
Laboratory (NREL), the preprocessed version of Dataset-3 is also
shared through the aforementioned Zenodo site.

Due to the fact that these are real datasets, some processing was
done to prepare the data for numerical computing. This processing
includes the computation of derivatives. Derivatives of wind speed
and wind power are computed using the backward differences. So,
the derivative F′, of a variable F, at time T, using the backward
difference formulation is as shown in Eq. 1.

F′T = FT − FT−1 (1)

4.1.1 Dataset-1
Dataset-1 is from an offshore wind farm in Europe. The wind

farm houses 36 turbines and a meteorological mast, as shown
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FIGURE 2
WDNN model for wind power forecasting. For wind speed forecasting, the bottom green portion is removed. The forecast becomes Ŝt+h.

in Figure 3. The dataset contains 4 years (January 2007-December
2010) of wind speed, power, and other measurements, with an
original time resolution of 10 min. For this study, the data is

aggregated to an hourly resolution and only wind speed and
wind power are used. The first 3 years of data (January 2007-
December 2009) is used for training, while the last year (January
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7:   end while

8:   Train the ANN model using (XL+1,XL+2,…,XT) as

training input and (YL+1,YL+2,…,YT) as

training outputs.
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13:   end while

14:   Obtain (ŶT+L, ŶT+L+1,…, ŶN) by the ANN model using

(XT+L,XT+L+1,…,XN) as input.

15:   MAE = ∑
N
i=T+L|Ŷi−Yi|
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16:   RMSE = √ ∑
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17:   return MAE and RMSE

Algorithm 1. WDNNAlgorithm forWind Power.

2010-December 2010) is used for testing. The minimum and
maximum wind speeds are 0.42 m/s and 24.30 m/s, respectively,
and wind power ranges between 0 and 1. The total number of
observations is 26,241 with 18,293 for training and 8,178 for testing.

4.1.2 Dataset-2
Dataset-2 is from an onshore wind farm in the United States.

The farm contains more than 200 wind turbines and multiple
meteorological masts, as shown in Figure 4. Data from 160 turbines
is used for this study because the selected data covers a long
time range of 34 months (January 2009–October 2011) of wind
speed, wind power, and other measurements, with an original time
resolution of 10 min. Again, for this study, the data is aggregated to
an hourly resolution, and only wind speed and wind power are used.
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16:   RMSE = √ ∑
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17:   return MAE and RMSE

Algorithm 2. WDNNAlgorithm forWind Speed.

FIGURE 3
Layout of wind turbines used in Dataset-1.

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1277464
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Kio et al. 10.3389/fenrg.2024.1277464

FIGURE 4
Layout of wind turbines used in Dataset-2.

The first 2 years of data (January 2009–December 2010) is used for
training, while the last 10 months (January 2011–October 2010) is
used for testing.Theminimumandmaximumwind speeds are 0 m/s
and 24.35 m/s respectively, and wind power ranges between 0 and 1.
The total number of observations is 22,838 with 15,592 for training
and 7,246 for testing.

4.1.3 Dataset-3
Dataset-3 has only wind speed data, with no power or other

features. It is from a wind farm in Wyoming, United States, and
was obtained from datasets made publicly available by NREL.
The farm contains 100 wind turbines placed in a 10× 10 grid, as
shown in Figure 5. The Site IDs and coordinates of the vertices
of the grid are (867,382, −105.1944°W, 41.87279°N), (877,179,
−104.9711°W, 41.89172°N), (867,373, −105.1687°W, 41.70660°N),
and (877,170, −104.9461°W, 41.72548°N). The dataset contains
6 years (January 2009–December 2014) of wind speed data with
an hourly time resolution. The first 5 years of data (January
2009–December 2013) is used for training, while the last year

(January 2014–December 2014) is used for testing. The minimum
and maximumwind speeds are 0.01 m/s and 37.46 m/s respectively.
The original Dataset-3 can be obtained from the NREL Wind
Prospector Website. This option is for single site downloads via a
web-interface. The data can also be obtained through the Wind
Toolkit API which requires signing up and obtaining a unique
API key according to the instructions on the website. The total
number of observations is 52,590 with 43,824 for training and 8,766
for testing.

4.2 Evaluation metrics and computational
setup

The mean absolute error (MAE) and root mean squared error
(RMSE) are the commonly used performance metrics (Ding, 2019,
Chapter 2). Both metrics evaluate the performance of a point
forecast. Consider a set of n test data points, xj, j = 1,2,…,n, the
corresponding forecast of each of which is x̂j. Eqs 2, 3 respectively,
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FIGURE 5
The tilted rectangle shows the layout of wind turbines on the 10× 10 grid used in Dataset-3. Figure credited to the NREL Wind Prospector website
(NREL, 2022).

show how MAE and RMSE are computed for an individual
turbine i:

MAEi =
1
n

n

∑
i=j
|x̂j − xj| (2)

RMSEi = √
1
n

n

∑
j=1
(x̂j − xj)

2. (3)

For a wind farm containingNtur turbines, the farmMAE and RMSE
are the average of the individual values, i.e., using Eqs 4 and 5 below

MAE = 1
Ntur

Ntur

∑
i=1

MAEi (4)

RMSE = 1
Ntur

Ntur

∑
i=1

RMSEi. (5)

Thesemetrics are used, in this work, to evaluate and compare the
results of theWDNNmodels with other models. We mostly present
theMAE results to save space.The overallmessage using eitherMAE
or RMSE is consistent.

All computations were done on two high-performance
computing clusters. One cluster had a dual-GPU Tesla K80
accelerators having 128GB RAM with Intel(R) Xeon(R) CPU E5-
2680 v4@ 2.40GHz.The other cluster was a combination ofNVIDIA
A100 40GB GPUs and NVIDIA RTX6000 24GB GPUs with Intel(R)
Xeon(R) Gold 6248R CPU @ 3.00GHz. Both clusters ran on Linux
(CentOS 7).

4.3 Sensitivity analysis of model and
parameter choices

4.3.1 Wavelet and level of decomposition choices
We have chosen db4 and Level 4 as the default choice in our

wavelet decomposition step. Here we conduct a numerical analysis
to test how sensitive these choices are.

We vary the choices of the wavelet basis functions and the
decomposition levels. We consider a total of ten options from
the wavelet families, including Haar, Daubechies (db), Coiflets
(coif), Biorthogonal (bior), and Reverse biorthogonal (rbio). For
each of the wavelet choice, three decomposition levels, k ∈ {3,4,5},
are considered. A subset of Dataset-1 is used for this analysis.
To further reduce time, the forecast is made for up to 6 h
ahead, i.e., h ∈ {1,2,…,6}. The same neural network is used in the
subsequent step. Altogether, this analysis runs a total of 30 numerical
experiments and makes 180 forecasts.

Table 1 presents the MAE of the 180 forecasting outcomes.
A table of RMSE results for this and the other computation
can be found in the appendix. The right-most column is the
average of all the values obtained from all the decomposition at
a certain value of k, whereas the last row is the average of all
the values obtained from a particular wavelet. A perusal of the
tables reveals the following: (a) the db4 wavelet and k = 4 are
the best performing wavelet and decomposition level; and (b)
the outcome of WDNN is not sensitive to the two wavelet step-
related choices.

Frontiers in Energy Research 10 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1277464
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Kio et al. 10.3389/fenrg.2024.1277464

TABLE 1 Performance of different wavelets and levels of decomposition (MAE).

k h haar db2 db3 db4 db5 coif3 rbio1.1 rbio1.5 rbio2.4 rbio4.4 Average

3

1 0.1132 0.1104 0.1137 0.1123 0.1117 0.1122 0.1133 0.1121 0.1112 0.1117 0.1773

2 0.1471 0.1476 0.1467 0.1478 0.1472 0.1469 0.1476 0.1489 0.1475 0.1484

3 0.1737 0.1741 0.1707 0.1727 0.1738 0.1729 0.1727 0.1737 0.1709 0.1719

4 0.1919 0.1912 0.1943 0.1916 0.1920 0.1906 0.1926 0.1919 0.1942 0.1924

5 0.2141 0.2134 0.2125 0.2082 0.2106 0.2107 0.2091 0.2123 0.2120 0.2097

6 0.2250 0.2288 0.2270 0.2294 0.2256 0.2301 0.2235 0.2261 0.2261 0.2266

4

1 0.1104 0.1120 0.1118 0.1120 0.1134 0.1125 0.1114 0.1131 0.1120 0.1153 0.1772

2 0.1472 0.1464 0.1491 0.1467 0.1456 0.1485 0.1458 0.1452 0.1511 0.1453

3 0.1718 0.1746 0.1719 0.1720 0.1708 0.1707 0.1735 0.1735 0.1710 0.1750

4 0.1963 0.1928 0.1906 0.1921 0.1899 0.1930 0.1898 0.1920 0.1931 0.1904

5 0.2090 0.2067 0.2077 0.2127 0.2142 0.2108 0.2093 0.2147 0.2121 0.2103

6 0.2234 0.2269 0.2272 0.2274 0.2260 0.2284 0.2391 0.2303 0.2283 0.2283

5

1 0.1098 0.1121 0.1141 0.1121 0.1152 0.1139 0.1115 0.1116 0.1468 0.1135 0.1780

2 0.1472 0.1471 0.1466 0.1459 0.1482 0.1491 0.1493 0.1469 0.1496 0.1480

3 0.1751 0.1710 0.1717 0.1722 0.1757 0.1740 0.1706 0.1719 0.1725 0.1732

4 0.1933 0.1939 0.1941 0.1916 0.1934 0.1949 0.1895 0.1898 0.1913 0.1943

5 0.2117 0.2095 0.2135 0.2083 0.2110 0.2125 0.2089 0.2121 0.2129 0.2134

6 0.2278 0.2295 0.2253 0.2256 0.2285 0.2278 0.2273 0.2275 0.2262 0.2276

Average 0.1771 0.1771 0.1771 0.1767 0.1774 0.1777 0.1769 0.1774 0.1794 0.1775 0.1767

4.3.2 Neural network choice
We further test the choices of the neural network architecture.

Despite the popularity of RNN and LSTM in handling time series
data, WDNN settles on using a most classical, simple feedforward
neural network (FFNN). Earlier, we explained that the reason that
FFNN is a better choice because after the wavelet decomposition,
the output is not maintained strictly in the original time series
order. What this means is that while the original data is time series,
the data seen by the neural network model in WDNN is not, so
much so, that the advantage for RNN and LSTM no longer exists.
Here we present numerical evidence supporting our choice. In this
sensitivity analysis, the wavelet choice is set to db4 and the level
of decomposition is set to four. Three choices of ANN are studied:
FFNN, RNN, and LSTM.

Table 2 shows the MAE results for all three sets of models using
Dataset-1.The forecasts are made for up to 12 h. FFNN outperforms
RNN and LSTM for all forecasting periods and the last row is
the average of all forecasting periods. Similar results are obtained
for other datasets and for power prediction as well. For brevity,
Tables 3, 4 only present the summary information, i.e., the average
of all forecasting periods. Furthermore, Table 5 shows that running

FFNN is faster than running RNN and LSTM (for the purpose of
illustration, only the run time for 1-h ahead forecast is shown).
Compared with RNN, FFNN only takes about one-fifth (or shorter)
the time, and compared with LSTM, FFNN’s run time is an order of
magnitude shorter.

4.4 Comparisons and analysis

In this subsection, we conduct comparison studies for bothwind
speed forecast and wind power forecast. For wind speed forecast,
all three datasets are used, whereas for wind power forecast, only
are Dataset-1 and Dataset-2 used, because there are no wind power
measurements in Dataset-3.

4.4.1 Methods in comparison
We primarily compare WDNN with other deep learning based

methods. The analysis of non-deep learning methods is rather
extensive and it is difficult to repeat them. More importantly, the
recent trend seems to indicate that deep learning methods generally
outperform the non-deep learning, statistical or machine learning
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TABLE 2 Performance comparison of different neural networks for
wind speed prediction using Dataset-1 (MAE).

h (hours) FFNN RNN LSTM

1 0.780 1.222 1.583

2 1.199 1.685 1.874

3 1.509 1.873 1.975

4 1.748 2.303 2.389

5 1.959 2.364 2.510

6 2.137 2.485 2.586

7 2.278 2.620 2.672

8 2.435 2.663 2.785

9 2.514 2.817 2.945

10 2.604 2.891 2.934

11 2.690 2.944 3.239

12 2.771 2.924 3.291

Average 2.052 2.399 2.565

methods. For this reason, it makes sense to focus our comparisons
with the deep learning methods.

Comparison with deep learning methods is a challenge in and
by itself. As we explained in Section 1, there are many variants of
deep learning methods but it is not easy to understand how/why
each works and it is difficult to replicate the methods/results
unless the original authors shared their code. After much
effort (over nearly 2 years), we came across three deep learning
methods, for which either the code is shared or we have a
reasonable reconstruction of the method ourselves. Based on our
reading of the literature, these methods also present different
varieties of existing deep learning methods; that is a good
aspect to be aware of. Next we will briefly explain each of
the methods.

The first Deep Forecast (DF) (Ghaderi et al., 2017) is a deep
learning-based method that models the spatiotemporal information
by a graphwhose nodes are data generating entities andwhose edges
model how these nodes interact with each other. It employs the
LSTM neural networks and its output is wind speed predictions.
The author of this method provided computer code for reproducing
their work.

Spatiotemporal Attention Network (STAN) (Fu et al., 2019)
is a framework for forecasting that captures spatial correlations
among wind farms and temporal dependencies of the time series.
It employs a multi-head self-attention mechanism to extract spatial
correlations amongwind farms and captures temporal dependencies
by a Sequence-to-Sequence (Seq2Seq) model with a global attention
mechanism (Fu et al., 2019). STAN’s output is also wind speed
predictions. Unable to find code for STAN, we implemented the
method ourselves.

Predictive Spatio-temporal Network (PSTN) (Zhu et al., 2019)
is a unified framework integrating a CNN and a LSTM for wind
speed forecasting. The spatial features are extracted from the spatial
wind speed matrices by the CNN at the bottom of the model,
the LSTM captures the temporal dependencies among the spatial
features extracted from contiguous time points, and, the predicted
wind speeds are obtained by the last state of the top layer of
the LSTM, which are generated by using the spatial features and
temporal dependencies (Zhu et al., 2019). Unlike the other methods
already mentioned, however, PSTN works for turbines placed in
a rectangular grid, primarily because of the use of CNN for
capturing the spatial features. As a consequence, this model is
only applied on Dataset-3, as it is the only dataset that meets that
requirement. Unable to find code for PSTN, we implemented the
method ourselves.

In addition to the three deep-learningmethods, we also included
in the comparison the so-called persistence (Per) forecasting model
(Ding, 2019, Chapter 2), which is arguably the simplest method
used and still in many cases an industrial benchmark standard.
The persistence model can be applied to wind speed as well as
to wind power. It takes the most recent observation of either
wind speed or wind power and uses it as is for whichever
forecast, i.e., for any hours ahead. The persistence model can be
advantageous and robust for ultra short-term forecasting, like in a
few minutes. It is not easy to outperform the persistence method
under the ultra short-term circumstances, but the persistence
model loses its steam when the forecast goes more than 1 h.
Considering the simplicity of the persistent model, any new
forecasting method failing to outperform the persistence model
simply does not have the attraction at all for practitioners to
consider or adopt.

WDNN is implemented in Python using PyWavelets (Lee et al.,
2019) and TensorFlow (Abadi et al., 2016) with GPU acceleration.
Lag is set to L = 6, the level of decomposition is set to k = 4 and
the forecasting length, h ∈ {1,2,…,12}. The MAE is used as the
loss function for ANNs, with the Root Mean Squared Propagation
(RMSProp) extension to the gradient descent optimization
algorithm as an optimizer with a learning rate of 0.001. The
maximum number of training epochs is 500, with early stopping
implemented to prevent over-fitting (Géron, 2019, Chapter 4). STAN
and PSTN are implemented in Python using PyTorch (Paszke et al.,
2019) following the algorithms described in Fu et al. (2019) and
Zhu et al. (2019) respectively.

4.4.2 Wind speed forecasting
All three datasets are used for wind speed forecasting. The

forecasting horizon is set to be up to 12 h ahead, consistent with the
duration used in Ding (2019). The rationale is that for more than
12 h, it is rarely that one can obtain advantageous forecasting results
using purely data-driven methods.

Tables 6–8 present the outcome of the comparison. For Dataset-
1 and Dataset-2, the comparison includes Per, DF, STAN, and
WDNN, whereas for Dataset-3, the comparison includes all above
plus PSTN. The results show that WDNN outperforms all other
models except for PSTN.

While PSTN does better in Dataset-3, we would like to note
the following points: (a) the differences between PSTN andWDNN
are rather close. PSTN outperforms WDNN generally less than 2%.
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TABLE 3 Performance comparison of different neural networks for wind speed prediction.

Data MAE RMSE

FFNN RNN LSTM FFNN RNN LSTM

Dataset-1 2.052 2.399 2.565 2.656 3.029 3.205

Dataset-2 1.947 2.244 2.214 2.479 2.809 2.775

Dataset-3 3.271 3.854 3.684 4.292 4.974 4.768

TABLE 4 Performance comparison of different neural networks for wind power prediction.

Data MAE RMSE

FFNN RNN LSTM FFNN RNN LSTM

Dataset-1 0.131 0.147 0.133 0.190 0.209 0.194

Dataset-2 0.192 0.196 0.193 0.269 0.273 0.270

TABLE 5 Run time in minutes for WDNN for h = 1 hour using
different networks.

Data Prediction FFNN RNN LSTM

Dataset-1 Speed 3.13 14.51 30.04

Dataset-2 Speed 2.51 10.98 31.28

Dataset-3 Speed 5.15 23.51 62.76

Dataset-1 Power 3.46 42.20 69.01

Dataset-2 Power 2.53 30.36 63.01

But running PSTN is much time consuming. A simple test shows
that to train PSTN, it takes 17.25 min where as under the same
setting, training WDNN takes only 3.13 min. (b) The advantage
of PSTN is not easy to generalize. This can be attributed to the
fact that PSTN is designed specifically for a scenario such as this,
where the turbines are laid out in a square grid, as it captures
spatial relationships between the turbines. This requirement limits
the practical use of the method, as square grid are not the layout
of choice for the vast majority of wind farms across the world. By
contrast, none of the othermethods includingWDNN requires such
strict layout.

We further observe that the DF results become somewhat
unstable after h = 8. In principle the MAE and RSME should
monotonically increase. However, this is not the case for DF.
More than this shortcoming, DF’s performance is not impressive
and generally worse than the persistence model; this renders DF
less practically appealing. STAN, on the other hand, delivers a
competitive outcome, mostly outperforming the persistence model.
But STAN’s performances for shorter hours, like h = 1 or 2 are
worse than the persistence model for both Dataset-2 and Dataset-
3. Overall, STAN’s performance lags behind WDNN by 1.5% for

TABLE 6 Comparison of different models for wind speed prediction
using Dataset-1 (MAE).

h (hours) Per DF STAN WDNN

1 0.801 1.773 0.805 0.682

2 1.241 1.738 1.219 1.146

3 1.570 2.037 1.528 1.509

4 1.842 2.273 1.786 1.716

5 2.075 2.524 2.005 1.924

6 2.275 2.672 2.203 2.106

7 2.456 2.939 2.325 2.259

8 2.617 3.208 2.447 2.384

9 2.758 3.257 2.550 2.501

10 2.885 3.653 2.635 2.596

11 2.996 3.231 2.709 2.680

12 3.106 3.456 2.774 2.757

Dataset-1, 4.2% forDataset-2, and 2.0% forDataset-3, and its under-
performance can be as large as 13.5%.

4.4.3 Wind power forecasting
This subsection presents the analysis of wind power forecasting.

Because Dataset-3 does not have power, it is excluded from the
analysis in this subsection. Also because PSTN is only applicable on
Dataset-3 due to its intrinsic design, it is not included in the power
forecast analysis either.
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TABLE 7 Comparison of different models for wind speed prediction
using Dataset-2 (MAE).

h (hours) Per DF STAN WDNN

1 0.881 1.595 0.975 0.763

2 1.312 1.817 1.473 1.233

3 1.600 1.975 1.707 1.507

4 1.832 2.214 1.865 1.714

5 2.029 2.477 1.997 1.883

6 2.203 2.560 2.120 2.028

7 2.347 2.751 2.213 2.136

8 2.473 2.659 2.290 2.227

9 2.588 2.784 2.354 2.302

10 2.686 2.900 2.409 2.369

11 2.766 2.831 2.455 2.419

12 2.836 2.847 2.491 2.459

TABLE 8 Comparison of different models for wind speed prediction
using Dataset-3 (MAE).

h (hours) Per DF STAN PSTN WDNN

1 1.607 2.529 1.617 1.682 1.571

2 2.266 2.741 2.289 2.131 2.201

3 2.761 3.130 2.662 2.576 2.619

4 3.158 3.171 3.019 2.950 2.977

5 3.467 3.576 3.297 3.185 3.208

6 3.738 3.625 3.501 3.322 3.415

7 3.962 3.779 3.662 3.473 3.595

8 4.158 4.001 3.805 3.690 3.722

9 4.328 4.147 3.930 3.847 3.843

10 4.477 4.273 4.029 3.960 3.928

11 4.597 4.034 4.099 3.999 4.003

12 4.708 3.907 4.149 4.086 4.084

When it comes to wind power prediction, there are two ways
in which wind power can be predicted—directly or indirectly. The
direct way is to use whatever inputs, past observed wind speed
and/or wind power to directly forecast the future wind power.
The indirect way is a two-step method that involves wind speed
prediction step, and then use the power curve to compute the

forecasted power based on the predicted wind speed. WDNN has
two versions, it can predict a speed first or it can directly predict
wind power.

The persistence model can be directly used for wind power
prediction. When “Per” appears in the subsequent tables, it means
the application of persistence directly on power (without the wind
speed information involved at all).

If one applies the persistence model to wind speed and produces
wind speed forecasts, one needs to use a power curve model to
covert the speed forecast to power. A power curve model is needed
not only for the wind speed-based persistence, but also for DF and
STAN, because they produce wind speed forecasts not wind power
forecasts. For the version of WDNN predicting the wind speed first,
it needs the power curve model.

We in this subsection therefore consider two power curve
models. One is known as the binning method based on the IEC
standard 61400-12 (International Electrotechnical Commission IEC,
2017), a simple method commonly used in the wind industry. Ding
(2019, Chapter 5) analyzes a large group of machine learning-
based power curve models, including k-Nearest Neighbors, kernel
method, spline-based method, Bayesian tree-based method, and
support vector machine. It was then identified that the hybrid
kernel method known as the Additive Multiplicative Kernel (AMK)
(Lee et al., 2015) produced the best performance then, but AMK is
outperformed by amost recent development of the TempGPmethod
(Prakash et al., 2023). For this reason, the second choice of power
curve we use is the TempGP.

The binning method is only used together with the wind speed-
based persistence model. When the acronym “Bin” appears in the
following comparison tables, it means just this combination. The
two options, Per and Bin, are the baseline benchmarks, as they are
arguably the simplest numerical methods used for making wind
power forecast. As explained before, if a new method does not
outperform either of these baselines, its practical relevance is then
seriously called into questions.

For DF, STAN, and WDNN producing wind speed forecasting,
they are paired with TempGP to make the best use of the existing
power curve models. They are labeled as DF-TGP, STAN-TGP
and WDNN(s)-TGP, respectively. WDNN directly producing wind
power forecasts is labeled as WDNN(p).

Tables 9, 10 present the comparison results of wind power
forecast. WDNN outperforms other models for all forecast periods
in Dataset-1. In Dataset-2 WDNN outperforms other models for
most of the forecast periods, but in a few areas, DF produces
a better result. The merit of DF, however, is not strong, for the
following reasons. The first is that DF does not seem to produce a
competitive results for h shorter than 8 h. Under those forecasting
time horizons, DF is generally worse than the two baselines. The
second is the relative instability of DF for h bigger—this is where
DF outperforms other methods. While other methods generally
have a monotonic degradation on performance as h increases,
DF’s trend is more complicated and less predictable when h goes
beyond certain value.This strange behavior rendersDF less desirable
in practice. STAN performs well overall, but is generally worse
than WDNN. While WDNN and STAN’s performances are close
on Dataset-2, WDNN’s advantage margin over STAN is rather
pronounced.
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TABLE 9 Comparison of different models for wind power prediction using Dataset-1 (MAE).

h (hours) Per Bin DF-TGP STAN-TGP WDNN(s)-
TGP

WDNN(p)

1 0.060 0.064 0.153 0.083 0.062 0.054

2 0.092 0.095 0.154 0.110 0.093 0.088

3 0.117 0.119 0.160 0.130 0.116 0.114

4 0.139 0.140 0.175 0.150 0.142 0.134

5 0.158 0.158 0.185 0.168 0.154 0.153

6 0.174 0.175 0.199 0.185 0.170 0.168

7 0.190 0.190 0.215 0.196 0.183 0.182

8 0.203 0.203 0.212 0.206 0.195 0.195

9 0.215 0.215 0.227 0.216 0.205 0.204

10 0.227 0.226 0.242 0.224 0.213 0.212

11 0.236 0.236 0.230 0.231 0.223 0.221

12 0.246 0.246 0.245 0.237 0.230 0.228

TABLE 10 Comparison of different models for wind power prediction using Dataset-2 (MAE).

h (hours) Per Bin DF-TGP STAN-TGP WDNN(s)-
TGP

WDNN(p)

1 0.080 0.114 0.156 0.101 0.095 0.071

2 0.121 0.147 0.170 0.142 0.131 0.117

3 0.148 0.170 0.187 0.164 0.153 0.143

4 0.171 0.189 0.195 0.179 0.172 0.165

5 0.191 0.206 0.214 0.192 0.187 0.183

6 0.208 0.221 0.215 0.205 0.201 0.198

7 0.223 0.234 0.234 0.215 0.212 0.211

8 0.236 0.245 0.223 0.223 0.221 0.220

9 0.247 0.255 0.229 0.229 0.229 0.228

10 0.256 0.263 0.233 0.235 0.235 0.234

11 0.264 0.270 0.229 0.239 0.239 0.239

12 0.271 0.277 0.234 0.243 0.243 0.243

5 Conclusion

This work introduces WDNN, a novel coupling of wavelet
decomposition ideas and deep learning, yielding a method that
can predict wind speed as an intermediate step to the prediction
of produced power, or predict power produced directly. It is
worth pointing out that both parts of the algorithm—wavelet

decomposition and neural network—are easy to implement and
computationally inexpensive. Furthermore, WDNN is agnostic to
the wind farm layout, which is an important point, as the onlymodel
to outperform theWDNN is constrained to working on wind farms
whose turbines are laid out in an orthogonal grid. WDNN models
can also work as well for a single turbine as they can for a collection
of turbines or a whole wind farm. WDNN predictions are stable,
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without some of the questionable results that were noticed from
another model in the case studies.

While the power of deep learning, for simple as well as
complex problems, is well documented, scientists and engineers use
transforms such as wavelet decomposition routinely to good effect.
The success of WDNN puts into sharp relief the utility of wavelet
decomposition as a tool for feature engineering/data transformation
in the wind power forecasting space.

A couple of ideas are immediately apparent. Firstly, with an
effective algorithm for dealing with the data, the machine learning
model that it is fed into does not have to be complex. The use of a
simple feedforward neural network in WDNN buttresses this fact.
Secondly, the possible use of other environmental variables is made
easy by WDNN’s design. Thirdly, another area to look at would be
taking the spatial relationships between the turbines into account in
the model, as PSTN does, but not limiting to a rigid grid. This, in
theory, should make the model more competitive.

There is something to be said for the use of multiple and diverse
datasets in putting a method such as WDNN through its paces.
Although it is possible to use a single dataset with a few turbines,
as is the case with many studies of this kind, the use of a variety of
datasets, as is done here, enables the reader to assess if the method is
effective regardless of the particular circumstances of a wind farm.
This lends more credibility to the method. As readers see in our
comprehensive case studies, the performance outcomes are complex
when methods are used and compared on hundreds of turbines
and multiple wind farms. A claim of strict superiority is often not
credible, so it is best for us to acknowledge the real-life complexity.

Speaking of future work, first of all, all we deal with here is time
series data for a specific turbine. In reality many turbines co-exist
on a wind farm and produce spatio-temporal datasets. It is of great
interest to see how effectively the data fromneighboring turbines can
be used for improving the accuracy of the forecast. The approach of
finding the so-called informative neighborhood, as first proposed in
Pourhabib et al. (2016), is worth a serious look and further research.
Another area of improvement is as follows. As one can see from this
study, the performance improvement the proposedmethodmakes is
more pronounced for 1-h or 2-h ahead forecast, but less impressive
for 12-h ahead forecast. It will be important to understand the
fundamental reasons behind such performance differences and thus
devise effective strategies to extend the improvement from the very
short terms to moderate short terms like 12- to 24-h ahead.
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Nomenclature

A, Ã Approximation signal

D, D̃ Detail signal

β The dimension of the input into the neural network

h,H The index and number of hours ahead in forecasting

i, N The index and number of turbines

j, T The index and number of hours

L The number of observations used in the decomposition process

S, S′ Wind speed and the first derivative of wind speed

P Wind power

t The current time

X Inputs to a neural network

Y Outputs from a neural network

AMK Additive multiplicative kernel

ANN Artificial neural network

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving-average

BP Back propagation

CNN Convolutional neural network

DF Deep forecast

DWT Discreet wavelet transform

EMD Empirical Mode Decomposition

FFNN Feedforward neural network

FT Fourier transform

IEC International Electrotechnical Commission

LSTM Long short term memory

MAE Mean absolute error

MLP Multilayer Perceptron

PSTN Predictive spatio-temporal network

RMSE Root mean squared error

RNN Recurrent neural network

STAN Spatio-Temporal Attention Network

STL Seasonal and Trend decomposition using Loess

SVM Support vector machine

SVR Support vector regression

TCN Temporal convolutional network

TempGP Temporal Gaussian process power curve model

VMD Variational mode decomposition

WDNN Wavelet decomposition neural networks

WT Wavelet transform
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