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In recent years, the power quality (PQ) improvements have been explored
through various approaches. The employment of electronic devices with
renewable energy sources has expanded the harmonics level of voltage and
current. Due to harmonics, the PQ of a specific electrical system gets affected. At
critical load conditions, the traditional PQ mitigation approaches fail to develop
the performance of the system. Therefore, in this work, the Spider Monkey
Optimization convolutional neural network (SM-CNN)-based 31-level
multilevel inverter (MLI) is used. This method balances the reactive power
demands and enhances real power in the grid-tied photovoltaic (PV) system.
The maximum power point tracking (MPPT) algorithm depending on radial basis
function neural networks (RBFNNs) is used to maximize PV power. For
strengthening the voltage level of the PV and to generate higher DC voltage
with a minimized switching loss, an integrated boost fly back converter (IBFC) is
introduced. The presented technique is implemented in the MATLAB/Simulink
platform to figure out the estimation of PQ issues. The suggested MLI lessens the
total harmonic distortion (THD) value to 2.45% with an improved power factor.
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1 Introduction

In developing technologies, the issue of power electronic devices has shown a greater
surge because of the exploitation in real-time applications. Generally, several types of
controllers are used to mitigate different power quality (PQ) issues (Babu et al., 2020a). The
rapid consolidation of photovoltaics (PV) is mostly based on improvements in PQ and
global radiation technology (Ray et al., 2018). Power is converted from DC to AC by use of
an inverter and a distribution system. The majority of voltage and current distortion has an
impact on the system’s performance when it is linked to the grid. As a result of highly
volatile devices coupled with an increase in the demand for nonlinear loads, the
effectiveness of the system and the power network with regard to PQ is also affected
(Badoni et al., 2021).

The unique functions of the PQ impact are consumers and utility equipment. By
including renewable energy sources (RES) in the grid, the PQ of the system might be
increased. Based on the coupled RES and nonlinear loads, the negative impacts on the
system’s PQ are improved in this case. A renewable energy source contributes to the amount
of reactive power on the line, and the associated harmonics are determined by nonlinear
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loads on the grid (Babu et al., 2020b; Golla et al., 2021; Ray et al.,
2021). Many other RES-based technologies have been created during
the last few years. Some of those sources are becoming more
affordable very quickly, and others are widely recognized as low-
cost options for grid-related applications (Rajesh et al., 2021).

The output voltage of boost-type converters can be boosted
above the input voltage. Nevertheless, because of the internal losses,
output voltage, and current stresses suffered by semiconductors,
they present a gain restriction (Spiazzi et al., 2010). A high-
frequency transformer connected to a flyback converter can be
used as a way to receive significantly more voltage. However,
because of the energy stored by the converter in its leakage
inductance, when blocking voltage is present, the power main
switch frequently shows a high reverse voltage (Chen et al., 2015;
Shitole et al., 2017).

As a result, using integrated converters is necessary for the
purpose of increasing costs and lowering efficiency. Moreover,
during commutations, high conversion exposes the diode output
to maximum voltage peaks. Furthermore, conventional
converters have a limited duty ratio but can increase the
output voltage. Furthermore, output voltage and switching

stress are also both close. As a result, the given output voltage
is considered the duty cycle with a lower value, increasing the
converter’s efficiency (Hu et al., 2014; Pathy et al., 2016; Shen and
Chiu, 2016; Banaei et al., 2019). Therefore, in order to overcome
the above issues, the integrated boost-flyback converter (IBFC) is
used in this study. The proposed IBFC effectively stabilizes the
PV output voltage.

The maximum power extraction method is a main
consideration in PV system electricity generation for
improving the effectiveness of non-uniform solar irradiance
and shading. Overall, numerous control techniques for a grid-
coordinated PV system have been proposed (Bouselham et al.,
2017). The most commonly used MPPT algorithms in both huge
and small-sized PV applications are fuzzy logic control, perturb
and observe (P&O), and incremental conductance. It is a difficult
task to maintain synchronization, reliability, and overall system
behavior in the grid connection (Chandra and Gaur, 2020; Prasad
et al., 2021). As a consequence, an efficient control mechanism is
required to control PQ issues in a PV system. Thus, the effective
RBFNN-MPPT is employed to separate more power from the
PV system.

FIGURE 1
Block diagram of suggested Methodology.

FIGURE 2
Circuit diagram for PV cell.
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Domestic and industrial appliances have seen enormous growth
over the past few years. Power systems with defects that cause
damage produce their elements as an outcome of the overheating
process (Kumar et al., 2018; Dhanamjayulu et al., 2019; Khare et al.,
2020; Lal and Thankachan, 2021). Additionally, there are certain
common problems in these power systems, such as harmonic
distortion, voltage sag, transient, and spikes (Arjunagi and Patil,
2021; Parida et al., 2021; Ramasamy and Perumal, 2021; Aarthi et al.,
2023). With the help of Spider Monkey optimization CNN, MLI
tackles the aforementioned issues and provides a high output
voltage. The power quality should be considered to improve the
performance based on renewable energy using DC–DC converters,
and bridge controllers are used to optimize the energy (Kumar et al.,
2012; Shimi et al., 2013).

By the main considerations of various problems, the power
quality disturbances are classified by using neural network
classifiers, but they mostly conflict massive distortions that
occur and fail to improve the performance of power quality
(Saravanakumar and Saravana kumar, 2023). However, in
some cases, the new learning algorithms are used based on the
deep learning system by concerning power quality systems [29].
The CNN model makes deforming scaling learning techniques to
classify the distortion, but learning weights are mitigated to
adjust the bias weight of power quality elements to improve
the performance.

In this paper, the efficient RBFNN-based MPPT is deployed for
improving the performance of the grid-tied PV system from PQ
issues. The IBFC is used to boost the level of voltage in the PV
system. By using the SM-CNN control approach for 31-level MLI,
the PQ is successfully improved, and this inverter takes parallel
processing PQ difficulties to easily manage the power consumption.
Hence, the suggested approach is used to provide the system with
enhanced PQ and a reduced THD of 2.45%.

2 Proposed system

The block diagram of the suggested methodology is
demonstrated in Figure 1. The grid coordinated with the solar
system consists of the PV array, IBFC, 31-level MLI, and LC filter.

For applying the RBFNN-based MPPT algorithm, the highest
power is extracted from the PV system, and it is also utilized to
strengthen the power conversion efficiency in the solar panel. A
single PV panel produces a limited amount of electricity,
necessitating the use of a large number of PV panels. The boost-
flyback converter is integrated to circumvent this problem, which in
turn produces a stable output. The MLI converts the power, in the
form of DC into AC, and it is transformed into the grid (i.e., load).
The enhanced output from the converter is fed into a 31-level MLI
that enhances the PQ and minimizes the lower-order harmonics,
with the assistance of SM-CNN.

3 Proposed system modeling

3.1 Modeling of the PV system

The majority of PV arrays include an inverter to transform DC
into alternating current, which may be used to power loads like
motors, lights, and other appliances. The individual components of a
PV array are normally connected in parallel after the modules are

FIGURE 3
RBFNN-based MPPT algorithm.

TABLE 1 Parameter specification.

Parameter RBFNN

Input data Power and PV

Target data Duty cycle, D

Training function “trainlm”

Hidden layer function Radial basis “radbas”

MSE performance 0.0121
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typically connected in series to achieve the necessary voltages. The
corresponding circuit diagram for a PV cell is shown in Figure 2.

A current source in parallel with a diode models an ideal.
Nevertheless, no solar cell is perfect, so shunt and series
resistances are included in the model, as illustrated in the PV cell
schematic above. RS is the intrinsic series resistance, which has a
very small value. RSh is the equivalent shunt resistance, and it is
extremely high.

Applying Kirchhoff’s law to the node where Ipv, diode RSh, and
RS reach yields the following equation:

Ipv � ID + Ish + I. (1)

The PV current equation is given as

I � Ipv − Ish − ID, (2)

where Ipv is the insolation current, I represents the cell current,
IO is reverse saturation current, V denotes the cell voltage, and RS

indicates the series resistance. According to the cell current, the
parallel resistance remains to balance the isolation current shown in
Eq. 2.

I � Ipv − IO. exp V + I.
RS

VT
( ) − 1[ ] − V + I.

RS

RSh
[ ]. (3)

RSh represents the parallel resistance, VT represents the thermal
voltage (KT/q), K represents the Boltzmann constant, T represents
the temperature in Kelvin, and q represents the charge of an
electron. The forthcoming section provides the detailed
description about the RBFNN-MPPT algorithm, which separates
the maximum power from the PV panel.

3.2 Model of the radial basis function neural
network-based MPPT technique

Figure 3 demonstrates the architecture for the RBFNN-based
MPPT algorithm. The proposed RBFNN-MPPT is a three-layer
network with a hidden layer, input layer, and output layer.

It is an algorithm for supervised learning, which is employed to
train multi-layer activation functions. When a specific set of inputs
(power) is applied to the RBFNN-based MPPT technique, it
produces the expected output (duty cycle) by fine-tuning its
weights. Using PV module power and converter duty cycle as
input variables and irradiance variations as the output variables,
the RBFNN is trained. The parameters used in the RBFNN training
are listed in Table 1.

Steps for the RBFNN

Step 1: Generation of randomweights to small random values
to make sure t hat the network is
unsaturated by large weight value.

Step 2: A training pair from the training set is selected

Step 3: The input vector to the network input is applied

Step 4: The network output is calculated

Step 5: Error is computed as the subtraction between the
network output and desired output.

Step6: Networkweights are adjusted in order tominimize the error.

TABLE 2 Modes of operation.

Mode Conducting switches and diode Output voltage Mode Conducting switches and diode Output voltage

1 S1, D2, D3, D4, T1, and T2 6 V 1 S1, D2, D3, D4, T3, and T4 -6 V

2 S2, D1, D3, D4, T1, and T2 12 V 2 S2, D1, D3, D4, T3, and T4 −12 V

3 S1, S2, D3, D4, T1, and T2 18 V 3 S1, S2, D3, D4, T3, and T4 −18 V

4 S3, D1, D2, D4, T1, and T2 24 V 4 S3, D1, D2, D4, T3, and T4 −24 V

5 S1, S3, D2, D4, T1, and T2 30 V 5 S1, S3, D2, D4, T3, and T4 −30 V

6 S2, S3, D1, D4, T1, and T2 36 V 6 S2, S3, D1, D4, T3, and T4 −36 V

7 S1, S2, S3, D4, T1, and T2 42 V 7 S1, S2, S3, D4, T3, and T4 −42 V

8 S4, D1, D2, D3, T1, and T2 48 V 8 S4, D1, D2, D3, T3, and T4 −48 V

9 S1, S4, D2, D3, T1, and T2 54 V 9 S1, S4, D2, D3, T3, and T4 −54 V

10 S2, S4, D1, D3, T1, and T2 60 V 10 S2, S4, D1, D3, T3, and T4 −60 V

11 S1, S2, S, D3, T1, and T2 66 V 11 S1, S2, S4, D3, T3, and T4 −66V

12 S3, S4, D1, D2, T1, and T2 72 V 12 S3, S4, D1, D2, T3, and T4 −72 V

13 S1, S3, S4, D2, T1, and T2 78 13 S1, S3, S4, D2, T3, and T4 −78 V

14 S2, S3, S4, D1, T1, and T2 84 V 14 S2, S3, S4, D1, T3, and T4 −84 V

15 S1, S2, S3, S4, T1, and T2 90 V 15 S1, S2, S3, S4, T3, and T4 −90 V
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Step 7: Return to steps 2-6 for the individual input-output pair of the
training set until the error for thewhole system is tolerabley.

The RBFNN’s hidden layer has unique activation functions
including Gaussian, multi-quadratics, and inverse
multiquadratics. When compared to the traditional BPNN, the
RBFNN is a better activation function with reduced distance
from function establishments.

The hidden layer is composed of a Gaussian activation function
that is focused in feature space on a vector. There are no extra
weights from the input layer to the hidden layer. The input layer is

delivered directly to the j − th Gaussian hidden unit. The RBF’s k −
th unit output is indicated as follows:

Ok � BO +∑h

j�1Wjk*Hj, (4)

whereHj represents the radial basis output of the j − th hidden
unit and is given by Hj � f(||I − cj||) Here, c ∈ R refers to the
center of the RBF with radius r.

f x( ) � e

Ii−cj| || |2
r2

( )
. (5)

FIGURE 4
IBFC.
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3.2.1 Performance testing
The mean squared error (MSE) impacts the performance of the

NN. By modifying the output-layer weight Wjk, the MSE is
minimized depending on the inputs I and T target vector is
presented as follows:

E � 1/m∑m

k�1 Tk − Ok( )2, (6)

where t(k) and o(k) represent a target and network output kth
sample, respectively, and m represents the total training patterns.

Table 2 represents the parameter specification for RBFNN
MPPT techniques. The highest power attained from the PV
system is enhanced with the advisable IBFC, which is employed
to convert the PV output voltage into an AC form with higher
efficiency and low switching losses.

3.2.1.1 Modeling OF IBFC
Figure 1 shows that the IBFC shares the power IGBT switch and

the inductor to integrate a boost and flyback converter.

The inductor employed in this instance is a type of a linked
inductor, which has two windings wound around a single magnetic
core. Lm represents the connected inductor’s magnetizing
inductance. There are, respectively, N1 and N2 turns in the

primary and secondary windings. CT and C2 are connected in
series to produce the IBFC output. The magnetizing current iLm
runs continuously and stays above 0 throughout a switching cycle in
the continuous conduction mode (CCM). The operation of the IBFC
can be divided into stages.

3.2.1.2 Stage 1
While SW is activated, D1 and D2 are reverse-biased. Vin is

used to power the linked inductor’s primary winding, iLm
increases linearly, and Lm stores the energy. The linked inductor’s
primary and secondary currents, i1 and i2, respectively, are both 0 since
D2 is reverse-biased. The load resistance, R, discharges C1 and C2

throughout this time, supplying the load current.

3.2.1.3 Stage 2
Figure 4 when SW is disabled, iLm continues to flow in the same

direction by compellingD1 andD2 to conduct. During this time, the
energy held in Lm is released to charge C1 and C2 as iLm linearly
diminishes.

With the use of this approximation, the current waveform
analysis and device ratings, such as SW,D1, andD2, are made easier.

The following equation represents the voltage gain of the IBFC
as follows:

VO

Vin
� 1 + nD

1 −D
, (7)

VO � Vin
1 + nD

1 −D
( ), (8)

whereD is the duty cycle of the SW and n � N1/N2 is the linked
inductor’s turn ratio. By modifying the duty ratio D of the switch,
the average output voltage of the IBFC is changed.

3.2.2 Modeling of the 31-level MLI
Asymmetric semiconductor devices using the same voltage

sources and quantity can also produce high output levels when
compared to their symmetric counterparts. The MLI structure,

FIGURE 5
Proposed MLI.
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constructed with an H-bridge inverter circuit defined as the polarity
generation circuit and an asymmetric fundamental circuit called as
the level generator unit, is illustrated in Figure 5. Switches in the
polarity generation circuit, especially contrasted to other switches in
the level generation unit, are under more stress.

The circuit contains an equal number of driver circuits and
IGBTs as all of its semiconductor switching components are
positioned in the same direction. The switching losses in a
multilevel inverter circuit depend on three different parameters:
switching frequency, current, and blocking voltage. The locations of
each and every switch in the level generation unit are displayed in
Table 3. A total of 15 levels are generated using the level generation
units S1, S2, S3, and S4 and the polarity generation units T1 and T2.
Switching OFF S1, S2, S3, and S4 results in the 0 level. Half cycles,
both positive and negative, are also symmetrical.

As an illustration, the switches S1and S2 are turned ON, and
state 3 of the diodes D3 and D4 are forward-biased. In the positive
half-cycle, VO � V1 + V2 is obtained. This method is repeated for
each additional state to achieve the output voltage values.

In a positive cycle, the H-bridge inverter’s switches T1 and T2 are
turned ON, while T3 and T4 are turned OFF. T1 and T2 are turned
OFF, while T3 and T4 are turned ON during the negative cycle. The
following Table 3 demonstrates the 31-MLI’s method of operation.

The circuit is going to operate in mode 1, and the amplitude of
6 V will now be linked to the grid through the inverter switches T1

and T2 during the positive half-cycle when the switches S1, D2, D3,
and D4 of the multiplier are switchedON. The circuit will transition
to mode 2, and the output voltage of 12 V will be accessible at the
inverter output when switches S2, D1, D3, and D4 are turned ON.
Similarly, by turning on the switches S1, S2, D3, and D4 of the
multiplier cell in mode 3, the output of 18 V will be made available.
The switches are activated in this order until all 15 modes have been
used. For negative cycles, the same switching sequence is repeated.

3.2.3 SM optimized CNN
3.2.3.1 CNN

The CNN classifier efficiently differentiates the harmonics with
the help of the features including standard deviation, mean, entropy,
energy, and log-entropy. The feedforward network of the CNN

basically has three layers, such as maximum, pooling, and
convolutional layers, which are fully connected. The CNN
architecture is illustrated in Figure 5.

The backpropagation method is used to train the parameters.
The factor of two values is down-sampled by pooling layers,
which is regarded as the down-sampling layer, and the maximum
value of the convolutional layer is sent to the next layer. The
number of training samples and times is reduced by this proposed
strategy. These samples are carried on to the following layer,
which is fully connected and has multiple hidden layers. Weights
are used to connect the hidden and output layers, the final output
classifier layer, and the pooled samples to a fully connected
network. The forward and backpropagation are the two steps
of the training process, where forward propagation provides the
actual input data and backpropagation updates the training
parameters.

Using all of the input coefficients has a negative influence on the
classification accuracy every time. As a result, the chosen coefficients
mean (M), standard deviation (SD), energy (E), entropy (ET), and
log-energy entropy (LE) are eliminated to reduce complexity and
improve classification accuracy. The primary component
expressions are described as follows:

Mean

Mki � − 1
N

∑N

j�1Xij. (9)

Energy

Kki � ∑N

j�1 Xij

∣∣∣∣ ∣∣∣∣2( ). (10)

Standard deviation

σki � 1
N

∑N

j�1 Xij − μi( )2( ) 1
2. (11)

Entropy

ETki � −∑N

j�1Xij
2 log Xij

2( ). (12)

Log-energy entropy

TABLE 3 Design parameter.

Parameter Specification

Solar PV system

Series-connected solar PV cells 36

Open circuit voltage 12V

Short circuit current 8.33A

Peak power 10 KW and 10 panels

Integrated boost-flyback

L1 , L2 , L3 ,& L4 2*(350uH − 6A) + 2*(350uH − 2A)

• C1 , C2 , C3 ,&C4 • 47uF

• Co1 &Co2 • 180u

• Cin • 470 uF
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LEki � −∑N

j�1log Xij
2( ). (13)

In this paper, the reference and real signals are transmitted to the
CNN classifier to reduce the harmonics and provide reference power
to the PWM generator that produces gating pulses for the 31-level
MLI. Furthermore, the CNN has to be optimized to enhance the
control performance of the MLI.

4 SMO algorithm

The SMO methodology is a metaheuristic method that uses
fission and fusion swarm intelligence for foraging. This algorithm is
inspired from the behavior of spider monkey. The following are six
iterative collaborative phases, and the SMO method relies on trial
and error.

TABLE 4 Efficiency analysis.

Analysis Methods

P & O controller (Kumar et al.,
2012)

MPPT scheme (Shimi et al.,
2013)

CS-HHO-based MPPT
scheme

RBFNN-
MPPT

Total input
power (W)

162.56 162.51 162.59 162.63

Output power (W) 156.73 155.71 157.12 159.65

Efficiency (%) 96.40% 95.21% 96.81% 97.2%

FIGURE 6
CNN Architecture.

FIGURE 7
(A) Temperature and (B) irradiation waveforms for the solar panel.
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4.1 Initializing

The SMO initializes each SMp using Eq. 14

SMpq � SMminq + UR 0, 1( ) × SMmaxq − SMminq( ), (14)

where SMpq is the qth dimension’s pth SM, for random, the
upper and lower bounds of SMp of SMminq and SMmaxq in the qth
direction, respectively. The number of UR is between [0, 1], with a
uniform distribution.

4.2 Local leader phase)

SM includes the historical occurrences of local group
members and leaders to shift the place. If the new position
value is higher than the past one, the SM location of the l th
local group is updated.

SMnewpq � SMpq + UR 0, 1( ) × LLlq − SMpq( )
+ UR −1, 1( ) × SMrq − SMpq( ). (15)

The local group lth of the qth dimension is selected
for lth. SM is random and is represented as SMrq, such that
r, p. LLlq is the qth dimension of the lth local group
leader location.

4.3 Global leader phase

Following LLP, the GLP is initiated to update the location.
Equation 16 provides the location update as follows:

SMnewpq � SMpq + UR 0, 1( ) × GLlq − SMpq( )
+ UR −1, 1( ) × SMrq − SMpq( ), (16)

where GLlq represents the qth dimension of the GLP and q is a
randomly chosen index between 1 andM.

4.4 Global leader learning phase

By utilizing the strategy of greedy selection, GLL is updated. The
new SM depends on the country with the fittest people in the world.
If updates are discovered, the global limit count (GLC) is increased
and the value of the global leader is applied to the optimum setting.

4.5 Local leader learning phase

The SM location is updated with the position of the local
leader for optimal fitness in a specific group. The ideal location
is given to the local leader. If no updates are found, an
increment of 1 is applied to the limit count.

FIGURE 8
(A) Voltage and (B) current waveforms for the solar panel.

FIGURE 9
(A) Voltage and (B) current output of IBFC.
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4.6 Local leader decision phase

When a local leader does not update its location or outdated
from global and local leaders depending on Pr using Eq. 17, the
candidates of the local group change the position at a random
step 1.

SMnewpq � SMpq + UR 0, 1( ) × GLlq − SMpq( )
+ UR 0, 1( ) × SMrq − LLpq( ). (17)

4.7 Global leader decision phase

In accordance with GLD, the population is split into smaller
groups. For the global leader limit, the location value is
unchanged. The dividing process starts after there are as
many groups (MG) as possible. For the newly created group,
a local leader is selected during each cycle. It does not modify its
position until the allowable maximum is reached, at which point
it tries to merge all of the permitted groups into a single

FIGURE 10
Input (A) VDC1 & (B) VDC2 waveform.

FIGURE 11
Input (A) VDC3 & (B) VDC4 waveforms.

FIGURE 12
Grids: (A) voltage and (B) current.
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group. The maximum number of permitted groups is
established.

4.8 Gaussian mutation

In complex iterative optimization situations, the SMO approach
is imprisoned in the local best value. The algorithm solution value
does not vary throughout the iteration. This approach leaves the
location of the local optimum, adds GM and random perturbation,
and then extends to execute the algorithm in order to enhance the
algorithm probability and algorithm deficiency. Equation 18
provides the formula for the Gaussian mutation.

xi,iter+1 � xi,iter + rand if r≥ 0.2
xi,iter × Gaussian μ, σ( ) otherwise

{ . (18)

where rand represents a random number between [0, 1], and rj
represents the probability of random perturbation or Gaussian
mutation selection. Equation 19 provides the Gaussian variation
distribution.

Gaussian μ, σ( ) � 1����
2πσ

√( ) exp − x − μ( )2
2σ2

( ), (19)

where σ2 stands for the variance and μ stands for the mean value.
With the support of SMO, the CNN parameters are optimally tuned
for the generation of improved THD and unity power factor.

5 Results and Discussion

This proposed work aimed at the improvement of an efficient
spider monkey optimization CNN, which is deployed to improve
the PQ in the grid-tied PV system. In addition, the RBFFN-based
MPPT algorithm is employed to track the highest power from the

FIGURE 13
Real and reactive power waveforms.

TABLE 5 Statistical analysis.

Methods ANN CS-RNN SM-CNN

Mean 1.5625 0.5136 0.4342

Median 1.8500 0.2175 0.1702

Standard deviation 0.9254 0.4102 0.3152

FIGURE 14
31-level output (A) voltage and (B) load current waveforms.
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FIGURE 15
THD waveform.

FIGURE 16
Efficiency analysis.

FIGURE 17
Statistical analysis.
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PV system. The suggested control technique is verified using the
MATLAB platform. Table 4 represents the parameter specification
for the proposed system.

A temperature variation of 0.1 s is introduced, as shown in
Figure 6A, to calculate the efficiency of the suggested technique in
handling the intermittent nature of the PV system. At this same
moment, the temperature suddenly increases from 25°C to 35°C.
Similar to how temperature varies, Figure 6B shows that solar
irradiation varies from 800 W/sq.m to 1000 W/sq.m.

Figure 7 displays the solar panel voltage and currents as a variation
in temperature. Due to operating conditions, the voltage is suddenly
increased from 58 V to 72 V; similarly, the current increases to 15 A,
afterward, the current remains constant at 0.1 s.

The waveform that represents the voltage output of the IBFC is
presented in Figure 8A. From that waveform, the voltage of 300 V is
achieved at 0.2 s, and Figure 8B shows output current variations until
0.1 s, after which the stable value of 2.5 A is maintained.

Figure 9 illustrates that the input DC voltage is obtained
from the integrated boost-flyback converter. VDC1 and
VDC2 with the constant value of 15 V and 16 V,
respectively, are maintained. Likewise, Figure 10 shows the
DC voltage VDC3 and VDC4 with the stable value of
52 V and 102 V are maintained.

Figure 10 shows the load RMS voltage waveform. From that
graph, the load RMS voltage 175 V is accomplished at 0.02s.

From the waveform representation shown in Figure 11, it is
noted that a constant voltage of 230 V is supplied to the grid.
Similarly, the grid current value of 4 A is maintained.

Figure 12 depicts the waveforms that represent the reactive and
real power of grid 1. At 0.03 s, the magnitude of real power stabilizes
at 520 W, and the minimized reactive power is achieved.

The waveform of the power factor is shown in Figure 13. Thus, a
power factor of 1 is attained, denoting that the suggested system
operates with efficiency and dependability.

Figure 14 shows the output current and voltage waveform of the
31-level MLI. Here, the voltage of 220 V is maintained as shown in
Figure 14A, and the load current of 4.5 A is achieved, as shown
in Figure 14B.

Figure 15 indicates the proposed IBFC converter’s THD value as
2.45%, which has very low harmonics when compared to that of
other approaches.

Table 5 compares several power tracking methods, and
Figure 16 shows the corresponding graphs with similar
comparisons. As the RBFNN-based MPPT efficiency is
98.80%, Table 5 and Figure 17 demonstrate the various
measures, including mean, median, and standard deviation.
The considered factors strongly show that the suggested
method outperforms the existing methods in terms of the
considered factors.

6 Conclusion

We conclude that the proposed system improves high
performance to achieve efficiency. The MLIs have been heavily
used to improve the PQ of PV systems. The requirement for a
large number of components, increased standing voltage, and
high harmonic content in the output cause a significant impact
on the efficiency of a standard MLI. In this work, a control
approach called Spider Monkey Optimization CNN is used with
an appropriate level of inverter (31 level) to lessen PQ problems
to solve the mitigations. The integrated boost-flyback converter is
employed, in order to stabilize the output voltage of the PV panel
to achieve the performance. Intended for separating the highest
power from the solar PV system, the RBFNN-based MPPT
technique is used, and this achieves an efficiency of 97.2%,
which is the highest efficiency compared to that of other
control methods. The proposed MLI is produced with an
enhanced power factor and a lower THD value of 2.45%, and
the influence of harmonics is also negligible.
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