AUTHOR=Sasikumar Yadukrishnan , Chatzidakis Stylianos , Dahm Zachery , Durbin Samuel G. , Montgomery Rose TITLE=Assessing the release, transport, and retention of radioactive aerosols from hypothetical breaches in spent fuel storage canisters JOURNAL=Frontiers in Energy Research VOLUME=12 YEAR=2024 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2024.1229025 DOI=10.3389/fenrg.2024.1229025 ISSN=2296-598X ABSTRACT=
Interim dry storage of spent nuclear fuel involves storing the fuel in welded stainless-steel canisters. Under certain conditions, the canisters could be subjected to environments that may promote stress corrosion cracking leading to a risk of breach and release of aerosol-sized particulate from the interior of the canister to the external environment through the crack. Research is currently under way by several laboratories to better understand the formation and propagation of stress corrosion cracks, however little work has been done to quantitatively assess the potential aerosol release. The purpose of the present work is to introduce a reliable generic numerical model for prediction of aerosol transport, deposition, and plugging in leak paths similar to stress corrosion cracks, while accounting for potential plugging from particle deposition. The model is dynamic (changing leak path geometry due to plugging) and it relies on the numerical solution of the aerosol transport equation in one dimension using finite differences. The model’s capabilities were also incorporated into a Graphical User Interface (GUI) that was developed to enhance user accessibility. Model validation efforts presented in this paper compare the model’s predictions with recent experimental data from Sandia National Laboratories (SNL) and results available in literature. We expect this model to improve the accuracy of consequence assessments and reduce the uncertainty of radiological consequence estimations in the remote event of a through-wall breach in dry cask storage systems.