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In recent years, the installed capacity of renewable energy systems has seen rapid
growth, particularly in photovoltaic (PV) power. Photovoltaic modules, being the
fundamental elements of the PV system, play a crucial role in determining system
performance. However, the challenge arises from the inconsistent decay rates of
PV modules, which significantly impact the accuracy of PV system modeling. To
address this issue, this paper introduces a novel MIC-LSTM based parameter
extraction method for the single-diode PV model. This method focuses on
accurately deriving PV module model parameters under various decay rates.
By establishing a mapping relationship between the current-voltage (I-V) curve
characteristics and the five unknown parameters in the photovoltaic module
model, the proposed method demonstrates high precision in parameter
extraction. Simulation and experimental verifications are carried out to validate
the proposed method, where the extraction accuracy is 99.3%, 98.39%, 98.85%,
97.91%, and 98.36% for the five unknown model parameters.
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1 Introduction

Modeling photovoltaic (PV) modules is a key technology for evaluating the
economic benefits of PV generation systems in complex operating conditions.
Accurate PV module models could depict the output characteristics of PV module
under different conditions. The physical PV models can be categorized into single diode
and double diode models based on the number of diodes. The single diode model can be
further divided based on the number of parameters in the equivalent circuit, including
the ideal model (Pavan et al., 2014), four-parameter model (Walker, 2001; Xiao et al.,
2004; Chenni et al., 2007), and five-parameter model (Appelbaum and Peled, 2014;
Kumar and Shiva, 2019; Muttillo et al., 2020). The ideal model regards the entire PV cell
as a basic P-N junction. The four-parameter model assumes an infinite parallel
resistance, thereby neglecting the leakage current of the P-N junction. Compared
with ideal model, four-parameter model is more accurate with a small leakage current in
the P-N junction. However, high temperatures or low irradiance can reduce model
accuracy. Researchers have proposed a more complex double diode model (Cotfas et al.,
2013; Babu and Gurjar, 2014) to better accurately depict the current losses in the PV
module model as well as to better describe the output characteristics under low
irradiance conditions. Although the double-diode model can more accurately
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describe the output characteristics of PV modules under certain
conditions, the additional diode could increase the number of
parameters in the equivalent circuit of PV module, which will
lead to the increased difficulty in parameter extraction due to
complex coupling relationships between parameters. Unlike the
four-parameter model, the five-parameter model achieves higher
modeling accuracy by introducing a parallel resistance to
simulate the leakage current of the P-N junction. Therefore,
the five parameter PV model could effectively balance model
accuracy and difficulty in extracting model parameters, which
has widely implemented.

In recent years, researchers have conducted extensive analyses
on the working mechanisms and output characteristics of PV
modules. Existing methods can be categorized into analytical and
numerical methods. Analytical methods aim to simplify and
equivalize the equivalent circuit of PV module to different
extents and then analyze the output data from key points on the
elementary functions and the I-V curve of PV module to obtain the
unknown model parameters. Xiao et al. (2006) established a
polynomial relationship between the output current and voltage
of a PV module at various load under standard test conditions
(STC). Although this analytical method exhibits high accuracy
under standard test conditions, the model accuracy is low when
weather changes rapidly. Additionally, this method requires
collecting a large amount of I-V curve data to achieve a high
fitting accuracy, making the data collection process over
complicated. Ishaque et al. (2011); Elbaset et al. (2014); Villalva
et al. (2009), and other researchers implemented standard product
data sheets of PV module to extract model parameters such as open-
circuit voltage, short-circuit current, maximum power point voltage,
and maximum power point current. Based on open-circuit voltage,
short-circuit current, maximum power point voltage, maximum
power point current, voltage temperature coefficient, and current
temperature coefficient, these methods established a system of
equations to solve for unknown model parameters, including the
series resistance (Rs) and expressing the photocurrent (Iph), diode
reverse saturation current (ID), and shunt resistance (Rsh). However,
these kinds of methods cannot take the decay of PV modules into
considerations. The models established using this approach can only
describe the output characteristics of the modules at the time of
manufacturing and do not meet the requirements of practical
applications.

Compared to analytical methods, numerical methods require
analyzing the entire I-V curve of PV modules. Due to the
multimodal nature of the fitness function in parameter
extraction problems, intelligent optimization algorithms are
widely applied, including Particle Swarm Optimization (PSO)
(Soon and Low, 2012), Artificial Bee Swarm Optimization
(ABSO) (Askarzadeh and Rezazadeh, 2013; Oliva et al., 2014;
Garoudja et al., 2015), Cuckoo Search (CS) (Chakrabarti et al.,
2016), Bacterial Foraging Algorithm (BFA) (Asif and Li, 2008;
Krishnakumar et al., 2013; Rajasekar et al., 2013; Subudhi and
Pradhan, 2018), Genetic Algorithm (GA) (Harrag and Messalti,
2015; Kumar and Shiva, 2019), Differential Evolution (DE)
(Ishaque and Salam, 2011; Jiang et al., 2013), and Flower
Pollination Algorithm (FPA) (Benkercha et al., 2018;
Khursheed et al., 2021). In Ref (Soon and Low, 2012), the
particle swarm optimization algorithm was employed, and the

concept of inverse barrier constraints was introduced to restrict
the parameter search space and thereby enhance the accuracy of
parameter identification. Ref (Askarzadeh and Rezazadeh, 2013)
proposed an ABSO-based technique for identifying parameters in
both single and double diode models. The comparisons between
the ABSO-based algorithms and the other algorithms for the
single diode model parameter identification indicates that ABSO-
based algorithms could achieve a higher parameter extraction
accuracy. Ref (Subudhi and Pradhan, 2018) presented a novel
approach to extract parameters for PV modules using the
Bacterial Foraging Optimization (BFO) technique for optimal
determination of parameters (Rs, Rsh and n) at both variable
temperatures and irradiance level, which is applicable for
extracting parameters of various types of PV modules. Ref
(Jiang et al., 2013) presented an improved adaptive
Differential Evolution (IADE)-based optimization technique to
achieve parameter extraction of PV module. By using a simple
structure based on the feedback of fitness value in the
evolutionary process, it achieves a better extraction accuracy
than other popular optimization methods such as particle
swarm optimization, genetic algorithm, conventional DE, and
simulated annealing (SA). In Khursheed et al. (2021), the
improved Firefly Particle Algorithm (Modified FPA) is
employed, introducing dynamic switch probability and step
size function to enhance the accuracy of parameter estimation
for photovoltaic (PV) models. This method utilizes the improved
Firefly Particle Algorithm, dynamically adjusting switch
probability and step size function to more effectively explore
the parameter space, thereby optimizing the parameter
estimation of PV models. In summary, the intelligent
optimization algorithms can achieve high accuracy in
parameter extraction. However, the computational cost is
significantly increased due to the updating of particle
positions and velocities at each step, leading to slow
convergence rates. Some researchers have proposed PV
module parameter extraction methods based on artificial
intelligence algorithms (Gastli et al., 2015). However, the
accuracy of parameter extraction in this algorithm is relatively
low. In summary, existing methods for extracting parameters in
photovoltaic module models still struggle to balance convergence
speed and modeling accuracy.

Since the decay of photovoltaic module has a time-dependent
nature, this paper introduces a MIC-LSTM based method for
extracting parameters in the single-diode five-parameter PV
model. This method enables parameter extraction using
experimentally measured current-voltage (I-V) curves of PV
modules, which could achieve the parameter extractions under
any practical condition. Initially, a dataset with numerous I-V
characteristic curves is created by assigning random values to the
five parameters of the photovoltaic module model and extracting
feature values from the I-V curves. Using these feature values as
known input parameters and the five unknown parameters of the
photovoltaic module model as output parameters, an LSTM training
set is constructed to establish the mapping relationship between I-V
curve feature values and the five unknown parameters. To enhance
the prediction accuracy and reduce computational complexity, the
Maximal Information Coefficient (MIC) is calculated for each of the
five parameters with the I-V curve features. Feature values exhibiting
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high correlation with unknown parameters will be selected as input
parameters for the LSTMmodel, facilitating the precise extraction of
the five parameters in the photovoltaic module model.

2 Principle of LSTM-based parameter
extraction method for single-diode
PV model

2.1 Analysis of photovoltaic model output
characteristics based on Newton-
Raphson method

Figure 1 shows the one-diode model of a PV module. Due to its
effective balance between modeling accuracy and the difficulty of
parameter extraction, the single-diode five-parameter model has
gained broader application. Its output characteristics are derived
based on solid-state physics principles, Ohm’s Law, and the
equivalent circuit of the physical model of PV modules. Its I-V
characteristic equation can be expressed as:

I � Iph − ID exp
q

nkTc
V + IRs( )( ) − 1( ) − V + IRs

Rsh
(1)

Where Iph represents the photocurrent of the photovoltaic module, ID is
the reverse saturation current of the diode, Rs is the series resistance, Rsh
is the parallel resistance, n is the ideality factor of the diode, q is the
elementary charge constant (1.602 × 10−19 C), k is the Boltzmann
constant (1.3807 × 10−23 J/K), Tc is the temperature of the
photovoltaic cell, I is the output current of the photovoltaic module,
and V is the output voltage of the photovoltaic module.

In Eq. 1, the photocurrent (Iph), reverse saturation current (ID),
series resistance (Rs), parallel resistance (Rsh), and ideality factor of
the Shockley diode (n) are five parameters determining the output
characteristics of the PV module model. These parameters establish
an effective correlation between the output voltage (V) and output
current (I) of the PV module and the working temperature,

irradiance, device structure, and material characteristics. This
correlation provides each component in the equivalent circuit
with a clear physical meaning, enabling an intuitive description
of the impact of various environmental factors on the output
characteristics of the PV module.

In Eq. 1, the complex nonlinearity of the I-V characteristics of
the PV module makes it difficult to be solved using traditional
algorithms. The Newton-Raphson method, also known as Newton’s
method, emerges as a crucial approach for finding roots of complex
equations. Its fundamental concept involves using the first-order
Taylor series expansion of the function to estimate the root
iteratively, refining this estimate to converge accurately to the
function’s root. The computational steps are outlined as follows:

Firstly, expand the function f(x) at the point x0 using a first-
order Taylor series which is expressed by Eq. 2:

f x( ) � f x0( ) + f ′ x0( ) x − x0( ) (2)
The root of the equation f(x) can be expressed as:

f x0( ) + f ′ x0( ) x − x0( ) � 0 (3)

Transforming Eq. 3:

x � x0 − f x0( )
f ′ x0( ) (4)

Since only a first-order expansion of the function f(x) has been
performed, the current value of x is an approximate value of the
equation’s root. To enhance the accuracy of the solution, further
iterative steps are required:

xn+1 � xn − f xn( )
f ′ xn( ) (5)

When solving Eq. 1, it is necessary to construct the function for
the photovoltaic cell model. By taking the output voltage of the
photovoltaic model as a known quantity and the output current as
an unknown which is expressed by Eq. 6:

FIGURE 1
Equivalent circuit of single-diode model of PV cell.
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f I( ) � I − Iph − ID exp
q

nkTc
V + IRs( )( ) − 1( ) − V + IRs

Rsh
(6)

Taking the derivative of the equation f(I) Eq. 7 can be obtained:

f ’ I( ) � 1 + qIRs

nkTc
exp

q
nkTc

V + IRs( )( ) + Rs

Rsh
(7)

Based on Eqs 4, 5, the current value for the (N+1)-th iteration
can be expressed by Eq. 8:

In+1 � In − f In( )
f ′ In( ) (8)

Where In+1 represents the output current value of the photovoltaic
cell model at a specific output voltage. The entire I-V curve of the
photovoltaic cell model can be obtained by slowly increasing the
voltage from zero to the open-circuit voltage.

2.2 Data processing

Due to the extensive numerical variation in the parameters of
photovoltaic components, it is essential to normalize these parameters
initially to enhance the training accuracy and convergence speed of
LSTM. Common normalization methods include min-max
normalization, Z-Score normalization. Due to the widespread
utilization of the min-max normalization method in neural network
systems, this paper applies it to linearly transform themodel parameters
of PV modules to the range of (0, 1) which is shown in Eq. 9:

x � x − xmin

xmax
(9)

Where x representing the normalized model parameters for
photovoltaic module, xmax representing the maximum value within
the dataset, and xmin indicating the minimum value within the
dataset. By randomly assigning values to the five unknown
parameters to the PV model and collecting multiple sets of I-V
curves for photovoltaic modules, the feature values of each I-V curve
can be captured. Then the data set containing various I-V curves
under different decay rate can be constructed.

Sorting the data from numerous I-V curves of PVmodules in the
dataset based on the magnitude of Iph allows for the characterization
of decay RATE, which could arrange the dataset into a time series
and be further processed by LSTM. Due to the large number of
elements in dataset, the whole dataset is segmented into multiple
subsets, where the data segmentation process is shown in Figure 2.
For each subset, it contains n I-V curves with similar decay level. The
blocks of each I-V curves represent the feature value drawn from
each I-V curve. From subset 1 to subset n, the degree of decay
increases progressively. Doing so, the degree of decay in each subset
will be gradually increased, which can be easier processed by LSTM.

2.3 Data dimensionality reduction based on
maximal information coefficient

The I-V curve of a PV module is shown in Figure 3. The short-
circuit current and open-circuit voltage are critical characteristics that

describe the module’s output performance. These parameters are
instrumental in deriving unknown values within the PV module.
Furthermore, the voltage and current at the maximum power point,
along with the slopes of the I-V curve at the short-circuit current,
maximum power point and open-circuit voltage, are highly correlated
with the module’s output characteristics. As a result, they can also be
utilized to deduce unknown parameters of the PVmodule. In summary,
each I-V curve encompasses seven feature values, considered as known
quantities. Therefore, this paper employs the derivation and
computation of five unknown parameters based on seven feature
values extracted from experimentally measured I-V curves to achieve
precise modeling of photovoltaic modules.

Due to the substantial number of feature values and unknown
parameters, along with their interdependence, this paper employs the
Maximal Information Coefficient (MIC) to analyze correlations among

FIGURE 2
Decay-based data segmentation.

FIGURE 3
I-V characteristic curve of PV module.
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these parameters. MIC is a statistical measure utilized in data analysis to
capture nonlinear dependencies between variables, with the goal of
identifying and quantifying associations that may not be adequately
described by traditional linear correlation measures. Given the highly
nonlinear nature of the five unknown parameters among seven feature
values, MIC is particularly suitable for evaluating the correlation level.
Only those feature values exhibiting a high correlation with the
unknown parameters will be selected as input parameters for the
LSTM, facilitating data dimensionality reduction.

The procedure for computing MIC values involves the
following steps:

1. Compute mutual information: Apply a specified grid scale to
grid the scatter plot formed by two variables. Tally the points
within each grid, calculate the joint probability of the two
variables, and determine the mutual information (MI) for each
grid. Select the maximum mutual information value as the
MIC value for the given grid scale.

2. Standardize MIC values: Ensure a consistent range between
0 and 1 by normalizing the MIC values obtained in step 1.

3. Compute the MIC value: Adjust the grid scale from step 1 and
repeat the above two steps, the largest MIC value will be
the result.

The MI mentioned in step 1 can be expressed by Eq. 10:

FIGURE 4
MIC analysis results between PV model parameters and
feature values.

FIGURE 5
LSTM model training.
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I x.y( ) � ∫ p x, y( )log2 p x, y( )
p x( )p y( ) dxdy (10)

Where x and y represent two variables, p (x, y) represents the
joint probability density distribution function of variable x and y,
p(x) and p(y) represent the marginal probability density
functions of x and y, respectively. The value of MIC can be
expressed by Eq. 11:

MIC x, y( ) � max
a * b<B

I x, y( )
log2 min a, b( ) (11)

where a and b represent the number of grid divisions in the x and y
directions, respectively. B represents a constant, which is normally set to
be 0.6 times of the dataset size. TheMIC value ranges from 0 to 1.When
MIC = 0, it indicates that the two variables are independent of each
other. When MIC = 1, it indicates that the two variables are highly
dependent of each other. Therefore, the feature values with higher MIC
should be chosen as input parameters during LSTM training process.

2.4 Long-short term memory

Long-short term memory (LSTM) networks is a subtype of
recurrent neural networks (RNNs). It has become widely recognized

for their adeptness in capturing extensive dependencies within
sequential data. The basic structure of LSTM is composed by:

Input gate which can be expressed by Eq. 12:

it � σ Wiixt + bii +Whiht−1 + bhi( ) (12)

This equation calculates the input gate activation, where xt is
the input at time t, ht−1 is the hidden state from the previous time
step, Wii and Whi are input and hidden weight matrices, and bii
and bhi are the corresponding biases. σ represents the sigmoid
activation function.

Forget Gate (f_t) which can be expressed by Eq. 13:

f t � σ Wif xt + bif +Whf ht−1 + bhf( ) (13)

The forget gate activation is computed to determine
what information from the previous cell state should
be discarded.

Cell State Update (Ct) which can be expressed by Eq. 14:

~Ct � tanh Wigxt + big +Whght−1 + bhg( ) (14)

The cell state is updated by combining the previous cell state
(Ct−1) and the candidate cell state (Ct), with the forget and input
gates serving as control mechanisms.

Output Gate (Ot) which can be expressed by Eq. 15:

ot � σ Wioxt + bio +Whoht−1 + bho( ) (15)
The output gate activation is computed to determine what part

of the cell state should be output as the hidden state.
Hidden State (ht) which can be expressed by Eq. 16:

ht � ot ⊙ tanh Ct( ) (16)

The final hidden state is generated by applying the output gate to
the cell state.

TABLE 1 MAPE of model parameter extraction by MIC-LSTM, LSTM,
and ANN.

Algorithm Iph (%) ID (%) Rs (%) Rsh (%) n (%)

MIC-LSTM 0.07 1.61 1.15 2.09 1.64

LSTM 0.17 2.68 1.54 3.80 3.13

ANN 0.15 1.73 1.28 3.97 3.72

FIGURE 6
IV characteristic curve using MIC-LSTM under different irradiance.
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The above equations regulate the information flow within an
LSTM unit, which enables the network to selectively retain or
discard information across multiple time steps and rendering it
highly effective in managing sequential data characterized by long-
range dependencies.

3 Simulation verifications

3.1 Dataset preprocessing

In this section, a dataset consisting of 10,000 I-V curves has been
created. Each subset comprises 5 I-V curves, resulting in a total of
2,000 subsets. Among these, 1,800 subsets serve as the training set, while
the remaining 200 subsets are designated as the validation set. Before
carrying out LSTM model training, MIC is applied to achieve data
dimensionality reduction. Figure 4 illustrates MIC analysis results.

As shown in Figure 4, the ideality factor n is highly correlated
with VOC, Slope 3 and VMPP while the MIC value between n and ISC,
Slope 1, Slope 2 and IMPP is low. In this paper, the threshold of MIC
value is set to be 0.3. Therefore, the input parameters for extracting n
should be VOC, Slope 3 and VMPP, which could effectively reduce the
data dimensionality.

3.2 LSTM model training

As shown in Figure 4, the ideality factor n is highly correlated

with VOC, Slope 3 and VMPP while the MIC value between n and ISC,

Slope 1, Slope 2 and IMPP is low. In this paper, the threshold of MIC

value is set to be 0.3. Therefore, the input parameters for extracting n

should be VOC, Slope 3 and VMPP, which could effectively reduce the

data dimensionality.
Figure 5 illustrates the training process of LSTM. Five LSTM

models are constructed, where each LSTM model is applied to

extract one unknown model parameter. The input data for each

LSTM is those feature values whose MIC are larger than 0.3. The

I-V Curve feature values in the subsets are extracted using 1-

dimensional convolution (1D Conv). The dataset is segmented

during data preprocessing, and each segment represents the output

characteristics of PV modules for a specific decay level. Consequently,

these feature values are classified as Short-term Information. To

mitigate the risk of extracting inaccurate model parameter values

due to poor data quality, the information from adjacent segments is

incorporated as supplementary data. This helps ensure the accuracy and

reliability of the extracted model parameters.
The entire dataset is divided into smaller subsets, and the data in

adjacent subsets capture the characteristics of the continuous decay of

PV modules. To extract the decay characteristics of adjacent data, The

long-short term memory (LSTM) algorithm is employed, which is a

typical recurrent neural network. LSTM could selectively remember the

characteristics of the current moment and transmit them to the next

moment through two transmission states: the hidden state (h) and the

cell state (c). Consequently, the feature values obtained through LSTM

can reflect the characteristics of a more extended period in the past,

termed Long-term Information.
In order to verify the parameter extraction accuracy of the

proposed algorithm, the parameter extraction accuracy of

TABLE 2 MAPE of model parameter extraction by MIC-LSTM, LSTM,
and ANN.

Parameter Value

Pmax 100 W

VOC 21.5 V

ISC 6.27 A

VMPP 18 V

IMPP 5.55 A

FIGURE 7
Experimental testbed.
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traditional LSTM and ANN is also evaluated, which is shown in
Table 1. The comparisons indicates that the proposed could achieve
a higher model parameter extraction accuracy than other
algorithms. The obtained I-V curve based on extracted model
parameters under different irradiance is shown in Figure 6.

4 Experimental verifications

For experimental verification of the proposed MIC-LSTM
algorithm, the PV module ZY-6M-100 is applied, whose
parameters is shown in Table 2.

The experimental testbed is illustrated in Figure 7. The main
circuit includes boost converter and inverter, which aims to
better simulate the real grid-connected conditions of
photovoltaic modules. Two radiation meters are applied to
measure the irradiance of PV, module. Firstly, by adjusting
the duty ratio of boost converter, the I-V curve of PV, module
can be obtained. The feature values of I-V curves, including VOC,
ISC, VMPP, IMPP, and di/dt at OC, SC, and MPP., by continuously
collecting output data from photovoltaic modules, the feature
values at various irradiance levels can be obtained.

Figure 8 shows measured and estimated I-V curve of PVmodule
ZY-6M-100 by applying the proposed MIC-LSTM algorithm under
different working conditions. It can be verified that output
characteristics of PV model by implementing the proposed MIC-
LSTM algorithm could accurately describe the actual I-V
characteristics of the PV module under various conditions.

5 Conclusion

In this paper, a novel MIC-LSTM based parameter extraction
method for single-diode PV model. With the application of MIC,

the dimensionality of the input parameter is reduced, which
could effectively exclude the impact of low-correlation inputs
on parameter extraction accuracy. With the proposed MIC-
LSTM algorithm, the model parameters of PV module can be
extracted based on the feature value of its I-V curves, which
achieves to construct the accurate PV model at any decay level
without large amount of computation. Simulations and
experimental verifications were carried out, which validated
the feasibility and correctness of proposed MIC-
LSTM algorithm.
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