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The assessment of the health status and prediction of the lifespan of cable
equipment are critical for ensuring the stability and efficiency of the power
grid. This paper develops a temperature-current-capacity-life calculation
model for cables, considering the fast and slow charging demands of electric
vehicles (EVs). Analyses under scenarios of rapid and slow charging demands are
conducted, introducing a cable health index and establishing a health status
assessment framework based on this index. The framework accounts for
various factors leading to cable faults, offering a comprehensive evaluation of
the health status of cables with different fault rates. Building upon this, a prediction
method using the Fire Hawk Optimization (FHO) Algorithm and Convolutional
Neural Network (CNN) is proposed. This method enhances performance by
optimizing the hyperparameters of Bidirectional Gated Recurrent Unit (BiGRU)
through FHO, effectively searching and determining the optimal hyperparameter
configuration. The impact of different scenarios and varying EV penetration rates
on cable temperature is analyzed through case studies, facilitating the assessment
and prediction of health status.

KEYWORDS

health status assessment, cable, electric vehicle, deep learning, health index

1 Introduction

As modern society’s reliance on electricity intensifies, cables, being an indispensable
component of the power grid, play a pivotal role in ensuring the safety and reliability of the
entire electrical system (Rajendran et al., 2021). The escalating demand for electric vehicle
(EV) charging, especially the high current requirements of direct current fast charging, raises
challenges for cable equipment, leading to increased cable temperatures (Gupta et al., 2021).
This not only impacts their performance and lifespan but also poses potential safety hazards.
Moreover, cable equipment is subject to various internal and external factors such as aging,
climate change, and operational stress, leading to potential performance deterioration over
time (Hossain et al., 2021). Therefore, the health assessment and prediction of cable
equipment’s status are of paramount importance.

Cables are designed with a lifespan of approximately 40 years, predominantly affected by
thermal aging and electrical aging (Li et al., 2007). Thermal aging suggests that a cable’s
lifespan is mainly influenced by load rate, insulation material properties, and ambient
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temperature, whereas electrical aging posits that a cable’s expected
lifespan is inversely proportional to insulation field strength, as
proven in relevant studies. Research documented in (Nemati et al.,
2019) utilizes the Weibull parametric proportional hazard model to
estimate the failure rate of each cable based on its years of usage and
a set of explanatory factors (Dinmohammadi et al., 2019). proposes a
lifespan predictionmodel for submarine cables under specific seabed
conditions and tidal flows, predicting the expected lifespan of cables
affected by erosion and wear. Further (Montanari et al., 2019),
assesses the insulation condition of electrical equipment as a
function of operating time, evaluating the feasibility and scope of
maintenance measures and life extension plans based on aging and
life models (Wang et al., 2019). examines the impact of EV charging
loads on the temperature and thermal life of distribution network
cables, focusing on the harmonic characteristics of 3.3 kW and
6.6 kW AC slow charging under peak and off-peak scenarios.
However, in the context of dual carbon goals, the continuous
increase in EV ownership, reaching 18.21 million in China by
September 2023, and the establishment of DC fast charging and
even Chaoji fast charging standards, allowing charging powers up to
an astonishing 900 kW, impose higher current loads on cables (Yu
et al., 2022). Excessive current loads can lead to overheating and
material degradation, reducing the efficiency and reliability of cables
(Li and Li, 2017). Research in this specific area is not yet
comprehensive, and the lifespan prediction of operational cables
needs to consider stochastic characteristics, including faults due to
defects, external damage, and environmental factors.

In the realm of cable equipment health monitoring and lifespan
prediction, numerous domestic and international researchers have
pioneered a variety of innovative methods, broadly categorized into
model-based predictions and data-based predictions (Liao and
Kottig, 2014). Model-based predictions focus on in-depth analysis
of cable equipment’s structure and material properties, often
involving complex fault mechanism mathematical models
(Ahmad et al., 2022). However, due to their high complexity, the
practical application of these methods is somewhat limited. On the
other hand, data-based prediction methods do not require an in-
depth understanding of mechanisms; instead, they assess the health
and predict the lifespan of equipment by analyzing data and
measurement parameters collected by sensors. These methods are
further divided into statistical methods and machine learning
methods (Carvalho et al., 2019). Traditional machine learning
methods, such as Support Vector Machine (SVM) (Yan et al.,
2020) and Random Forest (RF) (Gan et al., 2022), are favored for
their flexibility and efficiency in extracting shallow features for
health assessment and lifespan prediction. The latest research
trend is employing deep learning technologies, particularly CNN
and Recurrent Neural Networks (RNN) (Han et al., 2021), to process
cable data, aiming to enhance prediction accuracy and robustness.
The application of deep learning in cable equipment’s lifespan
prediction and health status assessment mainly encompasses
Deep Belief Networks (DBN) (Peng et al., 2019), Long Short-
Term Memory networks (LSTM) (Zhang et al., 2018), Gated
Recurrent Units (GRU) (Luo et al., 2020), CNN, Graph Neural
Networks (GNN) (Kong et al., 2022), and Transfer Learning (TL)
(Zhang et al., 2021). These cutting-edge studies are continually
advancing the monitoring and lifespan prediction technologies
for cable equipment.

This paper introduces an innovative approach for assessing and
predicting the health status of cables in the context of large-scale
electric vehicle (EV) charging loads. The key contributions of this
study are summarized as follows:

(1) Development of a cable temperature-current-capacity-life
calculation model. This model conducts a comprehensive
analysis of both rapid and slow charging scenarios and
explores through case studies the impact of different
charging scenarios and EV penetration rates on cable
temperature. This offers new perspectives and solutions for
cable management in EV charging facilities.

(2) Introduction of the concept of a Cable Health Index and the
construction of a cable health status assessment framework
based on this index. Taking into account various factors that
could lead to cable faults, this framework allows for a
comprehensive health assessment of cables with different
fault rates, significantly enhancing the safety and efficiency of
cable usage.

(3) Proposal of a predictive method that combines the FHO
Algorithm with a CNN. This method uses the FHO
algorithm to optimize the hyperparameters of the BiGRU,
enhancing predictive performance. It effectively searches and
determines the optimal hyperparameter configuration, enabling
precise assessment and prediction of cable health status.

The remainder of the paper is organized as follows: Section 2
constructs the cable model considering EV charging demands and
analyzes rapid and slow charging requirements. Section 3 presents a
deep learning-based method for predicting the health status of cable
equipment. Section 4 offers simulation results and discusses the
outcomes of the tests. Finally, Section 5 concludes the study.

2 Cable model considering EV
charging demand

The historical data of cables include operational years and
routine inspections. As operational years increase, the condition
of the cables deteriorates. The lifecycle of a cable follows a “bathtub
curve,” which can be divided into three phases: the early debugging

FIGURE 1
Bathtub curve of failure rates.
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period, the random failure period, and the wear-out period, as
illustrated in Figure 1.

To quantify the impact of EV charging loads on cables, this paper
constructs a cable equipment temperature-current-capacity-life
calculation model, considering both rapid and slow EV
charging demands.

2.1 Slow charging demand

Considering that the charging mode allows EVs to charge
without exceeding the battery capacity and that the constant
current process in a complete slow charging cycle is very short,
the entire slow charging process is approximated as constant voltage
charging. Assuming that the charging current for slow charging is
0.1C (C refers to battery capacity), the charging power Pc of a typical
EV falls within the range of 2–3 kW and follows a uniform
distribution, with its probability distribution function as (Eq. 1)

fPc x( ) � 1 x ∈ 2, 3[ ]
0 otherwise

{ (1)

The time required for each EV’s slow charging is calculated as
(Eq. 2)

Tc � SW100

100Pc
(2)

Considering two types of slow charging modes: dispersed and
centralized, this study focuses on dispersed slow charging for both
pure electric and hybrid vehicles. Assuming that all slow-charging

EVs finish their last daily trip and return to their parking spots at the
time which marks the beginning of charging. Based on a survey of
American household vehicles, the start time of charging is also
approximated as a normal distribution, with the specific probability
density function as (Eq. 3):

fs x( ) �
1

σs
���
2π

√ exp − x − μs( )2
2σ2s

[ ] μs − 12( )<x≤ 24
1

σs
���
2π

√ exp − x + 24 − μs( )2
2σ2s

[ ] 0< x≤ μs − 12( )
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (3)

With the initial scale of EVs in the region, combining the EV
driving mileage and charging start time, the remaining battery
charge of each vehicle can be calculated.

2.2 Rapid charging demand

In rapid charging mode, the initial phase of EV charging
generally involves constant current charging, following an
exponential distribution. When the battery is charged to 80% of
its rated capacity, the process is as (Eq. 4):

Pfc t( ) � PNe
− PN

0.9−SOC0( )C t (4)
For instance, PN = 100 kW, for a battery capacity of 60 kW and a
remaining charge of 40%, an EV would require approximately 0.67 h
to charge.

The extent of EV charging and battery swapping demand is
primarily influenced by user behavior, battery capacity, and the
technical level of charging equipment. At a certain stage of
development, constrained by the level of technology, battery
capacity and the power rating of charging equipment are
generally fixed, hence EV charging and swapping demand mainly
depends on daily driving mileage.

To obtain the daily load curve of EV charging and swapping, it is
first necessary to know the daily driving mileage S of EV users and
the electric energy W100 consumed per 100 km by the EV. The
product of these two factors gives the daily power consumption of
the EV. Based on relevant statistical survey data, the daily mileage is
approximated to fit a log-normal distribution, with the
corresponding probability density function as (Eq. 5):

f d( ) � 1
dσD,i

���
2π

√ exp − lnd − μD,i( )2
2σ2D,i

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, i � 1, 2, ..., 7 (5)

Compared to the dispersed slow charging mode, the rapid charging
mode sees a higher degree of charging demand, mainly affected by the
power consumption during various time periods. This paper assumes
that the distribution of start times for rapid charging is consistent with
the swapping time distribution in the swappingmode. It is also assumed
that when pure electric and hybrid EVs undergo rapid charging, the
remaining battery charge follows a normal distribution of (0.4, 0.133),
leading to a specific probability density function for the remaining
battery capacity (Eq. 6).

fK x( ) � 1
σK

���
2π

√ exp − x − μK( )2
2σ2K

[ ] (6)

FIGURE 2
Flowchart for predicting cable health status.
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2.3 Cable temperature calculation model

The introduction of nonlinear loads by AC charging of EVs
leads to the generation of harmonics. These harmonic signals affect
both voltage and current, encompassing harmonic voltage and
current. According to the definition by IEC 61000, these are
represented as (Eq. 7) and (Eq. 8):

σTHDu �

����∑n
2
U2

n

√
U1

(7)

σTHDi �

����∑n
2
I2n

√
I1

(8)

As per the IEC 60287 standard, the core temperature θ of a
10 kV three-core cable can be expressed as θ � θc + θ0, the values of
related parameters can be found in Wang et al. (2019) θc can be
calculated by (Eq. 9).

θc � ∑n
i�1
I2i RAC i( ) T1 + ciT2 + ci 1 + λ2 i( )( ) T3 + T4( )( ) (9)

2.4 Cable current carrying capacity
calculation model

The harmonic currents generated during the charging process of
EVs can cause the total current carrying capacity of the cable to
exceed its design value, potentially leading to overload and safety
issues. The current carrying capacity of 10 kV three-core cable can
be calculated using (Eq. 10)

Ih,rated �
�������������������������������������������������������
Δθc/∑n

i�1

I2i
I21
RAC i( ) T1 + 1 + λ1 i( )( )T2 + 1 + λ1 i( ) + λ2 i( )( ) T3 + T4( )( )

√√
(10)

2.5 Cable life calculation model

The harmonic currents produced during the EV charging
process cause additional heating in the cable, affecting its thermal
life. The cable’s life per hour is given by (Eq. 11):

Lh t( ) � 8760 · L0e
− Δw
kBT t( ) (11)

The daily life degradation of the cable is expressed as (Eq. 12):

Ld � ∑24
t�1

1
Lh t( ) (12)

2.6 Failure rate model

Cable fault sample data follow a Weibull distribution with the
sought parameters. Such a function can simulate various fault
factors by selecting appropriate parameters and can also assess
the systemic reliability when the cable fault rate dynamically

changes. The mathematical model for cable fault rate is shown as
(Eq. 13):

λ t( ) � β

η

t

η
( )β−1

(13)

To account for the difference in cable fault rates before and after
maintenance, this paper introduces an age regression factor α,
representing the actual change in cable fault rate. The actual
service age of the cable is then given by (Eq. 14):

Treal � T − αT � 1 − α( )T (14)
This allows for the determination of the fault rate after the k-th

maintenance. As shown in (Eq. 15).

λk t( ) � λ t + 1 − α( )kT[ ] � β

η

t + 1 − α( )kT
η

[ ]β−1
(15)

3 Deep learning-based method for
predicting the health status of
cable equipment

To avoid the issues of cable current carrying capacity overload
and temperature rise caused by concentrated EV charging, this study
proposes a data-driven and weighted Gaussian regression method
for predicting the operational state of cable equipment. This
approach utilizes CNN and LSTM networks to predict
parameters of cable equipment, thereby enhancing the
performance of Gaussian Process Regression (GPR), aiming to
improve the accuracy of predicting parameters like cable
temperature and current carrying capacity.

The proposed FHO-CNN-BIGRU method for predicting the
operational state of cable equipment employs the CNN
algorithm to mine data relationships and mitigate noise
interference. The extracted features are then fed into a
BiGRU model optimized by the FHO Algorithm for time
series prediction, enhancing the stability of the forecasts.
Additionally, this method incorporates a GPR filtering model
to smooth the data using Gaussian process regression, thus
improving data accuracy and reliability. The cable health status
prediction flow chart is shown in Figure 2.

3.1 FHO optimization of BiGRU
hyperparameters

The FHO algorithm is a meta-heuristic algorithm that simulates
the foraging behavior of fire hawks, considering processes like
setting fires, spreading, and capturing prey. Initially, several
candidate solutions are determined as the location vectors of the
fire hawks and prey, using a random initialization process as per the
given formula to identify these vectors’ initial positions in the search
space. As shown in (Eq. 16) and (Eq. 17).

X �
X1

..

.

Xi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � x11x
2
1/xj1
..
.

x1i x
2
i/xji

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, i � 1, 2, . . . , N
j � 1, 2, . . . , D

{ (16)
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xji 0( ) � xji,min + rand · xji,max − xji,min( ) (17)

The distance between a fire hawk m and prey n is calculated to
determine the nearest prey around each fire hawk and define their
territories. As shown in (Eq. 18).

Dm
n �

�������������������
xn − xm( )2 + yn − ym( )2√

(18)

Then, positions are updated: fire hawk m collects burning sticks
from the main fire and throws them into a specific area to force the
prey to flee. The detailed process of updating positions can be
referred to in the cited literature (Azizi et al., 2023).

Based on the solution process of the aforementioned FHO
optimization algorithm, the steps to optimize the BiGRU model
hyperparameters are as follows:

Step 1: Define the Hyperparameter Search Space. Identify the
hyperparameters of the BiGRU model to be optimized and
establish a range or a set of possible values for each hyperparameter.

Step 2: Initialize Solution Candidates. Generate initial solution
candidates of hyperparameter combinations randomly, in
accordance with the defined search space.

Step 3: Evaluate Initial Solution Candidates. Employ cross-
validation or other suitable methods to train the model and
assess the performance of the initial solution candidates,
calculating their fitness values (such as accuracy, loss
function values, etc.).

Step 4: Set the Global Optimum. Designate the best solution among
the initial candidates as the global optimum.

Step 5: Iterative Optimization. Continuously update the
hyperparameter combinations by generating falcons and prey.
The distance between falcons and prey is computed, and
territories of the falcons are determined. Falcons update their
hyperparameter combinations based on their positions, and prey
both within and outside the territories also update their
combinations. By evaluating the fitness values of the updated
hyperparameter combinations and updating the global optimum
to the current best solution, the FHO algorithm progressively
searches for improved hyperparameter combinations, thereby
enhancing the BiGRU model’s performance through iterative
optimization.

Step 6: Return the Global Optimum. Upon completion of the
iterations, the global optimum is returned as the optimized set of
hyperparameters for the BiGRU model.

3.2 FHO-CNN-BiGRU prediction model

Step 1:Data Preprocessing. Undertake preparatory processing of
the monitoring data for cable equipment, involving data
cleansing and normalization among other procedures, to ready
the input data.

Step 2: Feature Extraction. Utilize a CNN to extract salient features
from the cable equipment monitoring data, capturing key temporal
sequence characteristics.

Step 3: Sequence Modeling. Employ a BiGRU to model the
extracted time series features, considering both historical and
prospective state information.

Step 4: Predictive Output. Utilize the terminal temporal step’s
BiGRU hidden state as the vector representation of the equipment’s
health status, and input this into a fully connected layer for the
prediction of the health state.

Step 5: Model Optimization. Apply the FHO algorithm to refine
hyperparameters such as the convolutional kernel size, GRU’s
hidden unit count, learning rate, and other factors pertinent to
model performance, thereby enhancing the accuracy of health status
prediction.

Step 6: Model Evaluation. Assess the model’s performance using
appropriate metrics (like accuracy, recall, F1 score, etc.), comparing
it against the actual health states of the equipment.

Step 7:Health Status Prediction. Utilize the optimized FHO-CNN-
BiGRU model to predict the health status of cable equipment based
on new monitoring data, thus obtaining prognostications regarding
the health state of the cable apparatus.

3.3 Construction of gaussian process
regression model

Combining the FHO-CNN-BiGRU prediction model, the GPR
model is utilized for its superiority in handling nonlinear problems
to obtain nonlinear mappings between measurements and state
quantities. The integration of FHO-CNN-BiGRU and GPR
algorithms allows for weighting the predicted values from FHO-
CNN-BiGRU and the state estimates from GPR, leading to more
accurate predictions of the cable equipment’s state.

The Gaussian Regression model maps input features to a high-
dimensional space through a set of basis functions, denoted as ψ(·),
thereby facilitating the discovery of linear relationships among data
in this elevated dimensional space. By representing the measured
quantities Z, with these basis functions ψ(·), one can derive the
probability associated with new data.

The GPR uses confidence judgment to estimate results, which
can mitigate noise interference, thereby improving the accuracy of
the estimates. Offline training is first conducted based on the
nonlinear relationship between historical measurement and state
data of cable equipment, followed by state prediction using the
trained model based on new measurement data.

3.4 Method for assessing the health status of
cable equipment

Aging and deterioration are phenomena that span the entire
lifecycle of equipment. Cables, especially those operating in
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humid environments for extended periods, are prone to water
tree aging. The operational state of the cable, maintenance
strategies, construction quality, and operating environment
significantly impact cable deterioration. Maintenance can
enhance the performance of components and extend the
equipment’s life to a certain extent, but it cannot restore the
equipment to its original healthy state, as the rate of deterioration
remains unchanged. Assessing the health status is an effective
way to monitor the condition of cable equipment. Based on the
cable status prediction results, this paper introduces the concept
of a Cable Health Index and constructs a cable health status
assessment framework based on this index. The cable health
status assessment process, as illustrated in Figure 3, involves the
following detailed steps:

Step 1: Data Collection and Processing. Utilize distributed fiber
optic sensors to collect relevant data of the cable, including its
lifespan, insulation thermal resistance, and other parameters.
Combine these with predicted parameters like current carrying
capacity, temperature, and lifespan to construct a health status
assessment dataset. Analyze and process the collected data,

employing methods like Principal Component Analysis to
remove redundant features and repair missing data.

Step 2: Determination of Cable Fault Factor Weights.
Considering the operational conditions of the cable, use the
Analytic Hierarchy Process to calculate the weights of factors
that could potentially cause cable faults, obtaining the weight wi

for the ith type of fault factor. Factors include heavy overload,
lightning strikes, high temperatures, humidity, chemical
corrosion, human-induced damage, animal damage, and
insulation aging.

Step 3: Calculation of Cable Fault Rate. Calculate the cable fault
rate λ(t) and the fault rate λk after kth maintenance using the
designated (Eq. 19). Modify the fault rate based on the cable’s
service age using the appropriate (Eq. 20) to obtain the real-time
fault rate.

FIGURE 5
Charging demand at different EV penetration rates.

FIGURE 3
Cable fault early warning and decision-making process.

FIGURE 4
Daily residential electricity load profile.

Frontiers in Energy Research frontiersin.org06

Lei et al. 10.3389/fenrg.2023.1345840

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1345840


λ t( ) �
0.0198 t≤ 20
6.849
35.536

×
t

35.536
( )5.849

t> 20

⎧⎪⎨⎪⎩ (19)

λ* � wi · λk (20)

Step 4: Calculation of Cable Health Index. Utilize the real-time
fault rate to calculate the cable’s real-time health index H*. As
shown in (Eq. 21).

H* � 1
ξ
ln

λ*
K

( ) (21)

Step 5: Assessment of Cable Health Status. Based on the
calculated real-time health index, assess the health status of
the cable. Categorize the cable into different health statuses,
including healthy, sub-healthy, early warning, and damaged,
according to predefined standards and thresholds.

Step 6: Early Warning and Decision-Making. Set warning
thresholds based on the real-time fault rate and health index.
When the fault rate exceeds the threshold or the health index
declines, the system can issue an alert, prompting maintenance

personnel to take appropriate actions such as repair, replacement, or
upgrade of the cable.

4 Case analysis

This paper focuses on a case study of a community with
2000 private EVs. For simplicity in the simulation, it is assumed
that EVs charge at a constant power, with a battery capacity of
70 kWh. The study considers AC slow charging and DC fast
charging, setting the ratio of fast to slow charging at 3:7.
According to the standard charging modes defined in
IEC61851-1, a 6.6 kW AC charging station for electric cars has
a current of 32A, and a 35 kW DC charging station has a current
of 160A. The temperature limit of XLPE cables is set at 90°C. Due
to higher losses in AC cables under the same load conditions
compared to DC cables, the temperature changes caused by fast
charging are not considered initially. Figure 4 shows the typical
daily load curve without considering EV charging, and Figure 5
presents the charging demand curves at different EV
penetration rates.

FIGURE 6
Cable temperature variations under different EV
penetration rates.

TABLE 1 Maximum cable temperatures at different EV penetration rates in various scenarios.

EV penetration rate Temperature (°C)

Considering harmonics Disregarding harmonics Disregarding fast charging

0 63.56 63.56 63.56

10% 67.96 64.85 69.92

20% 71.23 67.55 74.05

30% 76.80 71.61 79.43

40% 83.58 79.56 86.30

50% 91.67 90.03 93.82

FIGURE 7
Temperature impacts in slow charging scenarios at different EV
penetration rates.
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4.1 Impact of EV charging demand on cables

To assess the impact of different scales of EV integration on cable
temperature rise, we analyzed cable temperatures under various
charging demands, setting EV penetration rates at 0%, 10%, 20%,
30%, 40%, and 50%. The simulation tested the cable temperature
variations in each scenario, as shown in Figure 6; Table 1.

From Figure 6, it is evident that with the increase in the number
of EVs, the rising charging demand leads to a continuous increase in
cable temperature. Especially when the EV penetration rate reaches
half of the total number of private cars in the community, the cable
temperature exceeds the permissible limit. At peak demand times,
the cable temperature reaches 91.67°C, exceeding the 90°C limit even
without considering the impact of harmonics. Therefore, reducing
harmonics and improving cable thermal management are crucial for
the reliable operation of cables and the entire distribution system.
Implementing rational orderly charging strategies or incentivizing
users to charge during off-peak hours through time-of-use tariffs
could mitigate the risk of cable current exceeding limits due to the
cumulative demand of charging and base electrical loads.

4.2 Impact of EV charging strategies
on cables

To verify the impact of different charging strategies on cable life, the
temperature variations under slow charging demands at different EV
penetration rates are shown in Figure 7. Additionally, considering the
peak and off-peak periods as defined in (Sun et al., 2019), Figure 8
shows the temperature variation curves for two scenarios at a 50%
penetration rate under time-of-use charging.

From the figures, it is seen that in uncoordinated charging, all EV
users start charging immediately upon returning home, with charging
concentrated between 6 p.m. and 2 a.m. the next day. At 6 p.m., the cable
temperature reaches 91.67°C due to the peak in total electricity demand
from both charging and base loads. Under the influence of time-of-use
tariffs, EV users tend to choose lower-priced periods for charging, mostly
during the peak hours of solar power generation. Although the surge in

charging demand increases the cable temperature, it effectively avoids the
temperature rise caused by “peak upon peak” by occurring during the
low-demandperiod of the grid. The cable temperature remains at 88.28°C,
not exceeding its maximum tolerance, thereby reducing the fluctuation
range of cable temperature. This strategy not only avoids impact on the
cable but also enhances the utilization of solar power in the grid.

4.3 Cable health status assessment and
prediction

An analysis is conducted on the operational status of cables under
the two charging scenarios mentioned above, and a health status
assessment is performed using the health index. The criteria for
classifying health levels are shown in Table 2, and the future health
status of the cables is predicted using the model proposed in this paper.

As indicated in Table 2, S1 represents equipment that meets all
performance standards, with good foundational conditions, intact
technical performance, and stable operational conditions, capable of
withstanding external environmental risks. S2 denotes equipment with
intact functionality and performance, though slightly below the healthy
state, still meeting standard operational requirements. S3 indicates
equipment in basically good condition, capable of performing
specified functions, but with some performance degradation, having
a minor overall impact and needing maintenance. S4 signifies
equipment with severe technical performance deficiencies, unable to
meet operational standards, and posing a threat to system safety and
stability, urgently requiring replacement.

FIGURE 8
Effects of ordered and unordered charging on temperature.

TABLE 2 Health grade classification.

Health index Health level Health status

100 ≥ H ≥ 75 S1 Health

75 ≥ H ≥ 50 S2 Sub-health

50 ≥ H ≥ 20 S3 Early warning

20 ≥ H ≥ 0 S4 Damage

FIGURE 9
Fitted curve of cable failure rates.
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Figure 9 shows an increase in the fault rate of cables over time.
Considering the climate environment of the Xiong’an New Area,
100 cables are selected, and the weights of various fault factors are
calculated using the Analytic Hierarchy Process, as shown in Table 3.

The cable fault rate and health index are calculated based on the
weights of the fault factors and used as initial parameters to predict
future changes in the cable’s health status. Table 4 presents the fault
rates and health information of 10 selected cables and predicts their
future health status.

4.4 Comparison of prediction
method efficacy

To validate the superiority of the method proposed in this study, its
prediction results were compared with those of the Back Propagation
Neural Network (BPNN) and Support Vector Machine (SVM) models,
as shown in Table 5. S1 and S2 respectively correlate to the health grades
outlined in Table 2. The amalgamation of S3 and S4, denoted as S34,
indicates that the cable is in a state of malfunction or pre-alert.

The analysis of the provided data in Table 5 reveals a clear
superiority of the proposed method in accuracy rates across all
categories. It surpasses both BPNN and SVM, achieving 92.5% in

S1, 93.6% in S2, and 90.3% in the combined S34 category, with a
comprehensive accuracy of 92.5%. This consistently higher
performance across all metrics establishes the “Proposed
Method” as the most effective and accurate among the
methods evaluated.

5 Conclusion

In this paper, we proposed amethod for assessing and predicting
the health status of cables under the load of large-scale EV charging.
Through detailed case analysis, the following conclusions
were drawn:

(1) The increase in EV charging demand poses a risk of exceeding cable
temperature limits, particularly under the influence of harmonics in
AC slow charging scenarios. Addressing this involves both
reducing harmonic interference and enhancing cable thermal
management, which are essential for ensuring the reliability of
the cable system and the overall distribution network.

(2) Cables experience more severe operational challenges and increased
risk, especially with prolonged use of AC slow charging by EVs.
Implementing time-of-use tariffs to encourage orderly charging can
mitigate issues like cable current overload from cumulative charging
and base load demands. Additionally, at a 50% EV penetration rate,
uncoordinated charging can lead to cable overloading, while time-
of-use tariffs can help regulate charging demand distribution, thus
reducing peak-to-valley differences and lowering cable temperatures
during high grid load periods.

(3) The method proposed in this paper for assessing and predicting
cable health status effectively evaluates the operational state of
cables and issues timely warnings. It accurately predicts future
changes in cable health, providing essential support for grid
dispatchers to arrange maintenance and operation plans,
thereby enhancing the reliability of the distribution system.

Future research will aim to enhance predictive models and
thermal management, facilitating efficient integration of EVs into
the electrical grid.
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Nomenclature

Parameters

Tc Charging duration

S Daily driving mileage of the EV

W100 Power consumption per 100 km, in kWh/(100 km)

μs , σs Mean and variance

C Rated battery capacity

SOC0 Initial state of charge

RAC AC resistance

T1 Thermal resistance of the insulation layer

T2 Thermal resistance from the shielding layer to the armor layer

T3 Thermal resistance of the armor layer and the outer sheath

T4 External thermal resistance

ci Number of cable cores

θ0 Ambient temperature

kB Boltzmann constant

L0 Designed lifespan of the cable

Δw Activation energy

β Shape parameter

η Scale parameter

xji,max
Upper bound

xji,min
Lower bound

D Dimension

ξ Curvature coefficients

K Proportionality coefficients

Variables

PN Rapid charging power

I1 , In Effective values of the fundamental and nth harmonic currents,
respectively

U1 ,Un Effective values of the fundamental and nth harmonic voltages,
respectively

ℎ Order of the higher harmonics

λ1 Ratio of the shield layer loss to the conductor loss

λ2 Proportion of loss attributed to the armor layer

θc Temperature rise of the cable

Lh(t) Cable’s life at time t

T(t) Cable’s temperature at time t hours

Xi ith candidate solution

N Total number of candidate solutions

xji jth decision variable representing the ith candidate solution

H* Cable’s real-time health index

λ(t) Cable fault rate

λk Fault rate after kth maintenance

ψ(·) Basis functions

Z Measured quantities
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