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The power grid and transportation network are coupled by the charging behavior
of electric vehicles. Based on the coupled power-transportation network model,
this paper first analyzes the effect of the distribution system operator’s (DSO)
electricity selling price on guiding the charging behavior of electric vehicles in the
transportation network and then builds the DSO’s optimal pricing formulation.
Considering the competition between multiple charging network operators
(CNOs), this paper establishes a game model between CNOs and solves it
iteratively through the best response dynamic method. An approximation
method using the elasticity matrix is proposed to speed up the solution by
reducing the multi-layer optimization to a single layer one in each iteration,
with its effectiveness validated through numerical tests. Furthermore, the paper
discusses the issue of the prisoner’s dilemma that arises among CNOs and
explores the potential impact of their cooperative strategies on the
overall system.
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1 Introduction

Electric vehicles (EVs) connect the transportation and power systems through charging
infrastructure, which will have a non-negligible impact on both the power system operation
and the traffic flow distribution. The pricing of electric vehicle charging stations (EVCSs) is
a key factor that shapes the charging behaviors of EV users, thereby influencing the overall
operation of the coupled power-transportation system (CPTS). By implementing
appropriate pricing strategies, it is possible to guide the spatiotemporal characteristics
of EV charging loads and mitigate traffic congestion.

In the electrified transportation era, EVCSs are typically owned and operated by
multiple charging network operators (CNOs). The pricing decisions made by CNOs are
influenced by the distribution system operator (DSO), which determines the price of
electricity sold to CNOs. Therefore, it is important to investigate DSO and CNOs’ pricing
strategies and competition within CPTS.

Research on CPTS typically involves establishing sub-models for both the power system
and the transportation system and then considering the impact of EVs on the coupling of
these two systems. The optimal power flow (OPF) model is commonly used to describe the
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operating conditions of power systems. As for the traffic assignment
problem (TAP) in transportation systems, various models can be
employed, such as the user equilibrium (UE) model (Wei et al., 2016;
Yuan et al., 2023), the social optimal model (Alizadeh et al., 2017;
Shao et al., 2023), and simulation-based models (Amini and
Karabasoglu, 2018; Li et al., 2018). The social optimal model
assumes the existence of a dispatch center that directly specifies
or sets additional transportation fees to guide the route selection of
travelers, ultimately resulting in the lowest total travel cost for all
travelers. On the other hand, the UE model assumes that travelers
act self-interested and rationally, always selecting the route with the
lowest cost. Consequently, the driving routes finally chosen by the
same type of vehicle with the same starting point and end point are
expected to have the same cost. Reference (Qiao et al., 2022) expands
the UEmodel to a stochastic UEmodel, accounting for the challenge
of travelers obtaining complete information and their cognitive bias.
For EV users, their driving costs include charging fees, with EVs
typically being charging price takers. By providing real-time
charging navigation strategies, it is possible to reduce users’ travel
and charging costs (Liu et al., 2022; Shi et al., 2020).

It becomes important to account for long-term traffic demand
when the TAP is extended to multi-period cases. Commonmodeling
methods for this purpose include multi-period static UE (Liu et al.,
2022), semi-dynamic UE (Lv et al., 2019), and dynamic UE (Liu
et al., 2020). Furthermore, an extended dynamic UE is proposed in
reference (Xie et al., 2022), allowing users to choose routes, charging
stations, and departure times.

In the context of CPTS, numerous studies have delved into the
pursuit of social welfare maximization (Wei et al., 2016; Wei et al.,
2017; Liu et al., 2022; Lv et al., 2019; Lu et al., 2018; He et al., 2016) or
CPTS’s revenue maximization (Shao et al., 2023; Qiao et al., 2022).
There are some other works considering alternative objectives, such
as reducing carbon emissions (Yuan et al., 2023) and fostering the
utilization of renewable energy sources (Zhou et al., 2019; Lv et al.,
2020). Given that EV charging prices are often set by CNOs
independent of the power and transportation systems, many
studies have approached the charging pricing issue from the
standpoint of CNOs. In reference (Yang et al., 2021), a pricing
scheme was proposed from the view of the Cyber-Physical-Human
system to motivate EV users to follow the expected charging and
travel patterns. Reference (Cui et al., 2021) proposed an optimal
charging pricing strategy based on fixed point theory to maximize
the benefits of a single CNO operating multiple EVCS in an urban
transportation network (UTN).

There are often multiple CNOs providing charging services
within the same city, leading to inevitable competition among
them. References (Ren et al., 2019; Bakhshayesh and Kebriaei,
2023) consider the scenario of multiple CNOs and establish a
pricing competition model based on game theory. Reference (Ren
et al., 2019) studies the vehicle-to-grid interaction and explores
pricing competition among different CNOs, neglecting the influence
of the transportation system on EV behavior. Reference (Cui et al.,
2023) discusses the multi-period charging service pricing problem of
multi-CNO competition in the CPTS and solves it with an iterative
method. Finally, reference (Bakhshayesh and Kebriaei, 2023) takes
into account the coupling constraints between EVs, transportation,
and distribution networks. It models the problem as a generalized
aggregative game and resolves the variational generalized Wardrop

equilibrium point of the game through a decentralized
learning method.

The remainder of this paper is organized as follows. Section 2
formulates a second-order-cone pricing optimization model for
DSO, a pricing model for CNOs, and a multi-period UE model
for UTN. It also models the competitive relationships among
different CNOs with a game-theoretic model. Section 3 proposes
a linear approximation method named “elasticity matrix
approximation” to simplify the solution of the multi-layer
optimization problem. Case studies are carried out in Section 4.
Section 5 provides conclusions.

2 Problem formulation

2.1 Motivation

In UTN, gasoline vehicles (GVs) and EVs currently coexist.
There are typically multiple power distribution networks (PDNs)
within a city to supply power for charging EVs in different areas of
UTN. Public EVCSs in UTN may be connected to different PDNs,
and these stations may be owned by one or multiple CNOs. The
charging demand from a large number of EVs can significantly
impact the safe and economic operation of PDN. Price signals can be
utilized to guide the spatial and temporal distributions of charging
loads, thereby reducing the impact on the operation of
the power grid.

The time is discretized, and the discretized time interval set is
denoted as T . The duration of each time interval is denoted as Δt.
For a time interval t, the DSO can adjust its electricity sales prices
λnj,t{ } (n denotes the index of PDNs, and j denotes the index of
buses) for different EVCSs, and the CNOs can adjust the charging
prices αkm,t{ } (k denotes the index of CNOs, andm denotes the index
of EVCSs) at EVCSs. EVs will decide their travel starting time, travel
path, and which EVCS to charge based on αkm,t{ }. When DSO adjusts
its electricity sales price to EVCSs, the costs of CNOs that own the
charging stations will change accordingly. In order to ensure their
operating revenue, the CNOs will then adjust their pricing schemes,

FIGURE 1
Structure of the multi-period DSO&CNOs pricing problem.
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which may change the number and charging powers of EVs at
EVCSs. It can be seen that the pricing of DSO has the potential to
affect the charging decisions of EVs, but this impact is indirect and
complex, requiring thorough investigation through a quantitative
model. Figure 1 shows the coupling relationship in the CPTS and the
structure of the charging pricing problem.

In this paper, we build a multi-period UTN model and
optimization models for CNO and DSO, denoted as MUL-UE,
MUL-CNO, and MUL-DSO, respectively. These models have a
nested relationship, influencing each other and jointly describing
the state of CPTS.

2.2 Multi-period transportation
network modeling

The multi-period mixed-vehicle-type UE model (Cui et al.,
2023) is used to characterize UTN, which is abbreviated as
MUL-UE. The model can get the distribution of traffic flow in
the UTN, which accommodates both GVs and EVs, considering the
transfer of traffic demand between different time periods and the
influence of EVCSs’ prices.

The specific form and comprehensive explanation of the MUL-
UE model are detailed in Appendix A. This section only provides a
concise expression.

The MUL-UE problem can be formulated as a nonlinear
complementary problem, which is called MUL-UE-NCP in this
paper. It consists of four sets of constraints:

MUL − UE −NCP:
Cons − Flow,Cons − Time,
Cons − Cost,Cons − CP

{ (1)

The constraint set Cons-Flow describes the relationship between
the traffic flow variables. The constraint set Cons-Time estimates the
travel time for different types of branch sets, and the constraint set
Cons-Cost calculates the total travel cost for vehicles, including
driving time cost, time transfer cost, and charging cost for EVs. The
constraint set Cons-CP establishes the relationship between the total
travel cost of vehicles in different paths for each O-D pair.

The MUL-UE-NCP model is in the form of a constraint set,
which can be embedded in an optimization model. It can also be
equivalently transformed into a convex optimization form (Liu
et al., 2020):

MUL − UE − CVX: minΠtap

∣∣∣∣Cons − Flow{ } (2)

where Πtap is a variable generated by the transformation process
without physical meaning. Its detailed form can be found in (Liu
et al., 2020). Both MUL-UE-CVX and MUL-UE-NCP can describe
the status of UTN, as well as obtain the traffic flow for each route.

2.3 CNO optimal pricing modeling

CNOs own charging facilities, purchase electricity from DSOs,
and provide charging services for EVs. Each operator strives to
maximize its own profits. It is assumed that a CNO can dynamically
adjust its charging service price within a certain range. For the kth
CNO, denote the number of EVCSs it owns asMk and these EVCSs

as Ψk
m, ∀m ∈ 1, 2,/,Mk{ }. The pricing model of this CNO is as

follows (Cui et al., 2023).
MUL-CNO:

max αkm,t{ } Uk
CNO � ∑

m,t

αkm,t − λk,dcm,t( )Pk,dc
m,t Δt (3)

s.t.αk,min
m,t ≤ αkm,t ≤ α

k,max
m,t ,∀Ψk

m,∀t (4)

�αt �
∑K
k�1

∑Mk

m�1
αkm,t

∑K
k�1

Mk

,∀t (5)

κt � �αt − Cbase
t

Cbase
t

,∀t (6)

d̂
rs

t,e κt( ) � d̂
rs,ori

t,e · 1 − κt · σt( ),∀t (7)
Pk,dc
m,t � xΨk

m,t
EB/Δt,∀Ψk

m,∀t (8)
xΨk

m,t
� ∑

a∈Ψk
m

xa,t,∀Ψk
m,∀t (9)

xa,t{ }( ) � MUL − UE d̂
rs

t,e κt( ){ }( ) (10)

The CNO’s goal is to maximize its total revenue from all
charging stations, as shown in (3). αkm,t, λk,dcm,t , Pk,dc

m,t are
respectively the charging price for EV, the electricity price for
EVCS and the charging power, of the EVCS m of CNO k at time t.
Constraint (4) provides the allowable range for the charging price
that the CNO can adjust within. �αt in (5) is the average price of all
CNOs in the entire network at time t. In (6), Cbase

t is the price base
value which is given in advance. κt is the deviation coefficient
between the average price and the given base value. Some EVs,
such as taxis, are price-sensitive, and their travel demand is affected
by the charging prices. Based on this, we assume that the travel
demand between all OD pairs changes linearly with κt, as shown in
(7), where σt is the influence parameter of CNO pricing on the traffic
flow, d̂

rs,ori

t,e is the initial trip demand generation rate between O-D
pairs (r,s) for EV and d̂

rs

t,e is the trip demand generation rate after
considering the impact of the charging prices. The relationship
between the charging load Pk,dc

m,t and the charging traffic flow xΨk
m,t

at
EVCS is given in (8). It is assumed that all EVs require the same
amount of charging electricity, which is denoted as EB. A feasible
method to weaken this assumption is adding more groups of EVs
(Baghali et al., 2023). Constraint (9) describes the relationship
between charging flow xΨk

m,t
at a certain EVCS and branch flow

xa,t in the UTN model.
Constraint (10) represents the UTN model, with which the

branch flow xa,t can be determined once the EV travel demand
between each O-D pair is given. Model MUL-UE can be (1) or (2).
When the model (1), i.e., MUL-UE-NCP, is employed, MUL-CNO
can be reformulated as a mixed integer nonlinear optimization
problem (Cui et al., 2021). On the other hand, when the model
(2), i.e., MUL-UE-CVX, is used, MUL-CNO becomes a bi-level
optimization problem (Cui et al., 2023).

2.4 DSO optimal pricing modeling

DSO has the ability to influence the spatial and temporal
distribution of charging loads through differentiated pricing for
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charging stations. In reference (Cui et al., 2023), the electricity sales
price to EVCS is designated as the locational marginal price (LMP)
of the distribution network. However, the current application of the
LMP method is primarily for bulk transmission networks, and it is
difficult to be implemented in distribution networks. On the other
hand, although the fixed time-of-use pricing method is widely
adopted, it lacks the flexibility to guide EVs’ charging decisions.
This paper studies the DSO’s flexible pricing strategy for charging
stations. The pricing model is formulated as follows.

MUL-DSO:

max∑
n
∑

t∈T

∑j∈Ωn
N
λnj,t Pdc,n

j,t( ) + μnj,t Pdf ,n
j,t( )

−∑j∈Ωn
N

anj pg,n
j,t( )2 + bnjp

g,n
j,t + cnj[ ]

−λLMP,n
t ∑

j∈π 0( )
Pl,n
0j,t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

s.t.

Pl,n
ij,t + pg,n

j,t − rl,nij I
l,n
ij,t � ∑

k∈π j( )
Pl,n
jk,t + Pdc,n

j,t + Pdf ,n
j,t ,

∀l ∈ Ωn
L, t, n

(12)

Ql,n
ij,t + qg,nj,t − xl,n

ij I
l,n
ij,t � ∑

k∈π j( )
Ql,n

jk,t + Qd,n
j,t ,

∀l ∈ Ωn
L, t, n

(13)

Un
j,t � Un

i,t − 2 rl,nij P
l,n
ij,t + xl,n

ij Q
l,n
ij,t( ) + zl,nij( )2Il,nij,t,

∀l ∈ Ωn
L, t, n

(14)

Il,nij,tU
n
i,t ≥ Pl,n

ij,t( )2 + Ql,n
ij,t( )2,∀l ∈ Ωn

L,∀t, n (15)
−rd,nj Δt≤pg,n

j,t − pg,n
j,t−1 ≤ r

u,n
j Δt,∀t, n (16)

Pl,n
ij,t ≥ 0,∀l ∈ Ωn

L,∀t, n (17)
0≤ Il,nij,t ≤ Ir,nl ,∀l ∈ Ωn

L,

Uf ,n
i ≤Un

i,t ≤U
r,n
i ,∀i ∈ Ωn

N, t, n
(18)

pf ,n
i ≤pg,n

i,t ≤pr,n
i ,

qf ,ni ≤ qg,ni,t ≤ q
r,n
i ,∀i ∈ Ωn

N, t, n
(19)

λmin ,n
j,t ≤ λnj,t ≤ λmax ,n

j,t ,∀j, t, n (20)
∑t∈T λ

n
j,t

T
≤ λbase,nj,t ,∀j, t (21)

Pdc,n
j,t{ } � MUL − CNO λnj,t{ }( ) (22)

It is assumed that the objective of DSO is to maximize the total
revenue across all PDNs, as denoted in (11). The subscripts n, j, and t
represent the PDN index, node index and time period index,
respectively. Ωn

N and Ωn
L represent the sets of nodes and

branches in PDN n. Pdc,n
j,t and Pdf ,n

j,t denote the charging load and
other loads. λnj,t and μnj,t represent the electricity sales prices for the
charging load and other loads in PDN, respectively. In this study,
DSO focuses only on pricing decisions for the charging load, and
thus Pdf ,n

j,t and μnj,t are fixed values. Furthermore, pg,n
j,t represents the

power of the distributed energy resource, and anj(pg,n
j,t )2 + bnjp

g,n
j,t + cnj

is the power generation cost represented by a quadratic function.∑
j∈π(0)

Pl,n
0j,t stands for the power input at the PDN’s root node

connecting with the transmission network, and λLMP,n
t is the

corresponding electricity price.
Constraints (12) to (15) represent the branch power flow

models in the form of second-order-cone (SOC) (Farivar and

Low, 2013). Constraint (16) is the generator’s ramping limit.
Constraints (17) to (20) give the lower and upper bound for
variables. Constraint (21) is the upper limit for the average of
DSO prices.

The charging load Pdc,n
j,t is influenced by the electricity price λnj,t,

as described in (22). CNO can calculate the charging load by solving
MUL-UE based on the electricity prices set by the DSO. When the
CPTS contains multiple CNOs, constraint (22) should consider the
interaction and competition of these CNOs. Moreover, the current
MUL-DSO model can be conveniently expanded to address the
uncertainty issue arising from the rapid development of renewable
energy sources. This can be done by considering the injection power
of renewable energy as a random variable and formulating an
uncertainty optimization model, such as robust optimization and
stochastic optimization.

The specific solution method will be introduced in the
next section.

3 Solution method

This section will introduce the game form among multiple
CNOs, and provide a method to solve the optimal pricing
problem. Regarding the interaction between CNOs, there are two
possible scenarios: non-cooperative and cooperative, which will be
introduced as follows.

3.1 Modeling of non-cooperative charging
pricing game

CNOs can influence the charging load by adjusting charging
prices to make EV users 1) reselect their routes; 2) reconsider
whether to travel, reflected in the variation of EV traffic demand
between different origin-destination (O-D) pairs, as shown in (7).

We denote the non-cooperative charging pricing game among
CNOs as G � (P,S,U). This game operates under a given electricity
price for EVCS determined by DSO.

Player Set P: The set of all CNOs.
Strategy Set S: For CNO k, its strategy yk � αkm,t|∀m, t{ } is the

set of charging prices for the entire periods of all charging stations it
manages. S is the set of all yk, i.e., S � yk|∀k{ }.

Utility Function Set U : For CNO k, its goal is to maximize its
operating revenue Uk. U is the set of all Uk, i.e., U � Uk|∀k{ }.

In a non-cooperative game, each player’s goal is to maximize
their benefit, and the final fixed point reached is the Nash
equilibrium (NE). Considering the complexity of the problem,
this paper solves the approximate solution of Nash equilibrium,
i.e., ϵ - Nash equilibrium (emon et al., 2008).

Definition: The ϵ- Nash equilibrium of CNOs’ charging
pricing game

For the proposed pricing game G, a strategy set is called ϵ-NE if
and only if it satisfies the following set of inequalities:

Uk y*
k, y−k*( )≥Uk yk, y−k*( ) − ϵ,∀ yk,∀k (23)
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3.2 Modeling of the cooperative charging
pricing game

Competition among CNOs may lead to worse returns for all
CNOs. A set of analysis results will be presented in Section 0,
showing that the game among CNOs exhibits the characteristic of a
prisoners’ dilemma (Lacey, 2008), i.e., there exists a non-Nash
equilibrium pricing scheme y′ that can make the revenue of all
CNOs higher than that of the ϵ-Nash equilibrium point:

Uk y′( )≥Uk y*( ),∀k (24)

Although y′ is dominant compared to y*, under the non-
cooperative game each CNO will spontaneously deviate from y′,
resulting in reduced revenue.

Therefore, CNOs may reach tacit cooperation with each other in
actual operations. For the convenience of analysis, consider the
situation where all CNOs collaborate to form a unified alliance and
call the game Gco � (Pco,Sco,Uco). It is equivalent to merging all
CNOs into one CNO, which can be solved as a special case of G.

3.3 Solution method for the optimal pricing
problems of DSO and CNOs

This paper uses the best response dynamic (BRD) method
(Fudenberg and Tirole, 1991) to solve ϵ-NE. The BRD method
updates the strategies of each member in a certain order iteratively.
At each iteration, the optimal strategy of each member is calculated
and updated with the strategies of other members unchanged. When
convergence is reached, the BRD method can yield the ϵ-Nash
equilibrium solution.

Figure 2 shows the solution framework for obtaining DSO’s
pricing strategy and ϵ-NE of CNOs’ pricing game using BRD
method. The process can be summarized as follows:

1) DSO: Solves the MUL-DSO problem to determine the prices
of electricity that it sells to the charging stations. MUL-DSO
is a multi-layer optimization problem in which the MUL-
CNO problem is embedded. Therefore, DSO needs to
simulate the decision-making behavior of CNOs when
solving the MUL-DSO. These prices are then broadcast
to the CNOs.

2) CNOs: Each CNO solves the MUL-CNO problem to
maximize its revenue based on the electricity prices set

by the DSO, without considering changes in other CNOs’
pricing schemes. CNOs solve the problem one by one.
CNOs need to submit their pricing results to the
transportation department.

3) Transportation Department: The transportation department
simulates the decision-making of EVs and calculates the EV
charging flow by solving the TAP, specifically the MUL-UE
model. Then the charging loads at all the charging stations are
estimated and provided as feedback to the DSO and CNOs.

The above process completes one iteration. Repeat this
process until the differences in the corresponding pricing
results between two consecutive iterations are less than a
preset tolerance value.

In order to ensure the feasibility of the calculation process,
the solution time and privacy protection are further considered.
It should be noted that both MUL-DSO and MUL-CNO are
multilevel optimization, with a complicated nonlinear lower-
level problem, i.e., MUL-UE. Reference (Cui et al., 2021)
converts the single-period CNO optimization problem into an
MIQP solution, and reference (Cui et al., 2023) uses the GA
algorithm to solve the MUL-CNO problem. However, these
solution methods are time-consuming, and they also mean
that the calculations by the DSO and CNOs require
information of the transportation network, making it difficult
to protect private data. To solve these problems, this paper
proposes a linear approximation method, which is called
approximation by elasticity matrix (AEM).

First, the MUL-CNO problem can be equivalently simplified to
the following form:

max αkm,t{ } Uk
CNO � ∑

m,t

αkm,t − λk,dcm,t( )Pk,dc
m,t Δt (25)

αk,min
m,t ≤ αkm,t ≤ αk,max

m,t , ∀Ψk
m,∀t (26)

Pk,dc
m,t � Pk,dc

m,t αkm,t

∣∣∣∣∀k,m, t{ }, d̂rs,ori

t,e , κt, Cbase
t , EB,Δt( ),

∀m, t
(27)

where the parameters d̂
rs,ori

t,e , κt, Cbase
t , EB,Δt are all given values.

Since the changes in the pricing of other CNOs are not considered
when solving the CNO problem shown in Figure 2, the charging load
Pk,dc
m,t is only a function of the prices of charging stations operated by

this CNO, i.e., αkm,t|∀m, t{ }. Thus, we have
Pk
t � Pk

t αk
t

∣∣∣∣∀t{ }( ),∀t (28)

where Pk
t and αkt respectively represent the vector composed of

the charging load Pk,dc
m,t and charging price αkm,t of all EVCSs at

CNO k and time t. This function is a composite function about
MUL-UE. Its accurate solution requires the entire information of
UTN and the complicated calculation of an optimization
problem. We approximate it as a linear function through the
following process:

1) Assume that the relationship between Pk,dc
m,t and αkm,t{ }

is linear;
2) Assume that the charging price at time interval t has a small

impact on the charging load at other time intervals so that we
can ignore it without obvious accuracy loss. Then we have:

FIGURE 2
Iterative method for DSO&CNOs pricing.
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Pk
t � Ek

t α
k
t + Pk,0

t (29)
where the matrix Ek

t and vector Pk,0
t are the parameters generated

by linearization. Ek
t represents the impact of charging price on

charging demand, so it is called the price elasticity matrix of
demand of CNO.

CNO can use the tangent at the pricing point in the previous
iteration to approximate function (28). The tangent line can be
obtained numerically as follows:

Pk,0
t � Pk

t α̂k
t( ) (30)

ekm,t � Pk
t α̂k

t + Δαm( ) − Pk
t α̂k

t( )( )/Δαm,∀m (31)

where α̂kt is the pricing of CNO k in the last iteration, and ekm,t is
the mth column of Ek

t . The mth element of vector Δαm is Δαm,
and the other elements are all 0, meaning that only the charging
price of EVCS Ψk

m changes by a small amount. Solving Ek
t and

Pk,0
t requires to solve the MUL-UE problem for m+1 times.
For DSO, a similar idea can be adopted. MUL-DSO can be

simplified and approximated as follows:

max Revenue DSO( ) − ϖ∑
t
λt − λ̂t
���� ����2 (32)

12( ) ~ 21( ) (33)
Pdc
t � Ftλt + Pdc,0

t ,∀t (34)
where Revenue(DSO) is the objective in (11), and ϖ∑t‖λt − λ̂t‖2 is
the penalty for DSO prices’ change with a hyperparameterϖ and ‖ · ‖
representing the norm of a vector. Pdc

t and λt are vectors composed
of Pdc,n

j,t and λnj,t,∀n, j ∈ Ωn respectively. λ̂t is the price vector in the
last iteration.Ωn is the set of nodes where all EVCS are located in the
PDN n. The matrix Ft and vector Pdc,0

t are the parameters generated
by linearization. Ft is called the price elasticity of demand
matrix of DSO.

It requires lots of calculation to get the tangent line for DSO, so
we use the least squares method to estimate Ft and Pdc,0

t through the
charging load data fed back by the transportation department during
the iterative process, equivalent to linear approximation
using secants:

min
Ft ,P

dc,0
t

∑γ
i�1
wi Pdc

t( )i − Ft λt( )i − Pdc,0
t

����� �����2
+∑

i,j

W ij Ft( )i,j( )2
s.t. − Ftd0

(35)

where γ is the index of current iteration; wi is the weight of the data
error in ith iteration; (·)i represents the data in the ith iteration;W ij

is the penalty coefficient for the (i, j) element of Ft. −Ftd0 means
that −Ft is a semidefinite matrix to ensure that the optimization
problem (32) is convex, increasing the numerical stability
of solution.

The estimation method described in (35) cannot work without
prior data. Therefore, before the formal iteration begins, a
preparation process should be set up in which the DSO performs
several trial pricing calculations (simple random pricing is enough to
achieve the expected effect) and gets corresponding charging load to
accumulate initial data.

The complete process using AEM method is outlined in
Algorithm 1.

Input: Basic parameters of UTN and PDN, traffic demand

forecast d̂
rs
t,v, tolerance for iteration termination ε>0,

maximum number of iterations Nmax, number of DSO

trial pricing NDSO

Output: Optimal pricing of DSO λnj,t{ }, and ϵ − NE of CNOs’

charging pricing game y* � αkm,t{ }
1 Initialization: Set t = 0 and the convergence flag

Fcon � False.

2 for iteration = 1: Nmax

3 DSO pricing: If iteration <NDSO: the current stage

is trial pricing stage and DSO randomly sets

prices; otherwise, λnj,t{ } is calculated according

to (32)~(34). Prices are then informed to each CNO.

4 for CNO k,∀k ∈ K, do

5 CNO updates elasticity matrix: CNO estimates

Ek
t and Pk,0

t according to (30) and (31). The

calculation requires the cooperation of

the transportation department to solve the

MUL-UE.

6 CNO pricing: CNO k update λnj,t{ }, calculate

αkm,t{ } through (25), (26) and (29).

7 end for

8 TAP solution: After summarizing all CNO prices, the

transportation department solves MUL-UE and feeds

back the charging load to DSO.

9 DSO updates elasticity matrix: DSO estimates Ft

and Pdc,0
t according to (35) based on historical

pricing and charging load.

10 if ‖Δλ‖/‖λ‖< εand ‖Δα‖/‖α‖< ε

11 set Fcon � True

12 break

13 end if

14 end for

15 if Fcon �� True

16 return λnj,t{ }, αkm,t{ }
17 else

18 Report that the calculation has not converged

and return prices in the last iteration.

19 end if

Algorithm 1. Solution to the Pricing Problem of DSO and CNOs in CPTS

Based on AEM Method.

FIGURE 3
Transportation network 13 node test system.
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The challenging multilayer optimization problems are simplified
as single-layer optimization problems by linearization, eliminating
the requirement by DSO and CNOs for additional information
about UTN as well as reducing the computational burden. It
is important to note that the accuracy of the proposed AEM
method relies heavily on the linearity of the inner function.
However, alternative approximation methods can be explored if
the inner function becomes more nonlinear, such as second-order
approximation or neural network fitting, which can also reduce
computational requirements and ensure privacy protection.

4 Case studies

4.1 Simulation setup

The proposed method is tested on a CPTS comprising a 13-node
road network and two 18-node distribution networks.

The 13-node Nguyen-Dupuis road network system (Fudenberg
and Tirole, 1991) (as depicted in Figure 3) is modified. Nodes 9, 12,

7, and 10 are each equipped with an EVCS. The original traffic
demand generation rates are presented in Table 1, with a base value
of 100 vehicles per hour. Considering six time intervals, the traffic
demand is d̂

rs,ori

t,v � d̂
rs,ori

v × βt, with coefficient factors denoted as β =
[0.7, 0.9, 0.8, 0.7, 1.0, 0.8]. The time shift cost for travel demand ctitj,
i.e., the cost increment for drivers to change their trip starting time,
is set to 3|ti − tj| $/vehicle. The average electricity demand of EVs is
set toEB � 45 kWh. The cost of travel time is established asω = 10$/h.
The impact parameter of CNO pricing on traffic flow, i.e., σt, is
set to 1.5.

There are two distribution networks operated by a single DSO.
The parameters of the distribution network originate from the 18-
node distribution test system of MATPOWER (Zimmerman et al.,
2011), as illustrated in Figure 4. Each PDN is equipped with
distributed generators. The electricity prices for EVCS, set by the
DSO, are restricted within [80, 180] $/MWh, with a maximum
average value equal to 120$/MWh.

There are two CNOs in the case. The EVCSs located at nodes
7 and 9 of the UTN are managed by CNO 1, while CNO 2 manages
the EVCS at the other two nodes. The EVCSs operated by the CNOs
are across different PDNs. The two EVCSs of the CNO 1 are in PDN
1 (node 4) and PDN 2 (node 6), respectively. The same is true for
CNO 2. The charging price range of the CNOs is set to [150,
250] $/MWh.

In terms of MUL-DSO, the penalty coefficient ϖ is set to 0.2, and
the number of DSO trial pricing NDSO in Algorithm 1 is set equal
to 5. The weight of historical data in (35) is set to

wi �
10 − γ − i( ),
1 − 0.1 γ − 10 − i( ),
0.1,

i≥ γ − 9
γ − 9> i≥ γ − 19
otherwise

⎧⎪⎨⎪⎩
The maximum number of iterations Nmax is 30, and the

convergence tolerance ε is 0.005.
The simulations are carried out on MATLAB 2023 (Mathews

et al., 2004), the optimization model was established through

TABLE 1 Travel demand in the transportation network.

O-D pair GV trip rate d̂
rs,ori

g (p.u.) EV trip rate d̂
rs,ori

e (p.u.)

(1,2) 2.33 1.0

(1,3) 2.33 1.0

(4,2) 2.33 1.0

(4,3) 2.33 1.0

(5,3) 1.17 0.5

(6,2) 1.17 0.5

FIGURE 4
Radial 18-node distribution system.

TABLE 2 Comparison of AEM and GA methods in single CNO optimization.

Method Revenue of CNO 1 ($) Solving time Iterations Parallel computing MUL-UE solving times

AEM 8570 2 min51 s 3 No 16

GA 8566 28 min 30 Yes 516

8580 3 h44 min 200 Yes 3440
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YALMIP, and solved through MOSEK, GUROBI and FMINCON
solvers. The computer’s CPU is i7-13700 and the memory is 32 GB.

4.2 Method validity test

First, the effectiveness of the AEM method proposed is
tested. This section will focus on analyzing the results using
AEM at a specific CNO to illustrate the performance of
this method.

Set the following simplified scenario: DSO uses LMPs as its
electricity sales prices, on which the CNOs’ pricing has almost
negligible impact. CNO 2 remains its prices unchanged, and
CNO 1 solves the MUL-CNO problem to optimize pricing and
maximize its revenue. Different methods can be employed to solve
the MUL-CNO problem, and their performance can be evaluated by

comparing the objective function value obtained from the same
initial point.

The solution results and related performances of the AEM
method and genetic algorithm (GA) are shown in Table 2.

The first two rows in Table 2 represent the results when the stop
criterion 0.005 is met. It can be seen that the AEM method requires
only 10% of the time compared to the GA method, while better
revenue is achieved. Due to its reliance on a large number of random
attempts in each iteration, the GA method requires a significantly
larger number of MUL-UE solutions than the AEM method.
Moreover, parallel computing acceleration is necessary for GA to
handle the extensive computational load; otherwise, the time needed
will increase substantially.

The GA algorithm is set to iterate 200 generations to obtain the
results presented in the third row of Table 2. At this point, the GA
method has conducted thousands of searches, and the solution can
be considered approximately optimal. The revenue obtained in this
case is $8580, and the AEM method achieves a result that is only
0.1% lower than this value, indicating a very close approximation to
the optimal solution.

Next, it’s necessary to demonstrate the accuracy of the proposed
method for the NE solution under multi-CNO games. DSO still uses

TABLE 3 Comparison of AEM and GA methods in multi-CNOs NE calculation.

Method Revenue ($) Solving time Iterations Parallel computing MUL-UE solving times

CNO 1 CNO 2

AEM 7554 7033 11min 10 No 51

GA 7585 7008 1h1min 50 Yes 860

FIGURE 5
Convergence of key variables in Algorithm 1.

FIGURE 6
Changes of average pricing of DSO and CNOs.

FIGURE 7
Revenue changes of DSO and CNOs.

TABLE 4 The revenue matrix for CNOs.

Pricing scheme CNO 1 − A CNO 1 − B

CNO 2 − C (4791,4283)* (4449,4578)

CNO 2 − D (5228,4068) (4869,4316)

* The revenue ($) for CNO, 1 and 2, respectively.
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LMPs as its electricity sales prices. CNO 1 and CNO 2 solve the
MUL-CNO problem iteratively to optimize pricing. Table 3 shows
that the AEMmethod has a deviation of less than 0.5% from the GA
method while requiring only 15% of the time.

4.3 Simulation results under non-
cooperative game between CNOs

Algorithm 1 is used to solve the DSO and CNOs pricing problems
under a non-cooperative game between CNOs. The convergence of
Algorithm 1 is observed first. Figure 5 illustrates the variations in key
variables, λ, α and xΨ which respectively represent the status of DSO,
CNO and UTN over the iterations. Δx has a definition that
Δx � ‖x(k) − x(k−1)‖/‖x(k−1)‖. In this figure, iteration 0 represents
the last trial pricing of DSO, and the subsequent iterations are
formal iterative calculations. The values shown in the figure exhibit
a decreasing trend, indicating convergence towards the optimal values.
After 12 iterations, Δα and Δλ become less than 0.005, meeting the
specified convergence accuracy requirements. The total computation
time required for Algorithm 1 is 13 min 24 s.

Figure 6 shows the changes of average pricing of DSO and
CNOs. It demonstrates that in this case, the DSO tends to increase
the average electricity price, gradually reaching $120/MWh, which is
the upper limit. As the electricity prices increase, the CNOs change
their prices accordingly, making the final average price end up at
$238/MWh, but it’s still below the upper limit of $250/MWh. This
indicates that the highest price is not necessarily the optimal solution
for CNOs: although each CNO may have room for price increases,
such increases will result in a reduction in EV charging load. At this
point, the impact of load reduction outweighs the revenue increase,
leading to a decrease in revenue instead.

The revenue changes of the DSO and CNOs are shown in Figure 7.
The revenue of DSO increases significantly with price optimization,
experiencing a growth of 23.9%. However, the revenue of the CNOs is
negatively impacted, with a decrease of 16.5% and 13.5% for the two
CNOs. It is worth noting that the revenue of the CNOs does not follow a
strictly monotonic trend during the iteration process, but instead
exhibits slight fluctuations. This can be attributed to several factors.
First, the DSO has not yet reached an equilibrium state during the
iteration, and its pricing changes affect the power purchase cost for the
CNOs, which may vary across different CNOs. Second, the CNOs are
competing with each other, and different CNOs may have relative
advantages at different stages of the iteration process.

It’s interesting to note that the phenomenon of the prisoners’
dilemma emerges in CNOs’ non-cooperative game. Table 4 shows
the revenue matrix when two CNOs adopt different pricing strategies
while the DSO’s electricity price remains unchanged, staying at the
point where Algorithm 1 converges. The (A, C) pricing scheme

represents the pricing of an ϵ-Nash equilibrium for CNO 1 and
CNO 2 obtained from Algorithm 1, and (B, D) represents a non-
Nash equilibrium pricing. Upon examining the revenue matrix, it is
evident that under the (B, D) pricing scheme, both CNOs would obtain
higher revenue compared to (A, C). However, according to the
definition of Nash equilibrium, the two CNOs will eventually
stabilize at the (A, C) point. This means that although each CNO
desires to maximize its returns, they ultimately achieve suboptimal
results due to competition. In this context, there is a tendency for them
to establish cooperation and form a cooperative game.

4.4 Simulation results under cooperative
game between CNOs

Table 5 shows the comparison of the benefits of each participant
when the CNO cooperates or competes. The results show that under
the cooperative game, both CNOs 1 and 2 experience an increase in
total revenue by establishing cooperation. Additionally, the revenue
of the DSO also increases simultaneously without being squeezed
out by the CNOs.

It can be explained that the cooperation between the CNOs
eliminates the need for intense competition, leading to a reduction in
the charging price to EV owners. As a result, the number of EVs
traveling in UTN increases, as indicated by (7), and so does the total
charging load. When the total charging load rises, both the DSO and
CNOs have the potential to gain more revenues.

The above results indicate that the formation of a monopoly
alliance among CNOs can possibly have a positive impact on each
side: the revenues of DSO and CNOs increase, and EV owners can
benefit from lower charging prices. In this case, the cooperation
among CNOs may be encouraged. However, such cooperation may
not always be beneficial to all participants, and its overall impact on
the entire system needs to be analyzed deeply in practice.

5 Conclusion

This paper studies the impact of EVs’ charging demands on
operations of both the power system and transportation network. A
coupled power-transportation networkmodel is established and a flexible
pricing method for DSO is proposed to guide charging load to suitable
charging stations. The paper also develops a game model for different
CNOs and iteratively obtains the approximate Nash equilibrium solution
of the game using the best response dynamic method. To make the
complex multi-layer optimization problem trackable, a linear
approximation method using elasticity matrix is proposed.

Simulation results show that for the MUL-CNO problem, the
elasticity matrix approximation method only takes 10% of the time

TABLE 5 Comparison between cooperative and non-cooperation game.

DSO
revenue/$

CNO
1 revenue/$

CNO
2 revenue/$

Average price of
CNOs/($/MWh)

Total charging
load/MWh

Non-
cooperative

6928 4791 4283 242 77.6

cooperative 7829 9589 223 91.1
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used by the genetic algorithm, while delivering high-quality solution
results. The simulation results illustrate the prisoner’s dilemma
phenomenon in non-cooperative games between CNOs, and
analyze the tendency of CNOs to reach cooperation.

Future work will explore other goals of the DSO such as peak
shaving and ramp power reduction. In addition, the paper doesn’t
consider factors such as the EV owners’ choice preferences and
incomplete information, which will be studied in future research.
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Appendix A

This paper uses the multi-period mixed-vehicle-type UE,
abbreviated as MUL-UE (Cui et al., 2023):

MUL − UE − NCP:
Cons − Flow,Cons − Time,
Cons − Cost,Cons − CP

{ (A1)

where the constraint set on the traffic flow of each branch in the
transportation network, i.e., Cons-Flow, is as follows:

qrs
v, ti tj( ) ≥ 0,∀ti, tj,∀v ∈ g, e{ } (A2)

∑
tj∈T

qrs
v, titj( ) � d̂

rs

ti ,v
,∀ti,∀v ∈ g, e{ } (A3)

qrs
v, titj( ) � 0, if ti − tj

∣∣∣∣ ∣∣∣∣≥M max (A4)
frs
ρv,tj

≥ 0,∀ρ ∈ ϱrsv ,∀v ∈ g, e{ } (A5)
∑
ρ∈ϱrsv

frs
ρv,tj

� ∑
ti∈T

qrsv, ti tj( ),∀tj,∀ r, s( ),∀v ∈ g, e{ } (A6)

xa,t � xbase
a,t + ∑

v∈ g,e{ }
∑
rs

∑
ρ∈ϱrsv

frs
ρv,tδ

rs
aρv,

∀a ∈ TA,∀t ∈ T
(A7)

The meanings of variables are shown below:
(r, s) is the Origin-Destination (O-D);
d̂
rs,ori

ti ,v
is the initial trip demand generation rate between O-D

pairs (r, s) for vehicle type v;
d̂
rs

ti ,v
is the trip demand generation rate updated after the prices of

CNOs change;
qrsv,(titj) is the trip demand between O-D pairs (r, s) for vehicle

type v shifted from time interval ti to tj;
Mmax is the maximum adjustment of trip time;
ρrsg/e(ϱrsg/e) is the path (path set) that GV/EV can choose for the

trip (r, s);

frs
ρg/e,tj is the GV/EV traffic flow on the path ρrsg/e during time

interval tj; a is the branch in the UTN;
xa,t is the total traffic (charging) flow on the branch a during

time interval t;
xbase
a,t is the base traffic (charging) flow on the branch a during

time interval t;
δrsaρv ∈ 0, 1{ } is the association between branch a and road ρ for

vehicle type v between (r, s). δrsaρv � 1 indicates that road ρ passes
through branch a, otherwise there is no association between ρ and a;

TR/C/B
A represent the regular/charging/bypass branch sets in the

UTN respectively, and the total branch set in the road network UTN
is TA � TR

A ∪ TC
A ∪ TB

A;
The constraint set Cons-Flow describes the relationship between the

branch trafficflowxa,t and the travel demand d̂
rs

ti ,v
for each tripO-Dpair (r,

s). Constraints (37)-(38) means that the travel demand can be transferred
between different time intervals with the total traffic demand unchanged,
such as from traffic congestion period to others. Themaximumadjustment
of trip time is set asMmax by constraint (39). Constraints (40)-(41) ensure
that the total traffic flow demand can be satisfied by the traffic flows of
different paths. Constraint (42) calculates the branch traffic flow, which
consists of two parts: basic traffic flow and elastic traffic flow.

In this paper, branch flow xa,t appears in constraint (10) and is
an important variable used by DSO and CNO to calculate the
charging powers at the EVCSs.

The functions of other constraint sets are as follows: The constraint
set Cons-Time estimates the corresponding branch travel time under the
given branch flow rate for the regular branch setTR

A, the charging branch
set TC

A and the bypass branch set TB
A respectively. The constraint set

Cons-Cost calculates the total trip cost for a vehicle of type v ∈ {g, e} that
adjusts its travel demand (r, s) from period ti to period tj. Finally, the
constraint set Cons-CP uses complementary constraints to determine
the total travel cost of GV/EV for each O-D pair. Interested readers can
refer to references (Liu et al., 2020; Cui et al., 2023).
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