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In the fault diagnosis, the problem of insufficient fault samples and unbalanced
number of fault category samples can occur. In this paper, we used Glowmodel to
supplement the number of wind turbine bearing fault samples to enhance the
diagnosis accuracy when fault samples are insufficient and the number of fault
category samples is unbalanced. Meanwhile, we established a multi-input fault
diagnosis model to achieve multi-location andmulti-category fault diagnosis, and
constructed some experimental under different scenarios. We took into account
the noise interference in the actual operation and conducted comparison
experiments under different scenarios, and the experimental results verified the
new algorithm had good fault diagnosis effect.
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1 Introduction

In today’s industrial and civil domains, the utilization of networked autonomous
systems, including power systems and mobile sensor networks, has emerged as an
indispensable asset (Fang et al., 2023). Wind energy has been widely used and has wide
developing prospect (Shiyao et al., 2023). Under the background of China‘s goal of carbon
peak and carbon neutrality, the wind power industry has even greater room for development
(Heling and Yan, 2020). According to relevant statistics, the gross capacity of global wind
power will reach 837 GW in 2021, which is 93.6 GW more than in 2020, indicating that the
ratio of wind power generation in the gross generation will be further increased.

With the continuous improvement of installed capacity, the operation maintenance of
wind generators has attracted wide attention. Because of the harsh operating condition, the
wind generator causes frequent failures, but their operation and maintenance are not
convenient. Compared with other components in the driving chain of wind generator,
the bearing is one of the important parts with high failure probability, and its operating state
often immediately influences the work of the entire machine (Chen et al., 2016).

Vibration analysis has been the most popular method for mechanical failure diagnosis.
The traditional method based on vibration signal analysis mainly extracts fault features from
the gathered signals and then uses different algorithms to classify the fault features. Bearing
vibration signals usually exhibit time-varying, nonlinear and non-smooth signals (Song et al.,
2022) and are easily disturbed by noise during the acquisition process, which leads to
difficulties in extracting fault features for different fault scenarios of bearings. To address this
problem, many scholars have achieved a series of research results. To address the difficult
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trouble of extracting fault feature accurately, reference (Yongsheng
et al., 2022) proposed a feature extraction method of adaptive
empirical wavelet transform (AEWT) with singular value
decomposition (SVD), and combined with kernel limit learning
machine (KELM) to achieve failure detection. Reference (Liu et al.,
2021) applied acoustic emission (AE) analysis to filter acoustic
emission signals and extract weak fault signals to achieve failure
detection of industrial-scale slow wind turbine blade bearings.
Reference (Zhang et al., 2020) present a weak fault diagnosis
method combining variational modal decomposition (VMD) and
maximum correlated kurtosis deconvolution (MCKD), which can
adaptively improve the impact com-ponents in the weak fault.
Reference (Zheng et al., 2019) proposed a fault feature extraction
method of the vulnerable parts based on variational mode
decomposition, and used the deep belief net-work to warn the
fault. In the reference (Wang et al., 2021), Adaptive Chirp Mode
Decomposition was ap-plied to the bearing fault diagnosis, and the
transient frequency selection strategy guided by the l-kurtosis
fluctuation spectrum and the weighting factor determination
strategy guided by the cuckoo search algorithm (CSA) were used
for the defect identification of bearings. The realization of noise
reduction, filtering, feature extraction and other processes in
traditional fault diagnosis methods depends on specialized
knowledge and la-bour power. The quality of extracted features
may affect the effectiveness of failure detection. And when complex
faults are found, feature extractionmay be difficult.With the ad-vent
of the information age and the advancement of computer
technology, the application of artificial intelligence deep learning
has gradually replaced the traditional method of manually extracting
fault features, saving a lot of manpower and slowly weakening the
importance of expert experience.

The emergence of deep learning algorithms has provided new
ideas for fault diagnosis. Compared with traditional methods, deep
learning can achieve “end-to-end” fault diagnosis. In the case of
limited fault samples, the fault diagnosis methods based on deep
learning algorithm have greater advantages. For this problem, many
scholars have achieved a series of research results. Reference (Pu
et al., 2020) proposed a deep enhanced fusion network, which uses
experimental vibration data for gearbox fault diagnosis. Reference
(Yu et al., 2021) proposed a new fast deep graph convolutional
network technique for wind turbine gearbox fault diagnosis.
Reference (Su et al., 2022) present a modified gear failure
detection method based on generative adversarial networks for
unbalanced data sets with better capability in the generation,
classification and diagnostic accuracy of fault features under
unbalanced data sets. Reference (Zhang et al., 2021) proposed
signal augmented self-learning learning network for generator
fault diagnosis with good robustness in noisy operating
environment. Reference (Huang et al., 2020) proposed an
improved label-noise robust auxiliary classifier generative
adversarial network driven by the limited data, which is able to
keep good diagnostic efficacy of main bearing failure detection in
different scenarios.

At present, deep learning algorithms have been increasingly
used in failure detection. In terms of fault sample generation, VAE
and GAN are more applied, and flow model is less applied. We have
used VAE and GAN models in their previous studies to achieve
multi-category bearing fault diagnosis using a multi-signal fusion

approach. In this study, based on the previous research, different
models and simultaneous input of multiple signals are used to
achieve multi-category bearing fault diagnosis.

In the actual operation of the wind generator, the probability of
bearing failure is relatively low and the probability of each category
of failure is not the same. The number of samples that can be
collected for each type of fault is different and limited, so in wind
generator bearing failure diagnosis, the problem of insufficient fault
samples and unbalanced number of fault category samples will
occur. To address these problems, the following contributions are
made in this study.

(1) The number of fault samples is supplemented by using the Glow
model to learn the fault characteristics of each bearing fault
category to generate fault samples.

(2) A multi-input bearing fault diagnosis model is established by
convolutional neural network to achieve effective diagnosis of
multi-location and multi-category bearing faults.

(3) After obtaining the fault samples generated by the GLOW
model, we construct the fault sample sets under different
scenarios, considering the insufficient samples, unbalanced
number of samples and noisy scenarios in actual operation.
The diagnostic accuracy of these sample sets in the multi-input
fault diagnosis model can prove the effectiveness of the
proposed algorithm.

1.1 Flow-based models

The common sampling-based generative models have three
types: Variational Auto-encoder (VAE), Generative Adversarial
Network (GAN), and Flow-Based Models (Zhang et al., 2021).
VAE can naturally generate low-dimensional space, approximate
the sample distribution, and generate new samples easily. However,
the gradient is difficult to calculate in the VAEmodel, and it can only
optimize the lower boundary line of the edge likelihood function.
The performance is generally inferior to that of GAN. GAN is good
at generating samples, sampling to get new samples is easy, but the
training of the model is difficult and the stability is poor. GAN
cannot be used to get the sample distribution, and it is easy to have
model collapse. Compared with the above two models, Flow-based
Models can get the sample distribution and also the useful hidden
space, and the training is very easy.

Flow Based Models are probabilistic generative models based on
reversible transformations in which both sampling and density
evaluation can be valid and accurate. The probabilistic generative
model is a model used to learn the distribution of random variable X
from a pile of sample data xi{ }Ni�1.

There are real sample data X and random variable Z, where Z
obeys the known simple prior distribution π(z), and the sample data
X obeys the complex distribution p(x). If there is a transformation
function f that satisfies the mapping from Z to X.

f : Z → X

Every sampling point in π(z) have a corresponding sample
point in p(x) in order to obtain generated sample. Although most
distributions in the real world are more complex than Gaussian
distributions, Gaussian distributions are often used in latent variable
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generation models to calculate derivatives more easily and
effectively.

The flow model generation process can be defined by the
following formula (Dinh et al., 2014):

z ~ π z( )
x � gθ z( )

In the above equation, z is the hidden variable; π(z) is the
sample distribution of the hidden variable z; gθ is an invertible
function, so the hidden variable z can be interpreted as
z � fθ(x) � g−1

θ (x), where fθ consists of a series of transformed
functions: fθ � f1+f2+ . . .+fK. The relationship between x and z
can be expressed as:

x→f 1 h1→
f 2 h2/→f K z

This sequence of reversible transformations is known as the
Normalizing Flow (Rezende and Mohamed, 2015). In
Normalizing Flow, the prior distribution π(z) of random
variables Z usually chooses Gaussian distribution, so that the
model can be used for better and more powerful distribution
approximation. Normalizing Flow can transform simple
distribution into complex distribution by using a series of
reversible transformation functions, and then the new
variables are repeatedly replaced based on the variable
substitution theorem, and finally we can get the probability
distribution of the target variable. From the above equation,
the model probability density function for a given sample data x
can be expressed as:

log pθ x( ) � log pθ z( ) + log det
dz
dx

( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
� log pθ z( ) +∑K

i�1
log det

dHi

dHi−1
( )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

It is easier to obtain the exact log-likelihood of the input through
the Normalizing Flow. The training loss function of the generation
model is the negative log-likelihood on the input data set:

L � − 1
D
∑D
i�1
log p Xi( )

The generator of the flowmodel is subject to some mathematical
constraints, which leads to its own expression ability may be
insufficient. Therefore, it is generally necessary to stack multi-
layer networks to get a generator, which is also the origin of the
name ’ flowmodel ’. Because it requires the same dimension of input
and output, the calculation is very large.

1.2 Glow model

The Glow model is a simple generative normalized flow model
using reversible 1 × 1 convolution, improving on NICE (Dinh et al.,
2014) and Real NVP (Dinh et al., 2016). The Glow model consists of
a series of repetitive layers named scale. Each scale consists of a
squeeze function and a flow step, and each flow step contains three
parts, Activation Normalization Layer (ActNorm Layer), 1 ×
1 Convolution Layer and Affine Coupling Layer (van de Schaft

and van Sloun, 2021), and the flow step is followed by a splitting
function. Figure 1 shows one step of Glow.

Figure 2 shows the multi-scale structure. The splitting function
divides the input into two equal parts in the channel dimension.
One-half goes to the subsequent layer and the other half goes to the

FIGURE 1
One step of Glow.

FIGURE 2
Multi-scale architecture.
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TABLE 1 The fault sample set.

Serial number Fault category Fault location Damage diameter (inches)

1 normal

2 fan end fault inner ring 0.007

3 0.014

4 0.021

5 rolling element 0.007

6 0.014

7 0.021

8 outer ring 0.007

9 0.014

10 0.021

11 drive end fault inner ring 0.007

12 0.014

13 0.021

14 rolling element 0.007

15 0.014

16 0.021

17 outer ring 0.007

18 0.014

19 0.021

FIGURE 3
The normalization and reshaping process of the data.
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loss function. The splitting is done to reduce the effect of gradient
disappearance, which occurs when the model is trained in an end-
to-end mode.

The ActNorm Layer is used for activation normalization, similar to
batch normalization, which uses the scale and deviation parameters of
each channel to affine transform the activation. Initializing these
parameters makes the posterior behavioral actions of each channel
have zero mean and unit variance for a given initial small batch of data.
This is a form of the data-dependent initialization (Salimans and
Kingma, 2016). After initialization, the scales and biases are
considered as regular trainable parameters independent of the data.

The 1 × 1 invertible convolution layer is used to invert the ordering
of the channels, where the weight matrix is initialized to a random
rotation matrix and the number of input and output channels of the
convolution layer is the same. The overall computation can be
simplified by the simplified computation of the matrix.

The affine coupling layer creates a flexible and easy-to-handle
bijection function by accumulating a series of simple bijections.
In each simple bijection, some input vector is updated by utilizing
a simple inverse function, but it rests with the other input vector
in a complex way. The affine coupling layer can be divided into
three parts: Zero initialization, Split and concatenation, and
Permutation.

1.3 Advantages of glow model

Compared to other deep learning generative models, the Glow
model has the following advantages:

(1) Exact potential variable inference and log-likelihood
evaluation. In reversible generative models like Glow, the
exact inference of potential variables can be achieved without
approximation, and the exact log-likelihood of the data can
also be optimized.

(2) Flow-based generative models such as Glow are effective in
parallelizing inference and synthesis.

(3) There are potential spaces useful for downstream tasks, and the
hidden layers of autoregressive models have unknown marginal
distributions (Kingma and Dhariwal, 2018), making it difficult
to perform effective data manipulation on them.

(4) A certain amount of memory is required to compute the
gradient in reversible neural networks.

2 Multi-signal input fault diagnosis
model for wind turbine bearings

2.1 Fault sample construction

The wind generator bearing mainly consists of outer ring, inner
ring, rolling element and cage. One end of the bearing is connected
to the wind turbine blade, and the other end is connected to the wind
turbine drive system. The inner ring is connected to the shaft, and
the outer ring is connected to the cage. The rolling element is the key
component of the bearing rotation. Therefore, the inner ring, outer
ring and sphere may fail. During operation, the main bearing area is
easily affected by external factors and causes failure. This experiment
data is from of the bearing data center of Case Western Reserve
University (CWRU) (Loparo, 2012). The experimental sample set
was selected from the drive end and fan end bearing failure data at
12 K sampling frequency with a motor load of 2 hp and an
approximate motor speed of about 1750 r/min, and the collected
data contained fan and drive end vibration data. The faults were
classified into 19 categories according to the fault category (normal,
fan end fault, drive end fault), fault location (inner ring, rolling
element, outer ring) and damage diameter (0.007 inches,
0.014 inches, 0.021 inches), as shown in Table 1.

Because the design of one-dimensional convolution network is
difficult and easy to lead to over-fitting (Xiao et al., 2019), this paper
chooses to convert the one-dimensional timing signals from the fan end
and the drive end of the wind turbine bearing into twodimensional
image signals for fault sample generation and fault diagnosis through a
two-dimensional convolutional network, respectively. Based on the
bearing rotation speed and sampling frequency, approximately
411 points can be sampled for each rotation of the bearing. In order
to ensure the integrity of information and the effectiveness of fault
features and to mine more detailed features, 784 sampling points in
about 2 rotation cycles are selected as the pixel points of the 2D
grayscale image with the image format of 28 × 28. The original 1D time-
domain signal needs to be normalized before the sample construction.
The data processing is shown in Figure 3.

2.2 Multi-signal input fault diagnosis model

For the purpose of realizing multi-category bearing fault
diagnosis, this paper presents a new fault diagnosis model for

FIGURE 4
Fault diagnosis process.
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wind turbine bearings with multiple image inputs based on
convolutional neural networks. The convolution layer of the
convolutional neural network can extract the local part of the
image, which greatly improves the accuracy of the model. For
adding some noise to the data set or disturbing the input to a

certain extent, the convolutional neural network can still
perform good recognition and analysis. Moreover, the
convolutional neural network can effectively reduce the over-
fitting of the model, thereby improving the generalization
ability of the model. Convolutional neural network has the
advantage of fast convergence of back propagation algorithm,
and can train the depth model in a short time. In general,
convolutional neural networks have many advantages. For

FIGURE 5
Multi-signal input fault diagnosis model.

TABLE 2 Quality evaluation of generated fault samples.

Noise intensity (dB) MMD PSNR FSIM

0 drive end signal 0.0915 8.0023 0.9612

fan end signal 0.1005 7.9099 0.9492

20 drive end signal 0.0985 7.6673 0.9746

fan end signal 0.1002 7.6032 0.9590

30 drive end signal 0.0989 7.8730 0.9632

fan end signal 0.1060 7.7428 0.9505

40 drive end signal 0.0891 7.6675 0.9624

fan end signal 0.1005 7.8679 0.9497

TABLE 3 Comparison of sample generation quality.

Model MMD PSNR FSIM

GLOW Drive End 0.0915 8.0023 0.9612

Fan End 0.1005 7.9099 0.9492

GAN Drive End 0.1099 7.2302 0.9726

Fan End 0.1109 7.0293 0.9492

VAE Drive End 0.1059 6.3795 0.9605

Fan End 0.1223 6.0977 0.9301

FIGURE 6
Fault diagnosis results for different sample sets under sample
imbalance scenario.
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image, audio and other fields, the advantages of convolutional
neural networks are more obvious. However, convolutional
neural networks also have their limitations, such as large
amount of model calculation, complex training data, etc., so
in practical applications, it is necessary to select the appropriate
model according to the actual situation.

The single input fault diagnosis model can only diagnose one
position of the wind turbine bearing fault. However, the multi-signal
input fault diagnosis model can learn the fault features of multiple
image inputs to achieve the function of fault diagnosis. The model
can diagnose the faults of multiple positions of the wind turbine

bearing according to the vibration data of multiple different
positions. In contrast, the multi-signal input fault diagnosis
model can help improve the convenience of wind turbine
operation and maintenance, effectively save operation and
maintenance costs, and improve the economic benefits of
wind farms.

Figure 4 depicts the structure of the multi-image input fault
diagnosis model. The model input is 2 grayscale images of size 28 ×
28, each input is convolved by multiple convolution layers, and the
output is connected to a fully connected layer. The model uses a
phase multiplication layer to multiply the inputs from two fully

TABLE 4 Small sample set.

Sample set The number per fault class The total number of samples

6 1,000 19,000

7 900 17,100

8 800 15,200

9 600 11,400

10 400 7,600

FIGURE 7
Fault diagnosis results for the original sample set and the supplemental sample set in the sample shortage scenario.

TABLE 5 Unbalanced sample set.

Sample set Unbalanced sample classes The total number of samples

1 38,000

2 2, 12 36,000

3 3, 7, 13, 15 34,000

4 4, 6, 9, 11, 16, 18 32,000

5 2, 5, 8, 10, 11, 14, 17, 19 30,000
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connected layers. The model output is a classification layer with
softmax activation function.

In this study, the two-dimensional images of vibration signals at
the fan end and the drive end of the wind turbine bearing are input
into the multi-input fault diagnosis model. Considering different
scenarios in the wind generator operation, the fault sample sets
under different scenarios are constructed, and the multi-input fault
diagnosis model is used to achieve multi-category bearing fault
diagnosis. Figure 5.

2.3 Algorithm flow

The process of the multi-signal input fault diagnosis based on
Glow model is as follows:

(1) Convert 2 sets of normalized original 1D signals into 2D
grayscale image.

(2) Construct the sample sets and divide the training data
and test data.

(3) Train the Glow model with the two sets of input signals in the
training data.

(4) Complement the fault samples by Glow model, and form the
fault sample sets under different scenarios by generating
samples and real samples.

(5) Train the multi-input fault diagnosis model.
(6) Input the fault sample sets under different scenarios into the

multi-input fault diagnosis model and get the diagnostic results.
The algorithm flow is shown in Figure 5.

3 Case analysis

The study firstly verifies the model fault sample generation
performance. Meanwhile, considering the problems of insufficient
fault samples, unbalanced number of fault category samples, and

FIGURE 8
Fault diagnosis results of different sample sets under different noise intensity.
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noise interference in fault diagnosis in actual operation of wind
turbines, comparison experiments under different scenarios are set
up respectively to prove the work of the proposed fault
diagnosis model.

3.1 Fault sample generation analysis

The study was complemented by the Glow model to generate
some new fault samples in different scenarios. For the purpose of
demonstrating the work of the generated model, we used image
quality metrics such as maximum mean difference (MMD) (Xu
et al., 2018), peak signal-to-noise ratio (PSNR) (Wang et al., 2008),
and feature similarity (FSIM) (Zhang et al., 2011) to value the
validity of the generated fault samples. MMD can be used to judge
the distribution difference between two images by using the size of
the summation obtained from each image projection, and the
smaller value indicates the smaller image distribution difference.
PSNR is based on the relative value of the mean square error of the
original sample and the generated sample and the square of the
possible maximum signal value of the sample, and a higher value of
PSNR indicates a higher quality of the generated sample. FSIM can
be used to evaluate the image quality by using feature similarity, and
higher values indicate better similarity.

Table 2 shows the quality evaluation of the generated fault
samples with different noise intensities. Based on the magnitude
of the 3 metrics, the original fault samples generated by the Glow
model have better image quality than the generated noisy fault
samples. The generated drive end fault samples have better image
quality compared to the wind turbine bearing fan end fault samples.
In the comparison of different image quality metrics, we find no
significant degradation in the generated sample quality in the
presence of noise interference. The experimental effect

demonstrates that the proposed method has good performance to
generate wind turbine bearing fault samples.

The study supplemented the number of wind turbine bearing
fault samples in different scenarios by VAE, GAN, and Glowmodels,
respectively. To verify the performance of the generated models, we
used the image quality metrics above to evaluate the authenticity of
the generated fault samples.

Table 3 shows the evaluation of the quality of the generated fault
samples with different noise intensities. According to the magnitude
of the three metrics, the Glow model supplemented generated fault
samples have smaller differences and distortions compared to the
fault samples generated by other models, and the samples are not as
similar as several other models. The image quality of the drive-side
fault samples generated by each deep learning generation model is
better compared to the wind turbine bearing fan end fault samples.

3.2 Case analysis of sample
imbalance scenario

Because the real fault probability is relatively low, the
probability of each type of fault of the wind turbine bearing is
also different, and the number of samples obtained for each fault
category is also different. Therefore, in the actual fault diagnosis
of the fan spindle, there will be a problem of unbalanced number
of fault category samples. To address this problem, this paper
uses Glow model to generate new samples based on 2 sets of wind
turbine bearing vibration data respectively to supplement the
sample number of unbalanced fault categories, and the fault
sample sets with balanced sample number are used to get the
diagnostic results through the multiple input bearing fault
diagnosis model. The unbalanced fault sample set is shown in
Tabel 4, where the sample number of balanced category is

FIGURE 9
Fault diagnosis accuracy of supplemented sample sets with different deep generative models.
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2000 per category and the sample number of unbalanced category
is 1,000 per category.

Figure 6 demonstrates the diagnostic results of different sample
sets under sample imbalance scenario. When the sample imbalance
is relatively low, the model can 100% accurately diagnose the faults.
As the sample imbalance increases, the diagnostic effect of the model
can decrease slightly. However, the model can still effectively
diagnose wind turbine bearing faults, indicating that the new
model has good bearing fault diagnosis ability under sample
imbalance scenario.

3.3 Case analysis of sample
shortage scenario

In the actual operation of the wind turbine, the collection of fault
samples is very difficult, and the limited number of fault samples
may affect the effect of fault diagnosis. For the purpose of confirming
the fault diagnosis effect of the newmethod in complex scenarios, we
construct sample sets based on different sample number and
supplement the sample number through the Glow model until
the sample number in the sample set is the same. The diagnostic
effect of the proposed method is tested on the same sample set. The
sample number in different sample sets is shown in Table 4.

Figure 7 shows the diagnostic results of the original sample set
and the supplemental sample set in the scenario of insufficient
samples. As shown in the figure, insufficient samples will lead to a
decrease in the fault diagnosis effect of the sample set. The diagnostic
result is better when the fault sample set is supplemented by the
generative model. Although the diagnostic effect of the sample set
with deep learning generation model supplemented with fault
samples is not good enough, it also verifies that the new fault
diagnosis method has certain effect when the samples are
insufficient, and the fault samples generated by Glow model can
effectively enhance the diagnostic accuracy.

3.4 Noise scenario experimental analysis

The study considers that the acquisition of vibration data in the
wind generator operation may be disturbed by noise. For the
purpose of proving the validity of the proposed fault diagnosis
method in practical applications, the study simulates the noise
scenarios in the actual operation by adding Gaussian white noise
with different intensities to the sample data. The sample sets with
different noise intensities are set by the original fault samples and the
fault samples with different noise intensities according to Tables 3, 5.

Figure 8 is the diagnostic result of different sample sets under
noise interference. When the fault samples are balanced and
sufficient, the diagnostic result of the sample set is significantly
better than that of other sample sets. When the samples are
insufficient and unbalanced, the fault diagnosis effect of the
sample set will decrease. The diagnosis accuracy of each sample
set under special scenarios is relatively low, but the diagnosis
accuracy of each sample set is above 97.5%. The study shows
that the proposed model has good performance of the bearing
fault diagnosis under the noise scenario.

3.5 Comparative experimental analysis

The combination of deep generative models and fault
classification methods has the ability to solve unbalanced sample
problems and small sample problems. In order to verify the ability of
different deep learning generative models in complex scenarios fault
recognition, this section compares the accuracy of fault diagnosis by
supplementing the fault samples generated by different deep
generative models, trained with the same sample set in the wind
turbine bearing multi-signal input model.

Figure 9 shows the fault diagnosis accuracies of different deep
generative models on the same sample set. In the unbalanced sample
set, the fault diagnosis accuracy of the supplemental sample set of
different deep learning generative models is basically the same.
However, in the small sample set, the diagnostic accuracy of the
fault sample set supplemented by the GLOW model is significantly
higher than the diagnostic accuracy of the fault sample set
supplemented by other deep learning generation models. In order
to more intuitively reflect the superiority of GLOW, we have
provided the average fault diagnosis accuracy of different models
in the last column of Figure 9. The results show that the average
diagnostic accuracy of GLOWmodel is significantly higher than that
of the other two models. The experiments prove that the GLOW
model has good performance in solving the unbalanced sample
problem and the small sample problem in the multi-input fault
diagnosis of wind turbine bearings.

4 Conclusion

In this study, the Glow model is used to learn the fault
characteristics of each fault category to generate fault samples to
enhance fault diagnosis accuracy under the scenario of insufficient
fault samples and unbalanced sample number of different fault
categories, and a multi-input fault diagnosis model is established to
realize multi-category fault diagnosis at multiple locations of the wind
turbine bearing. The experimental effect under different scenarios
verifies the work of the proposed method. The proposed method
can be applied in practice to improve the economic efficiency.
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