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The increasing integration of various energy sources and the adoption of smart
grid technologies have revolutionized the way we generate, distribute, and
consume energy. While these advancements offer numerous benefits, they
also introduce vulnerabilities to cyber–physical attacks. To this aim, this paper
investigates a resilient energy management strategy for integrated energy
systems. By adopting a switched control approach and incorporating a local
estimation mechanism, we have developed a resilient distributed energy
management strategy to tackle the energy management problem (EMP) in
integrated energy systems (IESs). This methodology demonstrates strong
robustness and resilience, successfully detecting data integrity attacks and
denial-of-service (DoS) attacks. Finally, we provide a case study to
demonstrate the effectiveness of our proposed strategy in a real-world scenario.
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1 Introduction

Integrated energy systems (IESs), encompassing various energy sources, storage
systems, and smart grid technologies (Liu et al., 2023; Liu et al., 2022), have
significantly improved the efficiency and sustainability of energy generation and
distribution. The energy management problem (EMP) is the core research problem in
IESs (Li et al., 2020; Li et al., 2020; Li et al., 2022). EMP can be conceptualized as an
optimization challenge constrained by the goal of minimizing overall costs or maximizing
societal benefit (Li et al., 2021; Zhang et al., 2023). This optimization aims to achieve these
objectives while simultaneously ensuring a balance between energy supply and demand and
adhering to operational constraints.

The algorithms designed for EMP can be broadly categorized as either centralized or
distributed methods. Traditional centralized algorithms, such as the reinforcement learning
algorithm (Yang et al., 2022) and cuckoo algorithm, have been extensively explored in
previous research. However, a significant limitation of these algorithms lies in their
centralized nature, demanding a central controller to collect and process all relevant
information to compute optimal solutions. With the integration of distributed energy
resources, there is a growing inclination to shift computationally intensive tasks toward the
edge (Teng et al., 2023). Additionally, distributed participants are hesitant to divulge
personal data to a centralized controller due to concerns regarding security and financial
gain. To address this issue, distributed methods have been proposed, which attract
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significant attention. The distributed algorithms possess several
advantages: 1) Scalability: Distributed methods are highly
scalable. They can efficiently handle large-scale problems by
dividing the computational workload among multiple agents or
nodes. 2) Flexibility: Distributed optimization can adapt to dynamic
environments and changing conditions more effectively. Each node
can respond to local changes independently, which is particularly
useful in rapidly changing or unpredictable environments. 3)
Privacy: In distributed optimization, each node or agent can keep
its data local, which is beneficial for privacy-sensitive applications.
The distributed methods primarily encompass the alternating
direction method of multipliers (ADMM)-based approaches and
consensus-based methods. As an illustration, a distributed energy
management framework and model were introduced in Zhang et al.
(2017), taking into account interrelated power, heat, and gas
systems. In this context, an innovative distributed consensus-
ADMM algorithm was devised to ascertain the global optimal
operation for each participating entity. Utilizing a similar
approach, the distributed consensus-ADMM algorithm was
subsequently extended to address the multi-period energy
management problem (EMP) for manufacturing execution
systems (MESs), incorporating certain linearized network
constraints (Xu et al., 2020). Building upon the foundation laid
in Zhang et al. (2017), an asynchronous event-triggering-based
distributed energy management algorithm was introduced in Li
et al. (2019). This algorithm adeptly manages the distinctive
timescales inherent in various energy network types.
Furthermore, the concept of the We-Energy (WE) model, akin to
the multi-energy prosumer concept, was unveiled in Sun et al.
(2019). Concurrently, a distributed double-consensus (DDC)
algorithm was introduced to facilitate cooperative energy
management among multiple WE entities. Recently, various
distributed optimization algorithms have been developed to cater
to diverse application requirements. These include the adoption of a
Newton-based method to expedite convergence (Li et al., 2021), a
federated reinforcement learning algorithm (Lee and Choi, 2022),
and a double-side coordinative method (Zhou et al., 2023).

The prior research mentioned above has effectively addressed
EMP for IESs, yielding satisfactory results. However, it is worth
noting that the efficacy of these methods relies on a fundamental
assumption: the reliability of the communication network. The
distributed algorithms are executed within a communication
network that is susceptible to various malicious cyberattacks. In
recent years, notable efforts have been undertaken to investigate the
impact of different cyberattacks on distributed energy management
algorithms. To elaborate, Zeng et al. (2017), Zhao et al. (2017), and
Duan and Chow (2019) delved into the vulnerability of the
distributed lambda iteration algorithm in the context of data
integrity attacks. In such scenarios, the energy management
system’s operation may be compromised by the injection of false
data into exchanged information or local utilization data. In
contrast, denial-of-service (DoS) attacks are aimed at obstructing
and disrupting information sharing among agents. These attacks can
have severe consequences for IES security operations, as
communication is disrupted during the DoS attack period,
resulting in a fractured structure of the distributed
communication network. In this scenario, agents cannot
exchange real-time and accurate data with their neighbors,

potentially causing a global supply and demand mismatch,
leading to system failures and substantial economic losses.
Developing effective dispatch strategies to withstand such attacks
becomes imperative. In response, Zhang et al. (2019) introduced a
DoS-attack-robust strategy that combats DoS attacks by
implementing a mixed-integer linear programming method to
allocate the load demand. Li et al. (2017) proposed a novel
robust distributed economic dispatch strategy capable of
identifying and isolating misbehaving distributed generators to
safeguard the rest of the system. Most recently, Huang et al.
(2022) introduced a privacy-preserving protocol-based distributed
robust dispatch approach for MESs. This method proficiently
addresses both colluding and non-colluding attacks. Additionally,
Li et al. (2022) analyzed the impact of DoS attacks and proposed an
effectively double-gradient-descent algorithm to resist the
DoS attacks.

Although the existing research has investigated EMP under
diverse cyberattacks, they still suffer from two key challenges: 1)
the existing distributed and resilient energy management strategies
are mainly designed to deal with a single type of cyberattack, such as
data integrity or DoS attacks. It is highly needed to develop new
algorithms that are compatible with integrity and DoS attacks
simultaneously; 2) the existing distributed energy management
strategies, considering cyberattacks, work on connected
communication networks. However, in reality, the
communication networks may not be two-way. It is necessary to
design distributed algorithms that can handle directed graphs.

To tackle those challenges, we propose an attack-resilient
distributed energy management strategy that is capable of
handling integrity and DoS attacks and working under a directed
communication network. The contributions of this paper are
summarized as follows:

1) By introducing a switched control and local estimation
mechanism, an attack-resilient distributed energy
management strategy can be developed to solve EMP in
IESs. The proposed method can well resist both integrity
and DoS attacks, resulting in strong robustness and resilience.

2) The proposed energy management strategy fits well with the
directed communication network. Compared with the existing
distributed studies (Zeng et al., 2017; Zhao et al., 2017; Li et al.,
2018; Duan and Chow, 2019; Zhang et al., 2019; Li et al., 2022;
Huang et al., 2022), it possesses strong expansibility and
universality.

2 Formulation of EMP in IES

An IES consists of numerous interconnected energy bodies
(EBs) and principal networks. Each EB integrates a diverse array
of energy generation and conversion devices. This includes
renewable generators (RGs), renewable heating devices (RHDs),
fuel generators (FGs), fuel heating devices (FHDs), combined heat
and power (CHP) devices, electricity storage systems (ESSs), heat
storage systems (HSs), and gas producers (GPs). Furthermore, every
EB encompasses energy loads consisting of power, heat, and gas
loads. These loads further comprise must-run and schedulable loads
that are connected to their respective energy buses. The EMP of IES
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is more complex than that of smart grids due to the following two
parts. On the one hand, IES typically encompasses a wider array of
energy resources compared to a smart grid. While smart grids
primarily focus on electrical energy, integrating aspects like
renewable energy sources, demand response, and storage, IES
includes not only electricity but also other forms of energy, such
as heat, gas, and sometimes cooling systems. Managing these diverse
energy types, each with its own dynamics and constraints, adds
complexity to EMP. On the other hand, the objectives of managing
IES are more diverse and complex. In addition to ensuring the
reliability and efficiency of each energy system, IES must optimize
the overall system operation considering economic factors and the
balance between different energy sources. This multifaceted
objective set goes beyond the primary electrical focus of smart grids.

2.1 Model of EB

Considering the energy generation and consumption of single
EB, electricity is produced from RG, FG, and CHP, represented as
pi
re, p

i
fu, and pi

chp, respectively. Similarly, heat is generated from
RHD, FHD, and CHP, symbolized as hire, h

i
fu, and h

i
chp, respectively.

Gas is supplied by GP, signified as gi
gas. Regarding ES and HS,

depending on their charge and discharge states, they can serve either
as energy providers or users. The power and heat exchanges for ES
and HS are designated as pi

st and hist, respectively. Positive values of
pi
st or hist indicate discharging, while negative values signify

charging. For energy demands, we use lip,m (or lip,c), l
i
h,m (or lih,c),

and lig,m (or lig,c) to depict the essential (or adjustable) power, heat,
and gas loads, respectively. Motivated by potential profit, each EB
can act as both an energy supplier and a user by adeptly managing its
internal elements. We define pi

im, h
i
im, and gi

im to illustrate the
imbalance (either deficit or surplus) in power, heat, and gas,
respectively. The energy-balancing conditions for the ith EB at
instant T can be expressed as follows:

pi,T
im � pi,T

re + pi,T
fu + pi,T

chp + pi,T
st − li,Tp,m − li,Tp,c,

hi,Tim � hi,Tre + hi,Tfu + hi,Tchp + hi,Tst − li,Th,m − li,Th,c,

gi,T
im � gi,T

gas − li,Tg,m − li,Tg,c.

⎧⎪⎪⎨⎪⎪⎩ (1)

Beyond the supply–demand balance constraints, each EB
adheres to a series of localized operational constraints. Primarily,
these constraints fall under six categories:

1) Capability constraints for FG, FHD, and GP are given by

pi
fu,min ≤pi,T

fu ≤pi
fu,max,

hifu,min ≤ hi,Tfu ≤ hifu,max,
gi
gas, min ≤gi,T

gas ≤gi
gas,max,

⎧⎪⎪⎨⎪⎪⎩ (2)

where the superscripts “min” and “max” indicate the respective
minimum and maximum permissible values.

2) Forecasting error-adjusted confidence constraints for RG and
RHD are given by

pi,T
re,min ≤pi,T

re ≤pi,T
re,max,

hi,Tre,min ≤ hi,Tre ≤ hi,Tre,max,
{ (3)

3) The operational feasibility region of CHO is composed of four
linear inequality constraints defined as

1
i,mp

i,T
chp + 2

i,mh
i,T
chp + 3

i,m ≥ 0, m � 1, 2, 3, 4, (4)

where 1
i,m, 

2
i,m, and 3

i,m are the parameters.

4) Consideration of permissible charging/discharging processes
and accumulated energy for ES and HS is given by

−pi
ch,max ≤pi,T

st ≤pi
ds,max

−hich,max ≤ hi,Tst ≤ hids,max

SOCi,T
p � SOCi,T−1

p − pi,T−1
st ΔT

SOCi,T
h � SOCi,T−1

h − hi,T−1st ΔT
SOCi,T

p,min ≤ SOCi,T
p ≤ SOCi,T

p,max

SOCi,T
h,min ≤ SOCi,T

h ≤ SOCi,T
h,max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (5)

where pi
ch,max and p

i
ds,max refer to the peak charging and discharging

speeds of pi,T
st . h

i
ch,max and hids,max refer to the peak charging and

discharging speeds of hi,Tst . SOC
i,T
p and SOCi,T

h refer to the state of
charge of ES and HS, respectively.

5) Restrictions on energy loads and associated proportions
are given by

0≤ li,Tp,c + li,Tp,m ≤ li,Tp,max

0≤ li,Th,c + li,Th,m ≤ li,Th,max

0≤ li,Tg,c + li,Tg,m ≤ li,Tg,max

Γig−p,min ≤
li,Tp,c

li,Tp,c + ƛli,Tg,m
≤ Γig−p,max

Γig−h,min ≤
li,Th,c

li,Th,c + ƛli,Tg,m
≤ Γig−h,max

Γih−p,min ≤
li,Tp,c

li,Tp,c + li,Th,m
≤ Γih−p,max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (6)

where Γig−p, Γig−h, and Γih−p represent the respective fractions of
electrical, thermal, and combined energy loads. The coefficient ƛ
converts SCM/h to MW.

Next, the calculation of benefits for each individual EB, which
directs optimal operational behavior, encompasses the following six
components:

1) Derived from fuel costs, the FG and FHD cost functions, along
with CHP, are expressed as

C pi,T
fu( ) � aip,fu pi,T

fu( )2 + bip,fup
i,T
fu + cip,fu + εip,fu exp ξip,fup

i,T
fu( ), (7)

C hi,Tfu( ) � aih,fu hi,Tfu( )2 + bih,fuh
i,T
fu + cih,fu + εih,fu exp ξih,fuh

i,T
fu( ), (8)

C pi,T
chp, h

i,T
chp( ) � aichp pi,T

chp( )2 + bichpp
i,T
chp + di

chpp
i,T
chph

i,T
chp + eichp hi,Tchp( )2

+ fi
chph

i,T
chp + cichp,

(9)
where C(pi,T

fu), C(hi,Tfu), and C(pi,T
chp, h

i,T
chp) are the cost functions of

FG, FHD, and CHP, respectively. aip,fu, b
i
p,fu, c

i
p,fu, ε

i
p,fu, ξ

i
p,fu, a

i
h,fu,

bih,fu, c
i
h,fu, ε

i
h,fu, ξ

i
h,fu, a

i
chp, b

i
chp, c

i
chp, d

i
chp, e

i
chp, and fi

chp are the
positive cost coefficients.

Frontiers in Energy Research frontiersin.org03

Li et al. 10.3389/fenrg.2023.1341984

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1341984


2) When contemplating the balance between optimality and
generative likelihood, the cost functions of RG and RHD are

C pi,T
re( ) � aip,rep

i,T
re + bip,re exp ξ ip,re

pi,T
re,max − pi,T

re

pi,T
re,max − pi,T

re,min

( ), (10)

C hi,Tre( ) � aih,reh
i,T
re + bih,re exp ξ ih,re

hi,Tre,max − hi,Tre
hi,Tre,max − hi,Tre,min

( ), (11)

where C(pi,T
re ) and C(hi,Tre ) are the cost functions of RG and RHD,

respectively. aip,re, b
i
p,re, ξ

i
p,re, a

i
h,re, b

i
h,re, and ξ

i
h,re are the positive cost

coefficients.

3) The cost functions of ES and HS can be represented as

C pi,T
st( ) � ai,Tp,st pi,T

st + bi,Tp,st( )2, (12)
C hi,Tst( ) � ai,Th,st hi,Tst + bi,Th,st( )2, (13)

where C(pi,T
st ) and C(hi,Tst ) are the cost functions ES and HS,

respectively. ai,Tp,st, bi,Tp,st, ai,Th,st, and bi,Th,st are the positive cost
coefficients.

4) The expression of GP’s cost function is

C gi,T
gas( ) � aig gi,T

gas( )3 + big gi,T
gas( )2 + di

gg
i,T
gas + cig, (14)

where C(gi,T
gas) is the cost function of GP. aig, b

i
g, c

i
g, and dig are the

positive cost coefficients. Since the gas generation is non-native, Eq.
14 is convex within the operation region, where gi,T

gas ≥ 0.

5) With demand response in focus, the energy load’s utility
function is

U li,Tp,c, l
i,T
h,c, l

i,T
g,c( ) � −αip li,Tp,m + li,Tp,c( )2 + βip li,Tp,m + li,Tp,c( )

−αih li,Th,m + li,Th,c( )2 + βih li,Th,m + li,Th,c( )
−αig li,Tg,m + li,Tg,c( )2 + βig li,Tg,m + li,Tg,c( ),

(15)

whereU(li,Tp,c, li,Th,c, li,Tg,c) is the utility function. αip, βip, αih, βih, αig, and βig
are the positive utility coefficients.

The reasons for why we chose the second-order form of the load
utility function are as follows: first, the second-order utility function
provides a more accurate representation of user satisfaction in scenarios
where it is not just the service itself but the rate of change in service
quality that impacts user perception. Second, the second-order utility
function provides the flexibility needed to model various user behaviors
and preferences under different conditions. Third, this form of utility
function offers a good balance between complexity and analytical
tractability. It allows us to derive meaningful insights and results
without overly complicating the mathematical framework.

2.2 Model of EMP

The overall objective of EMP of IES is to maximize the social
welfare. Its mathematical expression is given by

Max W � U li,Tp,c, l
i,T
h,c, l

i,T
g,c( ) − C pi,T

fu( ) − C hi,Tfu( ) − C pi,T
chp, h

i,T
chp( ) − C pi,T

re( )
−C hi,Tre( ) − C pi,T

st( ) − C hi,Tst( ) − C gi,T
gas( ),

(16)

s.t.

∑n
i�1

pi,T
re + pi,T

fu + pi,T
chp + pi,T

st − li,Tp,m − li,Tp,c( ) � 0

∑n
i�1

hi,Tre + hi,Tfu + hi,Tchp + hi,Tst − li,Th,m − li,Th,c( ) � 0

∑n
i�1

gi,T
gas − li,Tg,m − li,Tg,c( ) � 0

equations 2 − 6( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (17)

For the sake of analysis, we stipulate that the three-dimensional
vector xij represents the power, heat, and gas attributes of the ith
member in the ith EB. It is pertinent to mention that based on the
specific traits of the participant, some of these elements might be
zero. Furthermore, we characterize lijm as a tri-dimensional vector
denoting the power, heat, and gas of the jth indispensable energy
load in the ith EB. Each member can modify its variable to resemble
xij by ensuring that the maximum and minimum constraints of any
zero component are set to zero. Concurrently, any cost function
linked with the zero component(s) can be designated as any type of
robustly convex function. We then introduce f(xij) to symbolize
the associated cost function or adverse utility function. Then, the
studied problem Eqs 16, 17) can be equivalently written as

min f � ∑n
i�1
∑mi

j�1
f xij( ), (18)

s.t.
∑n
i�1
∑mi

j�1
Bijxij − lijm( ) � 0

xij ∈ Ωij

⎧⎪⎪⎨⎪⎪⎩ , (19)

where mi refers to the number of participants in ith EB. Bij � −1
when xij signifies the controllable energy load. In all other cases,
Bij � 1. Ωij refers to the closed convex sets defined by the intrinsic
inequality constraints.

Note that the cost function for each component is the convex
function within the corresponding local operation region.
Meanwhile, the global supply and demand constraint shown in
Eq. 19 is the affine function. Thus, our studied problem is a convex
problem. According to the convex theory, there is only one optimal
point. Thus, in our considered model, there exists only one
equilibrium point, which is the optimal point.

3 Attack-resilient distributed energy
management strategy

3.1 Attack models

This study delves into the utilization of a distributed algorithm
to address EMP. As the operational framework of such algorithms is
deeply rooted in a distributed communication network, it becomes
inherently vulnerable to diverse cyberattacks. In this paper, we
consider data integrity and DoS attacks. The major mechanisms
affected by the two types of cyberattacks on EMP are as follows:

1) Data integrity attacks in energy management algorithms refer
to cyberattacks where adversaries manipulate or tamper with
the data being used by these algorithms, leading to faulty
decision-making. Energy management systems rely on
accurate data to efficiently control and distribute energy
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resources. By compromising the integrity of these data,
attackers can cause operational inefficiencies, financial
losses, system instabilities, and even safety hazards.

2) DoS attacks, in the context of computer networks, refer to
attempts to make a machine, service, or network resource
unavailable to its intended users by flooding the targeted
system with superfluous requests in an effort to overload
systems and prevent some or all legitimate requests from
being fulfilled. The potential disruption by multiple
adversaries targeting the communication flow between EBs
is recognized, which can lead to an enduring compromise of
essential shared data.

In order to divide the attack and non-attack zones, we provide
the following definitions: Starting at a reference point T0, the
cumulative time span [T0, T] is bifurcated into regular intervals
and periods of assault. The duration representing the kth attack is
denoted as (Tk, Tk + σk], wherein Tk signifies the moment the
attack is initiated and σk denotes its persistence. The fraction of
the overall time occupied by attacks within the interval [T0, T] is
represented by Φap(T) � ∑

∀k
σk/(T − T0). Following this, the

classification of time spans into attack and non-attack segments
is expressed as Πap(T) � k(Tk, Tk + σk] ∩[T0, T] and
Πnp(T) � k(Tk + σk, Tk+1] ∩[T0, T], respectively. When a node i
experiences a DoS attack or data integrity, it is classified as an attack
node. Such nodes fall under the category represented by ℘s(T).

3.2 Directed communication network

We study a directional communication network, represented by
G � (V, ξ, A). In this context, V � [1, 2, . . . , n] signifies the group of
agents, and ξ encompasses a subset of pairs in V × V, indicating the
edges or communication links. The graph G is assumed to be robustly
interconnected without any self-linking edges. For an edge originating
from node i�j and terminating at ij, i is represented by (ij, i�j) ∈ ξ. The
adjacency matrix is denoted by A � [aij,i�j], where aij,i�j � 1 if
(ij, i�j) ∈ ξ is an edge; otherwise, aij,i�j � 0. The in-degree matrix is
expressed asDin � diag[din1 , din2 , . . . , dinn ], where dini is the sum of aij,i�j
over all i�j except when i�j � ij. Similarly, the out-degree matrix is
depicted asDout � diag[dout1 , dout2 , . . . , doutn ], with douti being the sum
of ai�j across all i�j with the exception of i�j � ij. Moreover, we have
L′ � Dout − A and L � D − A. The in-neighbor of ij is defined asΝij

in.
In this paper, we require that the communication network be strongly
connected during the non-attack segment. In addition, there is no
limitation on the communication network during the attack segment.

3.3 Main algorithm

In this section, we propose a discrete-time attack-resilient
distributed energy management algorithm to solve EMP,
considering data integrity and DoS attacks. First, we define the
following switched control variables:

υij1 t − 1[ ] �
zij t − 1[ ], t ∈ Πnp T( )
zij Tk[ ], t ∈ Πnp T( )&ij ∈ ℘s T( )
zij t − 1[ ], t ∈ Πnp T( )&ij ∉ ℘s T( )

⎧⎪⎨⎪⎩ , (20)

υij2 t − 1[ ] �

− ∑
i�j∈Nij

in

aij,i�j zij t − 1[ ] − zi
�j t − 1[ ]( ), t ∈ Πnp T( )

− ∑
i�j∈Nij

in

aij,i�j zij Tk[ ] − zi
�j Tk[ ]( ), t ∈ Πnp T( )&ij ∈ ℘s T( )

− ∑
i�j∈Nij

in

aij,i�j zij t − 1[ ] − zi
�j t − 1[ ]( ), t ∈ Πnp T( )&ij ∉ ℘s T( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
,

(21)

υij3 t − 1[ ] �

− ∑
i�j∈Nij

in

aij,i�j wij t − 1[ ] − wi�j t − 1[ ]( ), t ∈ Πnp T( )

− ∑
i�j∈Nij

in

aij,i�j wij Tk[ ] − wi�j Tk[ ]( ), t ∈ Πnp T( )&ij ∈ ℘s T( )

− ∑
i�j∈Nij

in

aij,i�j wij t − 1[ ] − wi�j t − 1[ ]( ), t ∈ Πnp T( )&ij ∉ ℘s T( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
,

(22)

where zij and wij are assistant variables. υij1 , υ
ij
2 , and υij3 are control

variables. The physical meaning of zij is the energy price, while wij

does not have specific physical meaning.
Next, the updating rules of the discrete-time attack-resilient

distributed energy management algorithm are given by

xij t[ ] � diag ∇2f xij t − 1[ ]( )[ ]−1ΘΩij xij t − 1[ ],−∇f xij t − 1[ ]( ) + υij1 t − 1[ ]( ),
(23)

zij t[ ] � υij2 t − 1[ ] + υij3 t − 1[ ] − xij t − 1[ ] + lijm, (24)
wij t[ ] � −υij2 t − 1[ ], (25)

where ΘΩij refers to the differential projection operation.
We elaborate the updating processes, including the

following steps:
Step (1) Each agent tries to send the information of zij[t − 1]

and wij[t − 1] to its out-neighbors and receive information of
zi�j[t − 1] and wi�j[t − 1] from its neighbors.

Step (2) Each agent should identify whether it is subjected to
data integrity attacks and DoS attacks based on the methods
proposed in Li T. et al. (2022) and Huang et al. (2022),
respectively. Then, each agent is able to identify the current
categories for t ∈ Πnp(T), t ∈ Πnp(T)&ij ∈ ℘s(T), or
t ∈ Πnp(T)&ij ∉ ℘s(T).

Step (3) Each agent updates υij1 [t − 1], υij2 [t − 1], and υij3 [t − 1]
based on Eqs 20–22.

Step (4) Each agent updates xij[t], zij[t], and wij[t] based on
Eqs 23–25.

Step (5) Repeat Steps (1–4) until the algorithm converges to
stable values.

Based on the aforementioned processes, it can be observed that
each agent only needs to share the information of zij[t − 1] and
wij[t − 1] with its neighbors. Thus, the proposed method is fully
distributed. In addition, we employ the switched strategy, as shown
in Eqs 20–22, to resist the cyberattacks.

In this paper, we design a discrete-time algorithm to solve EMP.
The reasons are as follows: first, by using the discrete-time
algorithm, agents are executed at discrete time steps, making it
easier to synchronize information sharing across distributed agents.
This is particularly useful in IES, where coordinating the timing of
operations is crucial. Second, discrete-time algorithms can be more
resource-efficient in certain contexts. They can be designed to
operate only at specific intervals, reducing the need for
continuous computation and potentially saving on energy and
computational resources. Last but not least, discrete-time
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algorithms offer flexibility in implementation, especially in digital
systems where time is naturally discretized. This makes them well-
suited for implementation in digital computers and
microcontrollers.

4 Simulation analysis

4.1 Setting of the test system

The effectiveness of the proposed method will be tested in IES
with five EBs. Its physical and communication structures are shown
in Figure 1, as described previously in Zhang et al. (2017). We also
follow Zhang et al. (2017) to set the parameters of each EB. The
communication interval is 0.01 s. We consider that the system is
subjected to data integrity attacks during [0.40 s, 0.66 s] and [2.3 s,
2.55 s] and is subjected to DoS attacks during [6.1 s, 6.2 s] and
[11.1 s, 11.12 s]. The scales of energy and price are unified as 1 p.u. =
1 MW for power or heat, 1 p.u. = 84 SCM/h for gas, and 1 p.u. = 1 $/
MWh for price.

4.2 Convergence analysis

In this section, the proposed attack-resilient distributed energy
management algorithm is performed to solve EMP. The simulation
outcomes are shown in Figures 2–7.

Specifically, Figures 2–4 exhibit the estimated calculations for
power generation/demand, heat generation/demand, and gas
generation/demand across all participating entities. Distinct
colors within each graph are employed to differentiate between
the various curves, each representing computational and

convergence trajectory of each participant. These visual
representations indicate that despite the data integrity and DoS
attacks, the energy generation/demand (encompassing power, heat,
and gas) for every participant is capable of stabilizing at a
consistent value.

Additionally, the trajectories for the estimated prices of power,
heat, and gas are shown in Figures 5–7, each progressively settling at
three common values, ultimately representing the final market
clearing prices for power, heat, and gas, respectively. This
occurrence persists even in the face of data integrity and DoS
attacks. The final settled values are marked at $32.6887 (p.u.) for
the power price, $23.6611 (p.u.) for the heat price, and $15.2825
(p.u.) for the gas price. In addition, the final energy generation and

FIGURE 1
IES composed of five EBs.

FIGURE 2
Power generation/demand.
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demands are listed in Table 1. These values are consistent with those
derived in scenarios devoid of attacks, as referenced from Zhang
et al. (2017).

These findings collectively underscore the resilience and
robustness of the S-NRBDEM algorithm, affirming its capacity to
empower each participant to persistently seek optimal operational
states and market clearing prices for energy.

5 Discussion

This paper addresses the pressing need for resilient energy
management in the context of IESs; this necessity has become
even more urgent due to the ever increasing integration of
diverse energy resources and the rapid adoption of IES
technologies. Through rigorous investigation and analysis, we
have introduced and validated an attack-resilient distributed
energy management strategy, augmented by a local estimation

FIGURE 3
Heat generation/demand.

FIGURE 4
Gas generation/demand.

FIGURE 5
Power price.

FIGURE 6
Heat price.

FIGURE 7
Gas price.
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mechanism and switched control. This strategy has been
meticulously designed to address not only data integrity attacks
but also DoS attacks. The simulations conducted in IES with five EBs
show that our proposed method enables estimated energy prices and
energy generation/demand to converge to the corresponding
optimal solutions, although there are both data integrity attacks
and DoS attacks. The findings and insights garnered from this case

study underscore the potential of our proposed strategy to serve as a
reliable safeguard against cyber–physical threats, ensuring
uninterrupted and secure energy management.
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TABLE 1 Results of energy generation/demand.

Number Power Heat Gas

Energy body 1 N. 1 48.7268 0.0000 0.0000

N. 2 99.9954 0.0000 0.0000

N. 3 81.9283 0.0000 0.0000

N. 4 205.9112 175.0624 0.0000

N. 5 150.9604 0.0000 151.1224

N. 6 0.0000 0.0000 697.1795

N. 7 0.0000 140.4003 0.0000

N. 8 0.0000 93.8493 0.0000

Energy body 2 N. 1 79.8125 0.0000 0.0000

N. 2 40.0000 0.0000 0.0000

N. 3 97.5581 124.7394 0.0000

N. 4 368.7103 234.9918 640.0000

N. 5 0.0000 149.9000 0.0000

N. 6 0.0000 94.9337 0.0000

N. 7 0.0000 −50.9576 0.0000

Energy body 3 N. 1 43.0000 0.0000 0.0000

N. 2 86.3169 0.0000 0.0000

N. 3 139.1635 145.6757 0.0000

N. 4 247.9710 214.2603 100.0000

N. 5 0.0000 −66.9455 0.0000

N. 6 0.0000 115.3432 0.0000

Energy body 4 N. 1 57.3021 0.0000 0.0000

N. 2 63.8647 0.0000 0.0000

N. 3 74.8888 0.0000 0.0000

N. 4 137.9980 168.0150 0.0000

N. 5 34.6087 169.6301 77.3927

N. 6 0.0000 0.0000 731.8678

Energy body 5 N. 1 59.7180 0.0000 0.0000

N. 2 107.4698 155.1541 0.0000

N. 3 131.4040 104.8088 220.5323

N. 4 0.0000 117.5203 0.0000
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