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Carbon trading prices are crucial for carbon emissions and transparent carbon
market pricing. Previous studies mainly focused on data mining in the prediction
direction to quantify carbon trading prices. Although the prospect of high-
frequency data forecastingmechanisms is considerable, moremixed-frequency
ensemble forecasting is needed for carbon trading prices. Therefore, this article
designs a new type of ensemble prediction model to increase the scope
of model research. The module is divided into three parts: data denoising,
mixed frequency and machine learning, multi-objective optimization, and
ensemble forecasting. Precisely, the data preprocessing technology enhanced
by adopting a self-attention mechanism can better remove noise and extract
effective features. Furthermore, mixed frequency technology is introduced into
the machine learning model to achieve more comprehensive and efficient
prediction, and a new evaluation criterion is proposed to measure the optimal
submodel. Finally, the ensemble model based on deep learning strategy can
effectively integrate the advantages of high-frequency and low-frequency data
in complex datasets. At the same time, a new multi-objective optimization
algorithm is proposed to optimize the parameters of the ensemble model,
significantly improving the predictive ability of the integrated module. The
results of four experiments and the Mean Absolute Percent Error index of the
proposedmodel improved by 28.3526% compared tomachine learningmodels,
indicating that the ensemble model established can effectively address the time
distribution characteristics and uncertainty issues predicted by carbon trading
price models, which helps to mitigate climate change and develop a low-
carbon economy.
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1 Introduction

This part presents the relevant research background, a literature
review, and the main contributions and innovations.

1.1 Research background

At present, climate change and reducing carbon dioxide
emissions have become significant issues worldwide, and how
to effectively reduce greenhouse gas emissions and curb global
warming has become a common challenge for all countries
(Wang Y. et al., 2022). The carbon market derives from the theory
of environmental property rights and the theory of ecological
modernization, which advocates market-based means to solve
environmental problems (James and Menzies, 2022; Zhao et al.,
2022; Emam and Tashkandy, 2023). It is an essential institutional
innovation to promote the green and low-carbon transformation
of economic development (Alhakami et al., 2022). The essence is to
encourage companies to make decisions about emissions reductions
by forming effective prices for trading carbon emissions through
the mechanism of supply and demand (Taborianski and Pacca,
2022). The international carbon market has grown rapidly since the
Kyoto Protocol came into force. In the academic community, carbon
market research has attracted the attention of an increasing number
of scholars (Han et al., 2019). Therefore, proposing an effective
carbon trading price forecasting mechanism is crucial. The carbon
trading price forecasting mechanism is the core issue in carbon
Emissions (Wang F. et al., 2022; Yang et al., 2023).

1.2 Literature review

With vast amounts of methods to predict the stock market,
researchers have devoted themselves to improving the accuracy of
their models, including four types of methods: statistical technique,
artificial intelligence technique, combined technique, and ensemble
technique. In the literature review, wewill examine the strengths and
weaknesses of each of these approaches.

1.2.1 Statistical model
Statistical models have been widely used to predict stock

markets.Thesemodels are based on historical data and use statistical
techniques to identify patterns and correlations in the data (Li et al.,
2022). For instance, Chai et al. employed an enhanced GARCH
model for forecasting (Chai et al., 2023), and Guan et al. utilized
an ARMA model to manipulate time series proficiently (Guan and
Zhao, 2017). Although statistical models can still achieve good
results, traditional statistical models need help capturing price
changes’ complexity and nonlinear trends. Therefore, statistical
models do not provide satisfactory results.

1.2.2 Artificial intelligence model
Artificial intelligence (AI) models are prevalent prediction

models that have become increasingly popular in recent years. Gao
et al. used multiple machine learning sub-models to predict crude
oil price (Gao et al., 2022). Ruobin Gao et al. demonstrated the
superiority of the ESN model in time series prediction (Gao et al.,

2021). While Sun et al. used the LSTM model to predict carbon
trading price, and the experiment showed that LSTM, as a deep
learning model, is superior to general machine learning models
(Sun and Huang, 2020). In addition, Borup et al. introduced a
strategy of mixed frequency in machine learning to process high-
frequency data more efficiently (Borup et al., 2023). Nevertheless,
they should have capitalized on the strengths of each sub-model
comprehensively. Besides,Machine learningmodels can become too
complex during the training process, leading to overfitting of the
training data and thus affecting the model’s generalization ability.

1.2.3 Combined model
To improve predictive ability, combined models combine

multiple models to provide a more accurate prediction of stock
prices (Xia et al., 2023). For example, a combined model may
use a physical model to capture long-term trends, a traditional
statistical model to capture short-term trends, and an AI model
to identify patterns in the data. Wang et al. used the technique
of calculating combined weights to combine the benefits of
various machine learning models, enhancing the effectiveness of
power load forecasting (Wang et al., 2021). In addition, Dong et al.
introduced an LSTM model, which seamlessly integrated three
sub-models, including a BPNN model (Dong et al., 2023). This
combination leveraged the advantages of each sub-model and
effectively captured the intricate characteristics of wave energy.
However, there are challenges in determining the combined weight
of each model.

1.2.4 Ensemble model
Ensemble prediction can provide a more comprehensive and

reliable forecast of carbon trading prices by taking advantage of
the strengths of different models and mitigating their weaknesses
(Yang W. et al., 2022; Guo et al., 2022). Ensemble prediction is a
powerful technique that can improve the accuracy of stock market
prediction (Chullamonthon and Tangamchit, 2023). Wang et al.
designed an ELM-based ensemble model optimized using the
Sparrow Search Algorithm (SSA) for predicting carbon trading
prices (Wang et al., 2022b). The model includes a VMD data
preprocessing module, multi-objective optimization, and an ELM
integration module. The prediction model Seçkin Karasu et al.
proposed can handle the chaos and non-linear dynamics of WTI
and Brent COTS. In recent years, multi-objective optimization
techniques have been widely applied to optimize the parameters
of ensemble models to improve experimental results. Yang
et al. used multi-objective Ant Lion Optimizer (MOALO) to
optimize their prediction results (Yang H. et al., 2022). Meanwhile,
Fallahi et al. also used the Multi-Objective Grey Wolf Optimizer
(MOGWO) to improve the accuracy of carbon emission reduction
prediction results (Fallahi et al., 2023). In addition tomulti-objective
optimization ensemble models, Liang Dua et al. successfully
synthesized ten candidate models using a Bayesian dynamic
ensemble method, which has higher adaptability and better
generalization performance (Du et al., 2022). Ensemblemodels have
also successfully addressed the non-linear features of time series
prediction. For example, the digital currency prediction hybrid
model proposed by Aytaç Altan et al. can capture the non-linear
characteristics of digital currency time series (Altan et al., 2019).
The prediction model proposed by Seçkin Karasu et al. can also
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FIGURE 1
Flowchart of the forecasting model.

capture the non-linear characteristics of crude oil time series, with
better prediction performance in terms of accuracy and volatility
than existing prediction models (Karasu et al., 2020; Karasu and
Altan, 2022). Therefore, ensemble models can better integrate the
strengths of different models to improve the accuracy of carbon
trading price prediction while also playing an important role in
capturing non-linear features.

Although the current carbon trading price forecasting system is
developing rapidly, some issues still need to be considered in future
development. Early research mainly focused on common frequency
research (Niu et al., 2022), with less use of mixed frequency
techniques. To better handle the impact of high-frequency data on
complex datasets with low-frequency data, Lahiri et al. improved
their predictive ability by using mixed frequency techniques and
a single model to predict New York State tax revenue (Lahiri and
Yang, 2022). Chang et al. used a single mixed frequency model for
carbon emission prediction (Chang et al., 2023). Jiang et al. used a
single MIDAS model to explore the relationship between carbon
emissions and economic growth, fully leveraging the advantages of
mixed frequency techniques (Jiang and Yu, 2023). In the era of big
data, researchers can obtain time series data at different frequencies,
where high-frequency information has the advantages of timeliness

and stability relative to low-frequency information. In carbon
trading price prediction, high-frequency data usually has a higher
update frequency and can reflect the dynamic changes in market
prices more timely. High-frequency data is essential for decision-
makers who need to respond quickly because high-frequency data
can provide more timely predictions and decision support. In
addition, high-frequency data is relatively stable as it better captures
the microstructure and behavior of the market, which means that
high-frequency data can provide more stable prediction results,
reducing the volatility and uncertainty of predictions. Therefore,
mixed frequency prediction has yet to be considered in the current
carbon trading price prediction field, or the impact of ensemble
models and mixed frequency techniques needs to be considered.

Therefore, Some issues exist in the current carbon trading
price forecasting field: Lack of technical updates in data mining,
such as disregard for mixed-frequency prediction and indifference
towards ensemble models utilizing mixed-frequency techniques.
Specifically, most carbon trading price prediction studies use time
series analysis, machine learning, and other methods to mine
historical price data to predict future price trends. However, this
approach often needs to pay more attention to the interactions
and impacts between different frequency data. Therefore, when
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TABLE 1 Parameter values utilized in the study’s methodologies.

Parameter
settings

Value Range
for
variables

LSTM

MaxEpochs 50 ∖

GradientThreshold 1 ∖

InitialLearnRate 0.005 ∖

Numer of hidden
layer

60 [1,100]

LearnRateDropPeriod 0.5 [0.1,1]

LearnRateDropFactor 0.8 [1,200]

MOWSO

Number of variables 3 ∖

Number of objective
functions

2 ∖

Population size 10 ∖

Repository size 200 ∖

Maximum number
of generations

50 ∖

Number of grids in
each dimension

30 ∖

Maxmium vel in
percentage

5 ∖

Maximum frequency
of the wavy motion

0.75 ∖

Minimum frequency
of the wavy motion

0.07 ∖

tau 4.11 ∖

pmin 0.5 ∖

pmax 1.5 ∖

a0 6.25 ∖

a1 100 ∖

a2 0.0005 ∖

building an ensemble forecasting model, it is necessary to consider
the influence of both high-frequency and low-frequency data to
predict carbon trading prices more accurately. In addition, the
current mainstream data preprocessing method, VMD, has an issue
of uncertain decomposition mode, which reduces the predictive
power of the ensemble model. If the number of modes decomposed
by VMD is too small, important price fluctuation features may be
missed. These unconsidered features may significantly impact the
prediction results, leading to a decrease in prediction accuracy. On
the other hand, if the number of modes decomposed by VMD
is too large, mode overlap may occur. Mode overlap means that

TABLE 2 Index of valuation.

Index Equation

MAE MAE =
L
∑
l=1
|Al − Âl| /L

RMSE RMSE =√
L
∑
l=1
(Al − Âl)

2/L

MAPE MAPE =
L
∑
l=1
|(Al − Âl)/Al| /L× 100%

IA IA = 1−
L
∑
l=1
(Al − Âl)

2/
L
∑
l=1
(|Al − Ā| + |Âl − Ā|)

2

R2 R2 = 1−
L
∑
l=1
(Al − Âl)

2/
L
∑
l=1
(Âl − ̄AL)

2

U1 U1 =√
L
∑
l=1
(Al − Âl)

2/L/(√
L
∑
l=1

A2
l /L+√

L
∑
l=1

Â2
l /L

U2 U2 =√
L
∑
l=1
((Al+1 − Âl+1)/Al)

2/L/(√
L
∑
l=1
((Al+1 − Âl)/Al)

2/L)

some modes may overlap or interact, making the prediction model
complex and challenging to interpret and reducing the model’s
predictive power and robustness. In conclusion, there are the
following issues:

(1) Neglecting mixed-frequency prediction and having an
indifferent attitude towards integratedmodels utilizingmixed-
frequency techniques, i.e., giving less consideration to the
temporal distribution characteristics of carbon trading prices.

(2) The current mainstream data preprocessing method VMD
has the problem of uncertain decomposition patterns.
Additionally, both the sub-models and ensemble models suffer
from parameter randomness, leading to the issue of parameter
uncertainty in carbon trading price prediction.

In order to address these issues, this research aims to
consider and resolve the temporal distribution characteristics and
uncertainties of carbon trading prices better. Specifically, this
study develops a novel ensemble forecasting method comprised
of three modules to predict carbon trading prices. Firstly, the
data preprocessing module employs effective methods to address
the prediction uncertainties in carbon trading prices. As high-
frequency data may contain more noise and fluctuations, the
VMD decomposition technique has an advantage over EMD and
EWT in decomposing complex and nonlinear data because it
can better overcome the mode mixing problem of EMD and
EWT by using a constrained variational problem, resulting in
more accurate decomposition results (Lian et al., 2018; Huang et al.,
2021). However, the original VMD technique may need more
accurate forecasting due to randomly chosen decomposition mode
numbers. Recently, self-attention mechanisms have been shown to
effectively mitigate this issue by comparing the similarity between
the vectors of the ground truth and predicted values (Chen et al.,
2023), thereby determining the number of modal decompositions.
Therefore, this study proposes a new data preprocessing method
called SA-VMD to improve the drawback of uncertain mode
decomposition numbers in VMD. Additionally, the current research
framework mainly focuses on the influence of traditional energy
sources on carbon trading prices, as mentioned by Song et al.
regarding the significant impact of natural gas, fuel oil, and
crude oil prices on carbon trading prices (Song et al., 2022).
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FIGURE 2
Dataset with CF and MF.

However, the research overlooks clean energy sources (Hao
and Tian, 2020). Wang et al. mention the correlation between
ethanol and carbon trading price predictions (Wang et al., 2023).
Therefore, this study incorporates ethanol data and considers four
multivariate factors: natural gas, fuel oil, crude oil, and ethanol.
Secondly, in the mixed-frequency and machine learning module,
this study utilizes the Mixed Data Sampling (MIDAS) model to
transform the high-frequency data of the four factors into low-
frequency data for predicting carbon trading prices. Simultaneously,
three low-frequency machine learning models are employed for
comparative experiments in mixed-frequency prediction, which
better accounts for the temporal distribution characteristics in
carbon trading price prediction. Furthermore, a newly proposed
evaluation criterion can better determine the models’ lag order
and other parameter information, thus avoiding errors caused
by parameter uncertainties. Finally, LSTM is chosen as the deep

learning tool in the ensemble module due to its powerful learning
capabilities. The ensemble model can fully leverage the advantages
of each sub-model and capture the nonlinear features of carbon
trading prices. To address the issue of parameter uncertainties in
carbon trading price prediction, this study optimizes the parameters
of the LSTM model based on Multi-Objective Whale Optimization
(MOWSO), reducing the uncertainty and improving the accuracy
and stability of price predictions. This study constructs a new
framework for carbon price prediction by integrating the effects
of three machine learning models based on four multivariate
factors and four mixed-frequency models. This framework fully
considers the temporal distribution characteristics of carbon trading
price prediction by harnessing the advantages of integrating high-
frequency and low-frequency data using LSTM. It aims to address
current research gaps, fill in the research void, andultimately provide
a new framework for carbon price prediction.
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TABLE 3 Statistical characteristics of the dataset.

Data Carbon price Gas price Fuel oil price Crude oil price Ethanol price

Frequency weekly weckly daily weekly daily weekly daily woekly daily

Number 900 900 4,500 900 4,500 900 4,500 900 4,500

Median 13.1900 3.6510 3.6180 2.0734 2.0737 70.9200 70.5600 1.8605 1.8530

Average 20.5446 4.1910 4.1788 2.2452 2.2481 72.3843 72.1334 1.8998 1.8997

Minimum 0.0100 1.4950 1.4820 0.7328 0.6104 16.9400 −37.6300 0.8450 0.8200

Mlaximum 98.0100 13.5770 13.5770 4.2582 5.1354 145.2900 145.2900 3.9400 4.2300

Variance 509.8659 4.1421 4.1257 0.4814 0.5058 511.3039 510.9963 0.2211 0.2224

Standard deviation 22.5802 2.0352 2.0312 0.6939 0.7112 22.6120 22.6052 0.4702 0.4716

Skewncss 1.9444 1.4784 1.4871 0.4170 0.4751 0.2534 0.2139 0.5455 0.5581

Kurtosis 5.9113 5.3474 5.3252 2.4382 2.6832 2.5017 2.5550 3.1780 3.2846

Kolmogorov-Smirnov test - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Bold values indicate the optimal values.

1.2.5 Contributions and innovations
The data preprocessing modules proposed, including the mixed

frequency and machine learning module and ensemble forecasting
module, were used to develop a new deep learning model ensemble
system. In summary, the proposed new ensemble model can
effectively improve the forecasting performance of carbon trading
prices and lay the foundation for better use of mixed frequency
technology prediction methods.

The contributions and innovations can be summarized
as follows:

(1) Efficient data preprocessing methods. Data preprocessing
technology can improve data quality and help enhance
subsequent prediction processes’ accuracy and performance.
Previous research employed VMD data preprocessing
algorithms that contained an uncertainty in the number of
modes to be decomposed, leading to decreased prediction
accuracy. This paper uses self-attention-variational mode
decomposition (SA-VMD) to obtain better prediction results
than VMD techniques to eliminate this uncertainty in
the number of modes to be decomposed in VMD. The
experiment shows that after data preprocessing, the sub-model
improves prediction performance and stability compared to
the corresponding sub-model.

(2) Capable mixed frequency technology. To better consider
the impact of different periodic factors on the prediction
experiment, this article considers the effect of mixed
frequencies on carbon price prediction. The introduction of
mixing technology not only compensates for the previous
studies that did not consider the impact of different cycle
factors on the experiment but also lays a solid foundation for
proposing novel ensemble prediction modules. Experiments
have shown that excellent sub-models can be created using
novel mixed frequency and common frequency techniques in
the proposed modeling module.

(3) Excellent multi-objective optimizer and ensemble model. In
the current carbon trading price forecasting model, only
some studies simultaneously consider the effects of high-
frequency and low-frequency data. To better integrate the
strengths of common frequency, mixed frequency, and deep
learning ensemble strategies, this article considers using the
LSTM model to integrate the mixed frequency and the
common frequency models. At the same time, a new recently
proposed multiobjective algorithm is introduced to optimize
the three parameters of the ensemble model and predict the
performance based on the carbon trading price.The successful
experiment proves that the new ensemble system effectively
improves the accuracy and stability of predicting carbon
trading prices.

2 Framework of the novel ensemble
forecasting system for the carbon
trading price

The ensemble forecasting model for carbon emissions trading
developed in this paper is shown in Figure 1, and the framework is
listed in detail below:

Stage 1: Since data preprocessing makes the data reliable
and interpretable and enables effective investigation, SA-VMD is
used to process the original data in this work. SA-VMD has
high robustness to sampling and noise and can effectively avoid
modal aliasing. Through the data preprocessing method, this paper
effectively removes the noise and preserves the main features of the
original data.

Stage 2: Measure the machine learning and mixed
frequency models using new evaluation criteria to obtain the
optimal partial model in each case. The evaluation criteria
were successfully used to obtain the optimal sub-models of
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FIGURE 3
Optimal submodel and ensemble model.

four mixed frequencies and three machine learning models
to take the best advantage of mixed frequencies, which
provide a basis for the ensemble prediction of carbon trading
prices.

Stage 3: Considering the powerful learning ability of machine
learning, this paper selects the LSTM model in the machine
learning model and uses an innovative multi-objective algorithm
to find the optimal solution for the hidden LSTM layer, learning
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rate, and learning rate attenuation value to obtain the final
ensemble model.

3 Novel ensemble predicting model
modules

The novel ensemble prediction model consists of the data
preparation module, the mixed frequency module, the machine
learning module, and the ensemble modeling module.

3.1 Data preparation module

3.1.1 Variational mode decomposition
VMD is a powerful signal processing technique that gained

widespread acceptance in the last few years (Dragomiretskiy and
Zosso, 2013). The basic idea behind VMD is to decompose a given
signal into a series of elementary modes or components, each
with frequency and amplitude characteristics. These components
are combined to reconstruct the original signal, each component
making up a specific part of the overall signal.

Themathematical basis of VMD can be complex. However, at its
core, it finds a set of optimal functions (intrinsic mode functions)
that can effectively represent the input signal.These mode functions
are determined by solving an optimization problem that minimizes
the difference between the signal and its decomposition.

Suppose up = {u1,u2,…,uP} is theKth IntrinsicMode Functions
obtained fromdecomposition,ωp = {ω1,ω2,…,ωP}means the center
frequency of each component. δt, f(t), and * represent impulse
function, original signal, and convolutional operator, respectively.
Optimization problem mentioned above, which is also a variational
question, lists as follows:

{{{{{
{{{{{
{

min
up,ωp
{

P

∑
p=1
‖∂t[(δ (t) +

j
πt
) ⋅ up (t)]e

−jωmt‖22}

s.t.
P

∑
p=1

up = f (t)

(1)

To solve this problem, the above problem can be transformed
into a variational problem without constraint by an augmented
Lagrangian function by introducing the penalty factor α and the
Lagrange multiplier γ.

L(up,wp,λ) = α
P

∑
p=1
‖∂t[(δ (t) +

j
πt
) ⋅ up (t)]e

−jwpt‖
2

2

+‖ f (t) −
p

∑
p=1

up (t)‖
2

2

+⟨λ (t) , f (t) −
P

∑
p=1

up (t)⟩ (2)

The problem can be solved using the alternating direction
multiplier method (ADMM). The idea is to fix the other two
variables and update one of them as follows:

un+1p = arg min
up

L({un+1i<p } ,{ω
n
p} ,λn)

ωn+1
p = arg min

ωk

L({unp} ,{ω
n+1
i<p } ,λ

n)

λn+1 = λn + ρ( f (t) −∑
p
un+1p (t))

(3)

Taking the derivative of the above equation in the frequency
domain, we can conclude that:

ûn+1p =

f̂ (ω) −∑
i≠p

ûi (ω) +
λ̂(ω)
2

1+ 2α(ω−ωp)
2 (4)

Similarly, it can be concluded that:

ω̂n+1
p =
∫
∞

0
ω |ûp (ω)|dω

∫
∞

0
|ûp (ω)|dω

(5)

λ̂n+1 (w) = λ̂n (w) + τ[ f̂ (w) −∑
m
ûn+1p (w)] (6)

3.1.2 Self attention-variational mode
decomposition

The self-attention (SA) mechanism is an effective method
for obtaining information that has emerged in machine learning
in recent years. Yuan et al. improved the EMD algorithm based
on the SA mechanism (Yuan and Yang, 2023). Usually, VMD
decomposition achieves the effect of data preprocessing by randomly
setting the number of decomposition modes and removing the
high-frequency part of the data. However, this method may have
the problem of excessive error (Gao et al., 2023). In order to avoid
randomly selecting the number of decomposed modes as much as
possible, this article will improve the VMD noise reduction method
using the SA method.

In traditional sequence models, such as recurrent neural
networks (RNNs), the representation of each position can only
be obtained through sequential processing to get contextual
information. The self-attention mechanism allows each part to
focus directly on other elements in the input sequence to receive
more comprehensive contextual details. At the same time, the self-
attention mechanism obtains weights by calculating the correlation
between each position and other positions. Then, it applies these
weights to the weighted sum of all parts in the input sequence. In
this way, the representation of each location can contain information
from other places.

The advantage of the self-attention mechanism is that it can
calculate the correlation between various positions in parallel
without relying on sequential processing like traditional recurrent
neural networks. To better utilize the advantages of the self-attention
mechanism to improve VMD, it is considered to determine the
most suitable number of patterns by calculating the cosine angle
value corresponding to the original data after data preprocessing.
The smaller the absolute value of the included angle, the higher
the correlation between the two. The relationship between the
original data and the target can be successfully measured by
calculating cosine similarity to select an appropriate number of
decomposition modes.

sim(Ŷm,Ym) = |
Ŷm

T ⋅Ym

‖Ŷm‖∗ ‖Ym‖
| (7)

Where Ŷm andYm represent the component obtained afterVMD
decomposition and the component of original data, respectively,
whilem = 1,2,…,M denotes the number of decomposition modes.
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3.2 Mixed frequency and machine learning
modules

To better leverage the role of data preprocessing, it is crucial to
propose effective artificial intelligencemodels.Mixed frequency and
machine learning modules are introduced to increase the impact of
different cycles on the results.

3.2.1 Mixed frequency model
MIDAS (Mixed Data Sampling) regression is a method for

predicting time series data that combines high-frequency and low-
frequency data (Ghysels and Valkanov, 2004). This technique has
been applied in various fields, including finance, economics, and
environmental studies.

The basic idea of MIDAS regression is to use high-frequency
data as independent variables and low-frequency data as dependent
variables (Xu et al., 2021; Wichitaksorn, 2022). The approach
involves fitting a regression model in which the independent
variables are lagged high-frequency data, and the dependent variable
is low-frequency data. The mathematical formula for the MIDAS
regression model is as follows:

Yt = β0 + β1B(L
1/m;θ)X(m)t + εt (8)

where Yt,Xt represent the low-frequency data and the high-
frequency data, respectively, at time v. m is the value obtained by
dividing the high frequency by the low frequency and will be 7 in
this article. ɛt is the residual term. Lk/m lags the value of Xt backward
by k, and their specificmathematical expressions are listed as follows:

Lk/mXm
t = X
(m)
t−k/m

B(L1/m;θ) =
K

∑
k=0

ω (k;θ)Lk/m
(9)

where K denotes the maximum delay order of Yv, and ω (k;θ) is a
polynomial function that includes some common functions such as
the beta polynomial, etc.

A variant of the MIDAS model is the autoregressive MIDAS
(AR-MIDAS) model, which extends the basic MIDAS model
with autoregressive terms for the dependent variable. This
allows modeling of time-varying coefficients and dynamics in
the relationship between variables. The AR-MIDAS model is
represented as follows:

Yt = β0 +
L

∑
l=1

ηlYt−l + β1B(L
1/m;θ)X(m)t/m + εv (10)

Similar to the above lag of the low-frequency variables,
introducing the step size h to lag the high-frequency variables also
improves the result of the prediction.

Yt = β0 +
L

∑
l=1

ηlYt−l + β1B(L
1/m;θ)X(m)t−h/m + εv (11)

For the convenience of abbreviation, the following notation will
be used later. The impact of gas on carbon emissions is captured
as MIDAS-α, while the impact of fuel oil, crude oil, and ethanol
on carbon emissions are referred to as MIDAS-β, MIDAS-γ, and
MIDAS-δ, respectively.

3.2.2 Machine learning model
Artificial neural network (ANN) prediction is a type of machine

learning that uses algorithms to model and predict complex
relationships between inputs and outputs. The ANN consists of
multiple layers of interconnected nodes or artificial neurons, which
make predictions based on patterns in the data.

3.2.2.1 Kernel extreme learningmachine
The Extreme LearningMachine (ELM) is a powerful model that

has gained popularity in recent years due to its ability to make fast
and accurate predictions (Huang et al., 2006). The ELM model is a
type of feedforward neural network that can be trained quickly and
efficiently, making it ideal for large data sets.

The connecting weight β is between the hidden layer and the
output layer. The output of hidden layer nodes and output are
denoted as H, T respectively. ELM model can be expressed as:

Hβ = T′ (12)

While the minimum of the loss function can get the value of β.

β = (HTH)−1HTT (13)

The Kernel Extreme Learning Machine (KELM) is an extended
version of the ELM model that includes kernel features to improve
accuracy and performance. Like the ELM model, the KELM is a
feedforward neural network that uses a randomweight initialization
process to speed up training, but instead of a single hidden layer
with linear activation functions, it incorporates kernel functions to
handle non-linear relationships between input and hidden layers
(Huang et al., 2011).This allows themodel to capture more complex
relationships in the data, resulting in higher accuracy and better
performance (He et al., 2020).

β =HT(HTH+ I
C
)
−1
T (14)

3.2.2.2 Recurrent neural network
Recurrent neural network (RNN) are a powerful type of artificial

neural network that are particularly well suited for predicting
sequential data (Medsker and Jain, 2001). RNN consist of a series
of interconnected nodes or “cells” that are capable of both receiving
and transmitting information (Park et al., 2020).

One of themain advantages of RNN is their ability to learn long-
term dependencies between inputs. In this way, the network can
detect patterns in the input data that occur over long periods of time,
such as seasonal trends or periodic fluctuations (Son et al., 2019).

The RNN has only two inputs: xt and ht−1. These two inputs
are the sample input at the current time and the hidden layer
state input at the previous time. We fix ht−1, so we only change
xt. Two outputs in the RNN are Ot and ht. These two outputs
are the output of the current time step and the output of the
hidden layer of the current time step. The current transition
of the hidden layer is used as input for the calculation of the
next time step.

Assume σ, W, c are activation function, weight and bias,
respectively. The calculation formulas from input to output Ot and
ht are listed as follows:

ht = σ(U∗ xt +V∗ ht−1 + b)

Ot =W∗ ht + c
(15)

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1341881
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Li et al. 10.3389/fenrg.2023.1341881

FIGURE 4
Optimal submodel with data preprocessing and ensemble model.

3.2.2.3 General regression neural network
GRNN is a network-based model which can be used

for tasks such as classification, regression, and clustering

(Specht et al., 1991). The full name of GRNN is General Regression
Neural Network and was proposed by American scientist
Donald F. Specht.
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FIGURE 5
Model with preprocessing and without preprocessing.

The advantage of GRNN is that it does not require too much
parameter adjustment and training time, and it works well even with
small data sets. In addition, GRNN is also very resistant to noise and
high interpretability, which makes it widely applicable in practise.

The theoretical basis of GRNN is nonlinear regression analysis,
in which the analysis of the nonindependent variable Y with
respect to the independent variable u actually computes v with the
maximum probability value. Let the observed value of u be known
to be u, then let the regression of v be with respect to X. Where
Xi, Yi are the sample observations of the random variables u, v.
σ is the width coefficient of the Gaussian function. Computing a
net output Ŷ(X) as:

Ŷ (X) =

n

∑
i=1

Yie
− (X−Xi)

T(X−Xi)
2σ2

n

∑
i=1

e−
(X−Xi)

T(X−Xi)
2σ2

(16)

3.2.2.4 Long short-termmemory network
LSTM is a variant of RNN to solve the long-term memory

problem (Hochreiter and Schmidhuber, 1997).

LSTM has certain advantage in sequence modeling and has a
long-term memory function which leads to implementation easily
(Gallardo-Antolín andMontero, 2021).Meanwhile, LSTMsolves the
problem of gradient vanishing and gradient explosion during long
sequence training (Hao et al., 2022). As a deep learning machine
learning model, LSTM has the advantage of significantly improving
prediction performance and has been increasingly noticed and used
by scholars. Meanwhile, LSTM is a network commonly used for
sequence model prediction, widely used in fields such as time
series analysis (Akhtar and Feng, 2022). LSTM has strong anti-
noise performance. When processing sequence data in practical
applications, there are often situations where noise and outliers exist
in the data (Alsulami et al., 2022).

The gate structure of LSTM (3 in total) is listed as follows:

◦ Forget Gate: based on the current input and the previous state
of the hidden layer, the sigmoid activation function is used to
determine which information to forget.

ft = σ(W f ⋅ [ht−1, it] + b f) (17)
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TABLE 4 Result of MIDAS model SA-VMD-MIDAS model.

Model MIDAS-α MIDAS-β MIDAS-γ MIDAS-δ P-M

N S N S N S N S S

MAPE 5.7765% 3.7497% 5.8036% 3.7421% 5.7912% 3.7397% 5.7901% 3.7462% 3.3596%

MAE 4.7597 3.0673 4.7843 3.0637 4.7710 3.0610 4.7723 3.0672 2.7438

RMSE 5.8297 3.8045 5.7449 3.8271 5.7839 3.8246 5.8459 3.8272 3.5397

IA 0.8786 0.9431 0.8814 0.9424 0.8808 0.9425 0.8777 0.9424 0.9536

FE1 0.9422 0.9625 0.9420 0.9626 0.9421 0.9626 0.9421 0.9625 0.9664

FE2 0.9028 0.9353 0.9047 0.9349 0.9037 0.9350 0.9025 0.9349 0.9392

U1 0.0351 0.0228 0.0346 0.0229 0.0348 0.0229 0.0352 0.0229 0.0212

U2 0.7294 0.7811 0.7151 0.7910 0.7170 0.7907 0.7299 0.7909 0.7659

VAR 33.4206 14.7997 32.5579 14.9692 32.8771 14.9514 33.4837 14.9693 12.8063

R2 0.5628 0.8138 0.5754 0.8116 0.5696 0.8118 0.5603 0.8116 0.8388

Spearman 0.7889 0.8885 0.7876 0.8921 0.7929 0.8888 0.7883 0.8900 0.9200

MDM 5.2017 - 5.0898 - 5.1680 - 5.1966 - -

p_value 0.0000 - 0.0000 - 0.0000 - 0.0000 - -

The bold values mean the optimal values. N represents No-denoising, S represents SA-VMD, and P-M represents the proposed model.

◦ Input Gate: after some information is forgotten, it is necessary
to add some useful information based on the last state, and at
this point an input gate is used to determine what information
is newly added.

mt = σ(Wm ⋅ [ht−1, it] + bm)

C̃t = tanh(WC ⋅ [ht−1, it] + bC)

Ct = ft ∗Ct−1 +mt ∗ C̃t

(18)

◦ Output Gate: the output gate determines the output at the
current time based on the input at the current time, the state of
the hidden layer at the previous time, and the last state.

ot = σ(Wo [ht−1, it] + bo)

ht = ot ∗ tanh(Ct)
(19)

Where it, ft, Ct, ot and C̃t are the input value, forget gate, input
gate, and input gate, the unit state, respectively. ht−1 is output at the
previous time step. σ is the sigmoid function, W and b are weights
and biases parameters.

In conclusion, LSTM networks offer several advantages and
unique features that make them powerful tools for integrating
models with commen frequency and mixed frequency. Although
LSTM is a widely used deep learning model, the number of hidden
layers and the value of the learning rate are uncertain, which leads
to its instability. The multiobjective algorithm is used to find the
optimal number of hidden layers, learning rate, and learning rate
attenuation value.

3.3 Ensemble modeling module

To enhance the results of prediction, an ensemble predictor
based on multi-objective algorithms is developed as an ensemble
prediction component in this paper.

3.3.1 Multi-objective optimization techniques
White Shark Optimizer (WSO) is a new algorithm proposed

by Malik Braik, Abdelaziz Hammuri et al., inspired by the behavior
of the great white shark during hunting (Braik et al., 2022).
Improvedmulti-objectiveWSO algorithm (MOWSO)was proposed
to solve multi-objective optimization problems (Xing et al., 2023).
The details are described below:

WSO needs to be initialized before the iteration starts, and the
initial solution is represented by the following equation:

ω =

[[[[[[[

[

W11 W12 … W1n

W21 W21 … W2n

⋮ ⋮ ⋮

Wd1 Wd2 … Wdn

]]]]]]]

]

(20)

The dimensional of the space is n, the population of d great white
sharks (i.e., the population size) and the location of each great white
shark can be represented as a d-dimensional matrix to represent the
proposed solutions to a problem.

Wji = Li + r× (Li −Ui) (21)

Wji is the initial vector of the jth white shark in the ith
dimension. Ui and Li represent the lower and upper bounds of
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TABLE 5 Result of ANN model SA-VMD-ANNmodel.

Model KELM RNN GRNN P-M

N S N S N S S

MAPE 6.0841% 4.1554% 6.0658% 4.2071% 5.9619% 4.5739% 3.3596%

MAE 5.0294 3.4535 5.0076 3.5245 4.8879 3.7442 2.7438

RMSE 6.0285 4.3557 6.1787 4.5715 5.9380 4.7150 3.5397

IA 0.8701 0.9242 0.8314 0.9124 0.8744 0.9090 0.9536

FE1 0.9392 0.9584 0.9393 0.9579 0.9404 0.9543 0.9664

FE2 0.9008 0.9264 0.8966 0.9256 0.8998 0.9174 0.9392

U1 0.0365 0.0263 0.0374 0.0276 0.0355 0.0282 0.0212

U2 0.7366 0.7525 0.8056 0.7628 0.7715 0.7545 0.7659

VAR 33.8879 18.0991 36.4603 19.4217 36.0214 22.7236 12.8063

R2 0.5325 0.7559 0.5089 0.7311 0.5464 0.7140 0.8388

Spearman 0.7784 0.8813 0.6983 0.8686 0.7577 0.8389 0.9200

MDM 5.1632 - 3.1289 - 4.2100 - -

p_value 0.0000 - 0.0020 - 0.0000 - -

The bold values mean the optimal values. N represents No-denoising, S represents SA-VMD, and P-M represents the proposed model.

TABLE 6 Result in the experiment 3.

Frequency CF MF SA-VMD-CF SA-VMD-MF P-M

MAPE 5.8121% 5.7783% 4.1547% 3.7444% 3.3596%

MAE 4.7878 4.7629 3.4490 3.0648 2.7438

RMSE 5.7461 5.7953 4.3865 3.8203 3.5397

IA 0.8723 0.8798 0.9206 0.9426 0.9536

FE1 0.9419 0.9422 0.9585 0.9626 0.9664

FE2 0.9037 0.9035 0.9258 0.9350 0.9392

U1 0.0346 0.0349 0.0264 0.0229 0.0212

U2 0.7549 0.7225 0.7451 0.7884 0.7659

VAR 32.6157 33.0158 18.8969 14.9187 12.8063

R2 0.5752 0.5679 0.7525 0.8122 0.8388

Spearman 0.7610 0.7908 0.8708 0.8910 0.9200

MDM 5.1922 5.1602 3.4281 - -

p_value 0.0000 0.0000 0.0008 - -

The bold values mean the optimal values. P-M represents the proposed model.
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TABLE 7 The comparison of ensemble models.

Model MOALO MOGWO MOWSO

MAPE 3.6975% 3.6434% 3.3596%

MAE 3.0096 2.9608 2.7438

RMSE 3.7234 3.6838 3.5397

IA 0.9463 0.9486 0.9536

FE1 0.9630 0.9636 0.9664

FE2 0.9363 0.9367 0.9392

U1 0.0223 0.0220 0.0212

U2 0.8096 0.8067 0.7659

VAR 14.1117 13.6289 12.8063

R2 0.8216 0.8254 0.8388

Spearman 0.9069 0.9070 0.9200

The bold values mean the optimal values.

the space in the ith dimension, respectively. r is a random number
created in the interval [0, 1]. And k and K stand for the current and
maximum number of iterations.

The speed to the prey:

V j
k+1 = μ[V

j
k + P1 (Wgb −W

j
k) ×C1 + P2 (Wb −W

j
k) ×C2] (22)

Where j = 1,2,…,d is the great white shark of the n large population,
V j
(k+1) represents the new velocity vector at step (k+ 1), V j

k defines
the current velocity vector at step k, Wgb represents the global
optimal position vector achieved by each great white shark in
the kth iteration so far, Wj

k is the current position vector of
the first great white shark in step k, Wb is the best known
position vector of the population, and C1, C2 are two random
numbers generated uniformly in the range of [0,1]. μ refers to
the constriction factor proposed in WSO. P1 and P2 represent
the forces of the white sharks that control the effect of Wgb

andWb on V j
k.

Approaching the best prey:

Wj
k+1 =
{
{
{

Wj
k ×Λ⊕+(u× t1) + (u× t2) rand <mv

Wi
k + (W

j
k/ f) rand ≥mv

(23)

Among them, t1 = sgn(W
j
k − u) > 0 and t2 = sgn(W

j
k − l) < 0

represent one-dimensional binary vectors determined by the
formula, f denotes the frequency parametersmv of the waves, Λ is a
negation operator, ⊕ is a bit-wise xor operation, which are supposed
to express the auditory and olfactory intensity of the great white
sharks, increasing as an iterative function. rand defines a random
number created in the range from 0 to 1, and u denotes the lower
and upper limits of the search space. A smaller value mv leads to a
local search, while a larger value mv leads to a global search, where

mv is represented by the following equation:

mv = 1

(a0 + e
K/2−K
a1 )

(24)

Where a0 and a1 are two positive constants employed to manage
exploration and exploitation behaviors.

Optimal positional motion (convergence):

Wj
k+1
′
=Wgb + p1Dwsgn(p2 − 0.5) p3 < S (25)

Wj
k+1
′
is the updated location of the jth great white shark relative

to its prey location, sgn (p2 − 0.5) gives 1 or −1 for the change in
search direction. p1, p2 and p3 are random numbers in the range
[0,1],Dω is the distance between the prey and the great white shark,
and S is the odor and sight intensity of the proposed parameter
great white shark when following other great white sharks near
the best prey.

3.3.2 Ensemble forecasting module
In this section, the new ensemble strategy integrates the

submodels to acquire the ultimate carbon trading price forecasting
results. Considering the advantages of Deep Learning in machine
learning and price forecasting (Lin et al., 2022), this paper attempts
to develop a novel ensemble predicting model based on the
LSTM model as an ensemble forecasting model. Although LSTM
is a widely used deep learning model, the number of hidden
layers and the learning rate’s value are uncertain, leading to
its instability. To overcome this problem, this paper considers
introducing an advanced MOWSO algorithm to solve this problem.
The multiobjective algorithm finds the optimal number of hidden
layers, learning rate, and learning rate attenuation value. Among
them, accuracy and stability are represented by f1 and f2 respectively,
as shown below:

min
{{{
{{{
{

f1 =
1
L

L

∑
t=1
(|Âl −Al|)

2

f2 = Std(|Âl −Al|)
(26)

Where Al and Âl represent the actual and predicted values,
respectively. t = 1,2,… ,L, L is the test sample size.

By combining the advantages of LSTM and MOWSO, a
MOWSO-LSTM model is built to obtain the optimal parameter
solution and objective function value. Finally, based on the
MOWSO-LSTM model, a novel ensemble forecasting model
is proposed, which provides an optimal prediction of carbon
trading prices by integrating the advantages of each sub-model.
Table 1 presents the parameter values employed in this study
for the MOWSO optimization algorithm and the LSTM deep
learning model.

4 Experiments and analysis

The evaluation index, data descriptions, and experimental
design are constructed in this section.
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TABLE 8 The results of ensemble model and other optimal submodels.

Model KELM RNN GRNN MIDAS-α MIDAS-β MIDAS-γ MIDAS-δ P-M

S S S S S S S S

MAPE 4.1554% 4.2071% 4.5739% 3.7497% 3.7421% 3.7397% 3.7462% 3.3596%

MAE 3.4535 3.5245 3.7442 3.0673 3.0637 3.0610 3.0672 2.7438

RMSE 4.3557 4.5715 4.7150 3.8045 3.8271 3.8246 3.8272 3.5397

IA 0.9242 0.9124 0.9090 0.9431 0.9424 0.9425 0.9424 0.9536

FE1 0.9584 0.9579 0.9543 0.9625 0.9626 0.9626 0.9625 0.9664

FE2 0.9264 0.9256 0.9174 0.9353 0.9349 0.9350 0.9349 0.9392

U1 0.0263 0.0276 0.0282 0.0228 0.0229 0.0229 0.0229 0.0212

U2 0.7525 0.7628 0.7545 0.7811 0.7910 0.7907 0.7909 0.7659

VAR 18.0991 19.4217 22.7236 14.7997 14.9692 14.9514 14.9693 12.8063

R2 0.7559 0.7311 0.7140 0.8138 0.8116 0.8118 0.8116 0.8388

Spearman 0.8813 0.8686 0.8389 0.8885 0.8921 0.8888 0.8900 0.9200

The bold values mean the optimal values. N represents No-denoising, S represents SA-VMD, and P-M represents the proposed model.

4.1 Evaluation index

To evaluate submodels and the overall model, the evaluation
module of this article includes two parts: the new comprehensive
evaluation index and other evaluation indicators.

4.1.1 Novel comprehensive evaluation indicators
This article evaluates the accuracy of carbon trading

price forecasting by introducing five classical valuation
indicators:

Mean Absolute Percent Error (MAPE) is a measure of relative
error that uses absolute values to avoid canceling positive and
negative errors. Mean absolute error (MAE) describes prediction
errors, while root mean square error (RMSE) indicates the
coefficient of determination of prediction errors. R2 is an indicator
for assessing the goodness of fit of regression models and the index
of agreement (IA) (Wang et al., 2022c).

There are various evaluation criteria but no universal method
for measuring the quality of the various models. Following previous
literature, this article proposes a new evaluation index to assess
forecasting models’ accuracy comprehensively. Comprehensive
evaluation indicators (CEI) were defined based on the five typical
indicators used in this article for forecast evaluation. Considering
the importance of each indicator, this article considers the method
of assigning weights to determine the importance of different
indicators. In this study, all indicators have the same importance,
so each weight of CEI is assumed to be 0.2. The detailed formula
is as follows:

CEI = ω1 ⋅MAE+ω2 ⋅RMSE+ω3 ⋅MAPE+ω4 ⋅ (1− IA)

+ω5 ⋅ (1−R2) (27)

4.1.2 Other evaluation indicators
In order to provide a more comprehensive and accurate

evaluation of the predictive effect of carbon trading prices, this
paper adds some more indicators as supplements. The typical point
prediction evaluation indicators Theil U-statistic 1 (U1) and Theil
U-statistic 2 (U2) measure the degree of model superiority. Some
evaluation indices are listed as follows in Table 2, where Al and
Âl are the actual values and are the predicted values, L is the
number of test samples, and ̄AL and Ā are the average value of
the actual data and the average value of the predicted values,
respectively.

4.1.2.1 Correlation strength
The Spearman correlation coefficient (Spearman), also

called Spearman’s rank correlation coefficient, is used to
measure the correlation between two variables. Spearman
proposed a different method, using the order of the data size
instead of the numerical value itself. The correlation strength
indicators can show the superiority of the innovative ensemble
prediction model.

4.1.2.2 Forecasting effectiveness
Prediction efficiency is an essential means of measuring

prediction performance. Generally, the evaluation criteria for
prediction efficiency are first calculated as an absolute percentage
error. Then, the mean and variance of absolute percentage error
are used to obtain first-order forecasting effectiveness (FE1) and
second-order forecasting effectiveness (FE2).

4.1.2.3 Forecasting stability
Besides prediction efficiency, prediction stability is a significant

criterion for evaluating model performance and can be used
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FIGURE 6
Comparison of multi-objective algorithms.

to evaluate ensemble models. The stability of the prediction
is generally measured by the variance of the prediction
error (VAR). The smaller the value VAR, the more stable
the prediction.

4.1.2.4 Statistical significance
The modified form of the Diebold-Mariano test (MDM)

is used to determine whether there are significant differences
between different data sets and whether the results of the
ensemble prediction model are significantly different from those of
other models.

4.2 Data description

To make accurate predictions about carbon emission prices,
publicly available carbon trading data from the U.S. Intercontinental
Exchange on the investing website were selected for this article.
Looking at the classification of external factors affecting carbon
emissions, it is clear that energy is the most important factor
affecting the carbon trading price selected in this article.
Therefore, gas, fuel oil, crude oil, and ethanol data from the
same investment website were selected for this article. The
impact of gas on carbon emissions is captured as MIDAS-α,
while the impact of fuel oil, crude oil, and ethanol on carbon
emissions are referred to as MIDAS-β, MIDAS-γ, and MIDAS-δ,
respectively.

All five datasets contain high-frequency (daily) and low-
frequency (weekly) price data, with weekly carbon trading prices
being the target of the prediction in this article. To improve the
experiments of the prediction in this article, a total of 900 weekly
carbon emission price data are divided into three parts:The first part
is a training set to train each sub-model to obtain prediction results,
with a total of 720 data; the second and third parts contain a total
of 180 data; the second part is the validation set to determine the
optimal sub-model, with a total of 135 data points; the third part is

the test set to test the error size between the actual value and the test,
with a total of 45 data.

Because the weekly dataset is fixed in time, this article considers
controlling the start and end times of the training, validation, and
testing datasets to ensure that eachmixing factor consistently affects
the carbon trading price. A total of 4,500 data were obtained by
filling in the missing data. To increase the accuracy of the data, 900
data were obtained by processing and completing some outlier data
of weekly carbon trading prices. In this paper, a mixed-frequency
(MF) example ofweekly carbondioxide emissions trading prices and
daily heating oil prices and a common-frequency (CF) example of
weekly carbon dioxide emissions trading prices and weekly natural
gas prices are selected as typical examples, as shown in Figure 2
and Table 3.The statistical characteristics tables and the two-sample
Kolmogorov-Smirnov test table for all datasets are shown below and
indicate that the p-value is 0.0000. Therefore, it can be assumed that
a significant difference exists between the different factors, and using
them as factors affecting carbon prices to achieve good results is
reasonable.

4.3 Experimental design

Four experiments were conducted in this article to demonstrate
the rationality and effectiveness of carbon price prediction. In
experiment 1, the lag order is set from 1 to 6, and the CEI
index is used to evaluate the optimal lag order of the different
submodels and select the optimal submodel in the CF models. The
MF models require the simultaneous discussion of the lag order
of x and y. In the second experiment, the preprocessed submodels
were compared with the corresponding submodels, confirming
the superiority and effectiveness of SA-VMD decomposition. In
the third experiment, the prediction effects and errors of the
submodels CF andMF and the effects and errors of the preprocessed
submodels CF and MF were compared. The comparison of
the ensemble model with the previous submodels shows the
effectiveness and superiority of the ensemble method, as shown in
Experiment 4.

4.4 Experiment 1: establishment of optimal
submodel

In carbon price prediction, it is crucial to select the optimal
submodel to obtain a satisfactory ensemble model in the future.
Therefore, this article considers comparisons based on data
preprocessing techniques and determining the optimal lag order
by CEI indicators to determine the optimal submodel. Specifically,
this article selects the optimal index by creating an MF-MIDAS
model with lag orders y from 1 to 6, lag orders x from 7 to
42, and intervals of 7. Moreover, the three machine learning
models with the CF all have lag orders from 1 to 8, and the
specific prediction results are shown in the table. In addition,
the optimal submodel is the one that has the lowest CEI value.
The CEI results corresponding to the different lag orders are
shown in Figures 3, 4 below. Due to the consideration that the
lag order table is too large, the table has been moved to the
Supplementary.
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FIGURE 7
Comparison between the proposed model and sub models.

(1) For the mixed frequency MIDAS model, as shown in the table
in the appendix, the optimal AR-MIDAS model is determined
by taking values from 1 to 6 and 7 to 42 for different lag orders y
and x, respectively, using the lowest CEI value and polynomial
comparison. For example, in MIDAS-α without data pre-
processing, it can be found that when ylag = 5, xlag = 35,
and Legendre polynomials is selected as the polynomial, CEI
achieves the lowest value of 3.3849, which is superior to other
lag orders and polynomial selection. Therefore, this model
is the optimal MIDAS-α sub-model at this time. Similarly,
it can be seen that MIDAS-β, MIDAS-γ, and MIDAS-δ are
the optimal sub-models when ylag = 5 and xlag = 7, and the
polynomials are Legendre polynomials. For the AR-MIDAS
model after data preprocessing: ylag = 3, xlag = 35 when
Legendre polynomials is selected as the polynomial, it is the
optimal SA-VMD-MIDAS-α submodel; ylag = 6, xlag = 35,
when the polynomial is Legendre polynomials, it is the optimal
SA-VMD-MIDAS-β submodel; ylag = 6, xlag = 35, when the
polynomial is Legendre polynomials, it is the optimal SA-
VMD-MIDAS-γ submodel; When ylag = 6, xlag = 35, and the
polynomial is a Beta polynomial, it is the optimal SA-VMD-
MIDAS-δ submodel.

(2) For artificial intelligence models of the same frequency, as
shown in the table in the appendix, three optimal SA-VMD-CF
models (SA-VMD-KELM, SA-VMD-RNN, SA-VMD-GRNN)
and three optimal CF models (KELM, RNN, GRNN) were
obtained by comparing the order of 1–6 lags. For example,
by comparing the CEI values corresponding to different
lag orders, it is easy to see that when the lag order is
2, the SA-VMD-KLEM submodel with data preprocessing
has the lowest CEI value of 2.6602, which is better than
the results of others. This means that a lag order of 2
is the optimal SA-VMD-KELM submodel. Similarly, the
optimal lag orders for KELM, RNN, and GRNN are 1, 1,
and 5, respectively. Similarly, SA-VMD-RNN and SA-VMD-
GRNN, which have undergone data preprocessing, obtain
the optimal submodels when the lag orders are 6 and 6,
respectively.

Remark: Experiment 1 selects the optimal MIDAS and
machine learning models by comparing the CEI index,
laying a solid foundation for future ensemble prediction. The
experimental results indicate the optimal lag order of the
optimal submodel.
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FIGURE 8
Comparison between real values and models.

4.5 Experiment 2: comparison of
sub-models with SA-VMD and sub-models

This experiment verifies the superiority of data preprocessing
and the advantages of SA-VMD decomposition by contrasting the
submodels with corresponding submodels after data preprocessing.
We compared the various indicators of the optimal submodel
obtained in Experiment 1 and compared the indicators of the
submodel with or without data preprocessing as shown in Figure 5
and Tables 4, 5 below:

(1) The first comparison between the submodels and the
corresponding submodels after data preprocessing shows
that data preprocessing plays a crucial role in predicting the
mixing of carbon emission prices. As shown in the table, all
the blending submodels without data preprocessing have lower
indicators than those decomposed with SA-VMD, indicating
that the submodels decomposed with SA-VMD outperform
the corresponding submodels in various aspects of prediction.
For example, theMAPE indicator ofMIDAS-α is 5.7765, while
the MAPE indicator of the SA-VMD-MIDAS-αmodel is only
3.7497; After data preprocessing, the MAE decreased from
4.7597 to 3.0673, and the MDM test p-value of 0.0000 also
fully proves the superiority of SA-VMD-MIDAS-α compared

to MIDAS-α. Similarly, it can be found that SA-VMD-
MIDAS-β, SA-VMD-MIDAS-γ, and SA-VMD-MIDAS-γ
all outperform their corresponding sub-models in terms of
predictive indicators.

(2) In the second comparison, the superiority and importance
of SA-VMD decomposition in the CF artificial intelligence
deep learning submodels can be established by comparing the
corresponding submodels without SA-VMD decomposition
and SA-VMD decomposition. As shown in the table,
the submodels with SA-VMD technology outperform the
corresponding submodels in predicting indicators in all
aspects. This indicates that the submodels decomposed by
SA-VMD are superior to the corresponding submodels.
For example, the MAPE indicator of the KELM model is
6.0841, while the MAPE indicator of SA-VMD-KLEM is
only 4.1554. The MAE and RMSE decreased from 5.0294
to 6.0285 to 3.4535 and 4.3557, respectively. The result of the
MDM test also proves the superiority of SA-VMD-KELM
over KELM. Similarly, both SA-VMD-RNN and SA-VMD-
GRNN can outperform their corresponding submodels in
predicting indicators.

Remark: Experiment 2 compared the evaluation indicators of
the submodels after data preprocessing with the corresponding
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FIGURE 9
Comparison between models.

submodels, and the results showed that the submodels after SA-
VMD was significantly better in prediction than the corresponding
sub-model.

4.6 Experiment 3: comparison of the MF
and CF models

This experiment demonstrates the important role and
irreplaceability of MF in carbon emission price prediction through
comparison. Also, it demonstrates the rationality and necessity of
using MF sub-models in prediction. The result is listed in Table 6.

(1) In the first comparison, several MF and CF submodels were
averaged to obtain the forecasting results, as shown in Table 6
below. From the comparison of the CF model and the MF
model, almost all the evaluation indices of the mixture model
are better than the initial frequency, proving the mixing and
common frequency prediction’s effectiveness andnecessity. For
example, theMAPEof the common frequencymodel is 5.8121,
while it is reduced to 5.7783 for the mixed frequency model,
and theMAE is also reduced from 4.7878 to 4.7629.The results
show that adding amixedmodel can improve prediction ability
and accuracy.

(2) In the second comparison, it can be seen that the preprocessed
SA-VMD-MF is significantly better than SA-VMD-CF, and
all indicators of the mixing model after VMD decomposition
are significantly better than the same frequency model
after SA-VMD decomposition. For example, the MAPE
of the SA-VMD-CF model has decreased from 4.1547 to
3.7444 of the SA-VMD-MF model, while the MAE has
also decreased from 3.4490 to 3.0648. The comparison

results prove the effectiveness of the mixing model and
once again prove the progressiveness and rationality of the
preprocessing.

Remark: Experiment 3 compared the prediction performance
between common frequency and mixed frequency submodels and
found that the mixed frequency model outperformed the common
frequency model, demonstrating the necessity and importance of
incorporating a mixed frequency model in carbon trading price
prediction.

4.7 Experiment 4: comparison of ensemble
models

To verify the superiority of the ensemble technology and
fully exploit the efficiency of Deep Learning, a new ensemble
strategy MOWSO-LSTM model is developed in this experiment.
As a generalization of the basic RNN model, the LSTM can
effectively overcome the RNN gradient explosion problem and is
robust to noise. This paper measures the importance of the new
integration methods for carbon price prediction by comparing
the ensemble effects of MOALO-LSTM, MOGWO-LSTM, and
MOWSO-LSTM. At the same time, the comparison of each
optimal sub-model and the ensemble model also shows the
progressiveness and effectiveness of the ensemble strategy. The
comparison between the proposed model and other ensemble
models and the comparison results of the optimal submodels and
the proposed model are shown in Tables 7, 8. The result is listed in
Figures 6–9.

(1) The first comparison shows that each indicator of the new
ensemble strategy model is superior to other ensemble models

Frontiers in Energy Research 19 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1341881
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Li et al. 10.3389/fenrg.2023.1341881

by comparing the errors of the three ensemble models, which
demonstrates the advantages of the new ensemble strategy.
For example, the MAPE of MOALO-LSTM is 3.6975, while
the MAPE of MOWSO-LSTM is only 3.3596. At the same
time, MAE decreased from 3.0096 to 2.7438, and RMSE fell
from3.7234 to 3.5397.MOWSO-LSTMalso outperforms other
ensemble strategies MOGWO-LSTM in every indicator. The
experiment fully proves that the ensemble strategy MOWSO-
LSTM is necessary and can enhance the prediction of carbon
trading prices.

(2) The second comparison compares the optimal artificial
intelligence submodels and MF with the new ensemble model
after preprocessing the data. It can be seen that each indicator
ofMOWSO-LSTM is superior to all the individual sub-models,
which once again proves the effectiveness and superiority of
the ensemble strategy. For example, the MAPE of the optimal
submodel of KELM after data preprocessing is 4.1554, the
MAPE of MIDAS-γ after data preprocessing is 3.7397, and
the MAPE of MOWSO-LSTM is only 3.3596. The MAPE
index of the proposedmodel improved by 28.3526% compared
to machine learning models. The MAE of MOWSO-LSTM
is 2.7438, and the IA is 0.9536, both of which are superior
to the optimal submodels. The MAE index of the proposed
model improved by 30.2597% compared to machine learning
models. At the same time, the other indicators of the new
ensemble model are also prominent to a single optimal
submodel. The experiment once again clearly illustrates the
progressiveness of the new ensemble strategy and provides an
effective method to improve the price forecasting ability of
carbon trading.

Remark: In Experiment 4, by comparing the LSTM model
based on the deep learning strategy using different multi-
objective optimization algorithms, the proposed model is superior
to other multi-objective ensemble models and any optimal
sub-model.

5 Conclusion

The current prediction of carbon trading prices faces
complexities in terms of temporal distribution characteristics and
uncertainties, making it challenging to achieve high accuracy. This
study introduces the concept of mixed frequencies into the carbon
trading price prediction field to consider the temporal distribution
characteristics of carbon trading prices better to overcome these
challenges. A novel integrated prediction method is developed to
reduce uncertainties and improve prediction results. Specifically,
this research includes a data preparationmodule, amixed-frequency
modeling module based on attention mechanism, and a machine
learning module. The mixed-frequency and machine learning
module consists of three CF (continuous frequency) models and
4 MF (mixed frequency) models, and the optimal sub-models
are determined based on proposed evaluation criteria to consider
the temporal distribution characteristics of carbon trading prices
sufficiently. Lastly, an ensemble module based on the LSTM model
is developed, taking advantage of the strengths of deep learning to
reduce parameter uncertainties in carbon trading price prediction.

A multi-objective algorithm is used to find the optimal solution for
LSTM parameters, resulting in the proposed model. The proposed
model outperforms all individual sub-models in various indicators.
For example, theMAPE of the best sub-models, SA-VMDRNN and
SA-VMD MIDAS2, are 4.2071% and 3.7421%, respectively, while
the MAPE of MOWSO-LSTM is only 3.5327%. The FE1 and FE2 of
the proposed model are 0.9664 and 0.9392, which are better than
each best sub-model.

Some specific innovations and conclusions can be listed
as follows:

(a) By successfully incorporating mixed frequencies, the
prediction of carbon trading prices is improved, and
the predictive performance is enhanced. Experimental
results show that adequately utilizing mixed-frequency
data helps reduce price prediction errors and provides
a more comprehensive consideration of the temporal
distribution characteristics than a single machine
learning model.

(b) The best sub-models are preprocessed using SA-VMD. The
optimal solution for the varying patterns is successfully
searched through iterations, and various mode functions
and central frequencies are continuously updated to obtain
multiplemode functionswith specific bandwidths. Comparing
the data preprocessing sub-models with their corresponding
sub-models demonstrates the necessity of data preprocessing
in price prediction, avoiding potential parameter uncertainties
in data preprocessing.
(c) New evaluation criteria based onmachine learning andmixed-

frequency modules are proposed, which can fully utilize
various evaluation indicators to obtain the optimal sub-
models. These evaluation criteria measure the performance
among different models and help select the optimal sub-
models, avoiding potential parameter uncertainties during the
sub-model prediction process.

(d) Based on the optimal sub-models, a deep learning-based
multi-objective optimization ensemble module is proposed
to enhance the results of carbon trading price prediction.
It is found that MOWSO optimizes three parameters of the
LSTM ensemble forecaster, avoiding parameter uncertainties
that may occur in ensemble prediction.

In conclusion, the proposed novel ensemble prediction model
can be used to investigate better the temporal distribution
characteristics and uncertainties of carbon trading prices. It
considers and overcomes the issues of data preprocessing
decomposition techniques and parameter uncertainties in ensemble
models while fully utilizing the temporal distribution characteristics
of carbon trading prices at different frequencies. The results
also demonstrate that the model has more potential and value
compared to existing models, and these methods can also be
applied to other prediction problems. However, there are still some
limitations and prospects in this study. Specifically, although the
static ensemble model performs better than each sub-model, a
dynamic ensemble based onBayesianmethodsmay yield even better
results. Furthermore, the current iteration of dynamic ensemble
weights is mainly based on single accuracy evaluation indicators.
Further research can explore multi-objective optimization methods
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to update weights, simultaneously considering dynamic ensemble
weights’ accuracy and stability. In addition, regarding data
preprocessing, this study only considers the closeness in the
direction of vector values when determining the number of
decomposition modes using the self-attention mechanism of VMD
without considering the approximation in magnitude. There is
still room for further optimization, and other data preprocessing
methods, such as EMD and EWT, may also be applicable depending
on the data’s frequency and temporal distribution characteristics.
Different data preprocessing methods for data with different
frequencies and temporal distribution characteristics may yield
better results.
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