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Introduction: Improving the precision and real-time speed of electricity data
prediction while safeguarding data privacy and security holds immense
significance for all power system participants’ decision-making. To surmount the
issues of exorbitant computational expenses and privacy breaches of traditional
centralized prediction methods, this paper proposes a decentralized asynchronous
adaptive federated learning algorithm for securely prediction of distributed power
data, which makes predictions from distributed data more flexible and secure.

Methods: First, each regional node trains its own deep neural network model
locally. After that, the node model parameters are uploaded to the decentralized
federated learning chain for ensuring local data protection. Asynchronous
aggregated update of the global prediction model is then achieved via block
mining and shared maintenance. The algorithm has been enhanced based on the
traditional federated learning algorithm, which introduces an asynchronous
mechanism while adaptively adjusting the regional node model weights and
local update step size to overcomes the inefficiency of traditional methods.

Results and Discussion: The experimental analysis of actual electricity price data
is conducted to compare and analyze with the centralized prediction model,
study the impact of model adoption and parameter settings on the results, and
comparewith the prediction performance of other federated learning algorithms.
The experimental results show that the method proposed in this paper is highly
accurate, efficient, and safe.
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1 Introduction

Power time-series data has a significant impact on power system operation, planning
and decision making. It can support decision making and optimization in load forecasting
and dispatching, fault detection and handling, energy planning and market trading.
However, with the development of distributed energy resources, the rise of microgrids
and the Energy Internet, and the application of intelligent and digital technologies, several
factors have contributed to making power systems become distributed (Liu et al., 2021).
Meanwhile, power industries, which are a vital part of national energy security, have data on
energy supply and demand, grid stability, etc. Therefore, it is necessary to develop an
efficient method applicable to the analysis and prediction of distributed power data, which
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can reduce the cost of data transmission and processing, and also
ensure the security of private data in the power industry (Ali
et al., 2023).

Currently, researchers have conducted relevant studies on the
analysis and prediction of time series data in distributed power
systems. The primary methods employed encompass traditional
time series analysis and intelligent data mining techniques. In the
time series approach, statistical analysis is conducted on power time
series data to identify its characteristics, patterns, and trends, which
are then utilized to derive predictive values (Badhiye et al., 2022;
Frizzo et al., 2023). Some of the more classical time series models
include Autoregressive (AR), Moving Average (MA), and
Autoregressive Moving Average (ARMA). Furthermore, data
mining methods are employed to capture potential non-linear
relationships in the formation process of power time series data,
thus enhancing prediction accuracy (Wang et al., 2023; Zhang et al.,
2023). Commonly utilized intelligentmethods include RandomForest
(RF), Support Vector Machine (SVM), Deep Neural Network (DNN),
Recurrent Neural Network (RNN), Convolutional Neural Network
(CNN), Long Short-Term Memory (LSTM), and Gated Recurrent
Unit (GRU), among others.

The above methods for predicting electricity time series data
usually adopt a centralized computing model, collecting all the data
and concentrating them in a central node for model training and
prediction analysis. During the training of the centralized predictive
model, all data is transmitted and stored on the central server, the
model is trained on the central server, and the update of the model is
applied directly on the central server (Ahmed et al., 2022). However,
the transmission of large amounts of data during centralised
learning poses a risk to user privacy (Mcmahan et al., 2017).
Meanwhile, the centralized mode has some problems, such as
high data acquisition cost, low real-time performance, large
resource consumption, and insufficient adaptability to the rapid
change of the distributed power system (Li et al., 2020a).

To overcome the shortcomings of centralized tariff prediction
models, some studies have applied techniques such as distributed
computing and federated learning to power systems, which delegate
data processing and analysis tasks to multiple edge nodes to improve
efficiency, real-time performance and security. Federated learning
methods can perform model training and parameter updating
without exposing data and achieve better privacy results. For
example, in FedAvg (Mcmahan et al., 2017), participating nodes
perform local training and upload model parameters to the server,
which performs parameter aggregation and model updating and
distributes the global model to nodes, iteratively performing the
above steps until convergence.

However, traditional federated learningmethods do not perform
well in the presence of heterogeneity in the system (Li et al., 2020b).
In a fluctuating and undulating distributed power system, the
conditions in each region are heterogeneous, and there may be
problems such as inconsistent data distribution in each region,
different data volumes, different data transmission efficiencies,
and different computing power (Yu et al., 2019; Zeng et al.,
2023). If an inappropriate data analysis and prediction method is
used, the results obtained will have a negative impact on strategy
analysis and decision making.

To address the limitations of the above methods, this paper
proposes a decentralized asynchronous adaptive federated learning

algorithm (DAAFed) for securely prediction of distributed power
data. The main contributions of this study are summarized
as follows.

1) A decentralized distributed framework has been developed for
predicting regional time series data. Each regional node trains
its own local data prediction model using its unique data. Next,
the parameters of the deep network model are uploaded. With
the use of blockchain technology, the aggregation update of the
global prediction model is realized through the generation of
blocks and the common maintenance of block sets.

2) The conventional federated learning algorithm is improved by
the integration of a time-synchronous mechanism, which
adopts the adaptive adjustment of the regional node model
weight and the local update step size, thereby improving the
accuracy and efficiency of distributed data prediction.

3) The proposed method will be validated using measured data
from different regions in Spain. By comparing and analyzing
the results with a centralized prediction model, investigating
the impact of model adoption and parameter settings on the
results, and comparing the prediction performance with other
federated learning algorithms, the experimental results
validate that the proposed method is able to balance safety,
accuracy and efficiency.

The rest of this article is organized as follows. Sections 2, 3
present a review of related work and the basic model for power time
series data prediction, respectively. The decentralized asynchronous
adaptive federated learning method proposed in this article is
explained in Section 4. Then, in Section 5, we perform
simulation experiments to verify the effectiveness of the method
proposed in this paper. Finally, Section 6 concludes this article.

2 Related work

In distributed machine learning, federated learning, as an
emerging artificial intelligence technology, can ensure data
privacy while performing efficient machine learning, providing a
new way to solve the “data silo” problem. Federated learning
algorithms have been gradually applied to various problems, such
as healthcare (Chen et al., 2023), communication (Qu et al., 2023),
language modelling (Wu et al., 2020), transportation (Qi et al.,
2023), etc. Federated learning was proposed by Google in 2017,
where global models are trained through the cooperation of edge
devices without sharing training data. In this approach, training is
performed by edge devices, and the weights of the training results are
shared with a central server to perform weight updates. And the
updated weights are then sent back to the edge devices for a new
round of training.

The basic federated learning methods are only suitable for
certain environments, so there are also some improved federated
learning methods that can be useful in different environments. A
federated learning approach in conjunction with deep autoencoder
networks based on representation learning was proposed by Husnoo
et al. (2023) to enable monitoring and data collection subsystems in
distributed grid regions to collaboratively train attack detection
models for accurate detection of power system and network

Frontiers in Energy Research frontiersin.org02

Li et al. 10.3389/fenrg.2023.1340639

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1340639


security anomalies without sharing sensitive power-related data. The
K-means was used to cluster power data locally at the utility,
followed by federated learning to build accurate power prediction
models for each class of power data in conjunction with other local
clients (He and Zhao, 2022). A combined federated learning and
deep reinforcement learning scheme for ultra-short term wind
power prediction has been proposed by Li et al. (2023a), which
uses a deep deterministic policy gradient algorithm as the basic
prediction model to improve prediction accuracy, and then
integrates the prediction model into the federated
learning framework.

Recently, blockchain-based federated learning approaches have
become increasingly popular. Blockchain provides tamper-proof
and non-repudiation guarantees for the data stored in its ledger.
Therefore, storing local and global models in the blockchain helps to
improve the overall integrity of the system. Blockchain nodes can
also collaborate to maintain the stored data and detect any malicious
intentions of the participants. In addition, the execution of smart
contracts is deterministic, which allows the federated learning
process to be executed correctly and fairly. Intelligent encryption
was redesigned to take advantage of the decentralized nature of
blockchain technology to design collaborative intelligent federated
learning frameworks for automated diagnosis without violating the
trustworthiness metrics of privacy, security and data sharing
encountered in smart city healthcare systems (Mohamed et al.,
2023). Privacy-sensitive energy data can be stored locally at edge
producer-consumer nodes without disclosure to third parties, and
only the learned local model weights are shared using a blockchain
network. Smart contracts are also used to handle the integration of
local machine learning predictive models with the blockchain,
enabling model parameter scaling and reducing blockchain
overhead (Antal et al., 2022). A blockchain federated learning
based object detection scheme was proposed by Li et al. (2023b),
which eliminates central authority by using a distributed
InterPlanetary File System (IPFS). The global model is
periodically aggregated when multiple local model parameters are
uploaded to the IPFS. Nodes can retrieve the global model from the
IPFS. This method has been used in face detection, animal detection,
unsafe content detection, vehicle detection, etc.

3 Preliminary

The characteristics and patterns of electricity time series data are
intricately linked to the geographical location and regional environment
of each distributed area. Factors such as electricity demand, load peaks
and troughs, weather conditions, power generation structure, and
network configuration in different regions all contribute to the
distinct characteristics of electricity data. To address the challenge of
predicting electricity time series data in diverse regions and to more
effectively capture the non-linear relationships and data features of
electricity prices, this study adopts a deep neural network model for
accurate predictions at the edge nodes. Specifically, we focus on
investigating and analyzing the commonly used CNN and LSTM, as
well as their combination, to achieve accurate forecasting.

Let Ωk represent the model of the kth node, and the sample data
used for training the prediction includes various feature data such as
load information Lk, generation information Gk, weather information

Wk, date informationDk, along with the corresponding labeled data for
prediction target Pk. The representation can be expressed as Eqs 1, 2:

xk � Lk,Gk,Wk,Dk[ ] (1)
yk � Pk[ ] (2)

Training of each node is based on both the model as well as the
sample data. The prediction accuracy is higher when the value of the
loss function is small. The commonly used loss function, Root Mean
Square Error (RMSE), can be expressed as in Eq. 3:

l Ω xk( ), yk( ) � ����������������
1
n
∑n

i�1 Ω xi( ) − yi( )2√
(3)

where n is the total number of samples at the kth node, xi ∈ xk,
yi ∈ yk, and Ω(xi) is the prediction output of the model.

Considering the efficient utilization of computing resources in
each region and the paramount importance of data security, this
study adopts the federated learning framework for model training
and parameter updating in the region-specific prediction. Each edge
node possesses data transmission and computation capabilities,
making it advantageous to delegate computation tasks to the
edge nodes, thereby ensuring accurate and efficient time series
data prediction in a trustworthy environment.

In contrast to the traditional centralized learning model that
uploads raw data to a central server for model training, the federated
learning framework assigns the model training task to distributed
local devices. Subsequently, the global model is updated on the
server side by exchanging certain parameters. The process of
prediction for each region using the federated learning
framework comprises the following steps:

1) The server defines the general task of prediction, including the
determination of global variables such as the choice of
prediction model, training rounds, and aggregation rounds.

2) As in Eq. 4, each node determines the initial local model based
on the global modelω. The node then trains the local modelΩk

using local data, encompassing generation, load, climate, and
date information. The node then uploads the parameters vk,
such as local model weights, to the server.

vk ← LocalUpdate ω, xk, yk( ), k � 1, 2, . . . ,K (4)

3) As in Eq. 5, the server globally aggregates the model
parameters from each node according to the specified
mechanism to construct a new global model ω.

ω ← GlobalUpdate v1, v2, . . . , vK( ) (5)

4) Each node receives the latest global model as the initial model
for the next round of training and iteratively performs steps
2) and 3) until the model prediction reaches the
desired accuracy.

4 Methodology

In this section, a decentralized asynchronous adaptive federated
learning algorithm is proposed, which is oriented towards the secure
prediction of distributed power data. As shown in Figure 1, the
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distributed regional time-series data prediction framework designed in
this paper has a two-layer structure. The edge layer consists of each
actual compute node, including the local power network and real-time
data. The communication layer is the communication link between
nodes, which is used to aggregate and update the model under the
cooperation. First, each regional node locally trains its own deep
network model Ωk and uploads the node prediction model
parameters vk to the federated learning chain to realize local data
protection. Then, the global model ω is updated asynchronously based
on the distributed ledger mechanism in blockchain technology, and the
aggregation of global models is realized by block mining, and each
regional node obtains the latest global model ω through the shared
immutable blockchain for subsequent prediction tasks.

4.1 Traditional federated learning algorithm

Within the federated learning framework, each participating node
conducts local training and uploadsmodel parameters to the server. The

FIGURE 1
Distributed regional electricity price forecasting framework.

FIGURE 2
Weight adaptive adjustment function.
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server aggregates parameters and updates the model, distributing the
global model to each node. These procedures are iterative and continue
until convergence is achieved. The most commonly used model
aggregation algorithm for federated learning is FedAvg. The total
number of nodes is K, the kth node contributes data samples as Sk,
then the number of samples of this node is |Sk|, and the total number of
data samples is S � ∑K

k�1|Sk|.
As in Eq. 6, the global objective function that requires

optimization is minF(ω), where ω ∈ Rd:

F ω( ) � 1
S
∑S

i�1f i ω( ) (6)

where fi(ω) � l(xi, yi;ω) represents the prediction loss for the
sample (xi, yi) under the model parameter ω, then Eq. 6 can be
rewritten as Eqs 7, 8:

Fk vk( ) � 1
Sk| |∑ xi ,yi( )∈Skf i vk( ) (7)

F ω( ) � ∑K

k�1
Sk| |
S

Fk vk( ) (8)

where Fk(vk) is the loss function of the kth node, while F(ω) is the
overall federated loss function.

Each iteration process of FedAvg comprises a local update and a
global update. During every iteration, the following process is undertaken:

Initially, the latest global model from the server is received as the
local model for the current round during the local update of each
node. Then, e iterations of the local model are carried out, updating
the model parameter ωk for the kth node in each iteration as in Eq. 9:

vtk � vtk − η∇Fk vtk( ) (9)
where, η is the learning rate of the local update at each node.

Secondly, once the local update is executed, the model
parameters are uploaded to the server. Subsequently, a server-
side global aggregation update is implemented using the
following aggregation formula as in Eq. 10:

ωt+1 � ∑K

k�1
Sk| |
S

vtk (10)

4.2 Asynchronous adaptive mechanism

The asynchronous adaptive federated learning algorithm proposed
in this paper makes improvements based on the FedAvg algorithm. In
the process of global model aggregation, an asynchronous mechanism
and adaptive adjustment of node model weights based on the
determination of time obsolescence are introduced. In the process
of updating local node models, personalized learning and adaptive step
length adjustment are introduced to ensure asynchronous real-time
and regional personalization, and to improve the prediction accuracy
while enhancing the generalization ability of the global model. The
specific implementation process of the asynchronous adaptive federal
learning algorithm is shown as follow.

First, the overall objective function is determined based on Eq.
10. In the asynchronous adaptive federal learning algorithm, the
overall objective function is Eq. 11:

min∑K

k�1
Sk| |
S

Fk vk( ) (11)

Let λk � |Sk|
S denote the weight of each node. Then add model

personalization constraints as in Eq. 12:

s.t. vk − ω‖ ‖2 ≤Tk (12)
where Tk, k � 1, 2, . . . , K{ } is the model personalization tolerance
threshold, which is used to reflect the difference between the
global model and the local model to achieve the personalized
learning of the node’s local model. The above optimization
objective function with constraints can be rewritten by using
the Lagrange equation as in Eq. 13:

TABLE 1 Pseudocode of DAAFed.

Algorithm DAAFed

Input: K (number of the involved edge nodes) e (max number of
iterations of the local model)

E (max number of aggregations of the global model)

Sk (data samples of each node)

Output: vk (local model parameter of each node)

ω (global model parameter)

1 set global model parameters ω to initial values, set vk � ω

2 for t � 0: (E − 1) do

3 # Parallel iterative phase at the edge nodes

4 parfor k � 1: K do

5 node#k updates the step-size η as in Eq. 28

6 node#k updates vk(t1) and μk(t1) as in Eqs 26, 27

7 node#k packages and broadcasts TX0 as in Eq. 40

8 if the latest TX0 is collected then

9 determine the corresponding βk as in Eq. 20

10 perform global model aggregation ω(t1) as in Eq. 19

11 package the global aggregation packet TX1 as in Eq. 41

12 generate BlockN and broadcast as in Eqs 42–46

13 end if

14 if a new block is received and verified then

15 add the block to the global model block set

16 update locally stored global model ω

17 update local task start moment tk

18 go to step#5

19 end if

20 if no information feedback is collected then

21 go to step#5

22 end if

23 end parfor

24 end for
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L vk,ω, μk( ) � ∑K

k�1λkFk vk( ) + uk

2
vk − ω‖ ‖2 − Tk( ) (13)

The partial derivative of this objective function can be obtained:

∇vkL � λk∇Fk vk( ) + uk vk − ω( ) (14)
∇ωL � ∑K

k�1uk vk − ω( ) (15)

∇ukL � 1
2

vk − ω‖ ‖2 − Tk( ) (16)

where k � 1, 2, . . . , K.
Secondly, in the aggregation of global models, the asynchronous

characteristics of multi-node collaboration should be considered.
Asynchronous training allows each node to update model
parameters independently with the server without worrying about
the calculation pace of other nodes. In the case of asynchronous
training, the model parameter update on the server side is carried
out asynchronously, that is, there is no need to wait for the progress of
other nodes that are being calculated. Considering the different time
required for each node to complete the local task, this paper assumes
that global aggregation begins whenever a single edge node completes
uploading model parameters. Therefore, the variable φk(t) ∈ 0, 1{ } is
introduced to indicate the completion of node updates as in Eq. 17:

φk t( ) � 1, kth node completes update at t
0, others

{ (17)

The above variables satisfy the constraints as in Eq. 18:

∑K

k�1φk t( ) � 1 (18)

According to Eq. 15, the global model aggregation is given by:

ω t1( ) � ω t0( ) +∑K

k�1φk t1( )βk tk, t1( ) vk t1( ) − ω t0( )( ) (19)

where t1 is the generation moment of the global model of the current
generation, which is also the moment when the local model of the kth
node completes this update, t0 is the generation moment of the global
model of the previous generation, tk is the generation moment of the
global model adopted by the local model of the kth node when it
performs the current update, βk is the weight adaptive adjustment
function based on the determination of the temporal staleness, which is
determined according to the before and after of the local update of the
kth node. If this model is outdated, the current node model is given a
smaller weight, the specific form can be defined as:

βk tk, t1( ) � βm cos
π t1 − tk( )
2 t1 + ε( )( ) (20)

where βm is the maximum learning weight, ε is a constant value close
to zero. And when tk is similar to t1, βk takes a value close to βm.

∂βk
∂tk

� βm sin
π t1 − tk( )
2 t1 + ε( )( ) π

2 t1 + ε( )( )> 0 (21)

∂βk
∂t1

� −βm sin
π t1 − tk( )
2 t1 + ε( )( ) π tk + ε( )

2 t1 + ε( )2( )< 0 (22)

∂2βk
∂tk2

� −βm cos
π t1 − tk( )
2 t1 + ε( )( ) π

2 t1 + ε( )( )2

< 0 (23)

∂2βk
∂t12

� −βm cos
π t1 − tk( )
2 t1 + ε( )( ) π tk + ε( )

2 t1 + ε( )2( )2

+ 2βm sin
π t1 − tk( )
2 t1 + ε( )( )

× π tk + ε( )
2 t1 + ε( )3( )

(24)

FIGURE 3
Overall predicted results and performance. (A) Predicted results
of node 1. (B) Iteration curve of node 1. (C) Predicted results of node 2.
(D) Iteration curve of node 2. (E) Predicted results of node 3. (F)
Iteration curve of node 3. (G) Predicted results of node 4. (H)
Iteration curve of node 4. (I) Predicted results of node 5. (J) Iteration
curve of node 5.
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FIGURE 4
Comparison of centralized and distributed prediction.

TABLE 2 Comparison of centralized and distributed prediction.

Mode Running time of each node (S) RMSE Data transmitted in a single transmission

Centralized 961.62 2.3 5 × 35,064 × 33

Distributed 817.79 2.313 53,601

FIGURE 5
Comparison of prediction results under different models.
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The values of βk vary with tk and t1 as shown in Figure 2.
According to Eqs 21–24, βk increases with the increase of tk, and
the magnitude of the increase decreases gradually, indicating that when
the local model is updated with the newer global model, the weight of
the updated node model should be increased accordingly. Also βk
decreases with the increase of t1. When tk is smaller, ∂

2βk
∂t12

> 0, which
means βk is convex. When tk is larger, ∂2βk

∂t12 < 0, which means βk is
concave. It indicates that the global model parameters obtained at the
early stage of prediction have large weights only at the early stage, and
their weights decrease rapidly in the later stage of prediction.

Convergence analysis is carried out on the aggregation of the
global model. When T → ∞, the algorithm is considered
convergent if the statistic R(T) � ∑T

t�1[F(ω(t)) − F(ω*)] meets
the predetermined convergence criteria that R(T)/T → 0, which
means ω → argmin∑T

t�1F(ω(t)) ≜ ω*, ω converges to ω* to
minimize the objective function.

The convergence analysis is shown as in Eq. 25.

R T( ) � ∑T

t�1 F ω t( )( ) − F ω*( )[ ]≤∑T

t�1 <ω t( ) − v,ω t( ) − ω*>

≤∑T

t�1
1
2βt

ω t( ) − ω*‖ ‖2 − ω t′( ) − ω*
���� ����2[ ] + βt

2
ω t( ) − v‖ ‖2

(25a)
According to (22), it can be inferred that βt decreases

monotonically. Using the assumption that ‖ω(t) − ω*‖2 ≤D2 and
local node personalization constraints ‖ω(t) − v‖2 ≤G2, the above
equation can be simplified and transformed as follows:

R T( )≤ 1
2β1

D2 + D2∑T

t�2
1
2βt

− 1
2βt−1

( ) + G2

2
βT

� D2

2βT
+ G2

2
βT ≤

D2

2βmin

+ G2βmax

2
(25b)

Consequently, R(T) has an upper bound and mean value of the
statistic R(T)/T → 0 when T → ∞, ensuring the convergence of the
global model aggregation.

Furthermore, for the update process of the edge model,
according to Eqs 14, 16, the update process can be expressed
as follow:

vk t1( ) � vk tk( )
− η1 ∇Fk vk tk( )( )( ) × λk∇Fk vk tk( )( ) + uk vk tk( ) − ω tk( )( )[ ]

(26)
uk t1( ) � uk tk( ) − η2 vk tk( ) − ω tk( )‖ ‖2( ) × vk tk( ) − ω tk( )‖ ‖2 − Tk( )

(27)
where η1 and η2 are the adaptive adjustment function of the step
size, which can be expressed as

η z( ) � max ηmin, min ηmax , p
q*z{ }{ } (28)

where ηmin is the minimum value of the step, ηmax is the maximum
value of the step, p> 1 and q> 0, z is the independent variable of
the adaptive function, and η(z) is a non-decreasing function
taking values in the interval [ηmin, ηmax]. As in Eq. 28, it is
indicated that when the gradient of the loss function is small
and the local model is close to the global model, the step size is
adaptively reduced to prevent non-convergence in the learning of
the local model. Compared with the fixed step size, the adaptive
step size can adjust the amplitude of the parameter changing
direction along the gradient according to the training stage, and
improve the convergence rate while ensuring the
convergence accuracy.

Convergence analysis of the update process of the edge model is
performed. Since the parameters of the above process are solved
according to a variant of gradient descent, a proof is required:

E vk t1( ) − ω*‖ ‖2 ≤ l vk tk( ) − ω*( ) (29)

As in Eq. 29, the distance between the parameters of the current
iteration and the optimal parameters ω* is less than the distance
between the parameters of the previous iteration and the optimal
parameters ω*, which means that the upper bound of the distance
between the parameters of the current iteration and the optimal
parameters is decreasing.

There are some assumptions on the functions F1, . . . , FK for the
algorithm as the premise of convergence analysis:

1) As in Eq. 30, F1, . . . , FK are all L-smooth: for all v and ω,

Fk v( )≤ Fk ω( ) + v − ω( )T∇Fk ω( ) + L
2
v − ω‖ ‖2 (30)

2) As in Eq. 31, F1, . . . , FK are all μ-convex: for all v and ω,

Fk v( )≥ Fk ω( ) + v − ω( )T∇Fk ω( ) + μ

2
v − ω‖ ‖2 (31)

3) The variance of the stochastic gradient is bounded as in Eq. 32:

E ∇Fk v( ) − ∇Fk ω( )‖ ‖≤ σ2k (32)

4) The expectation of the 2-Norm of the stochastic gradient is
consistently bounded as in Eq. 33:

TABLE 3 Comparison of RMSE under different models.

Evaluation indicators LSTM CNN CNN-LSTM

RMSE 2.377 2.353 2.313

FIGURE 6
Comparison of iteration curves under different models.
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E ∇Fk v( )‖ ‖22 ≤G2 (33)

Meanwhile, we measure the system heterogeneity by Γ as in Eq. 34,
which denotes the difference between the optimal value of the global
objective function and the weighted local objective function. Γ converges
to 0 when the data are distributed iid independently and identically.

Γ � F* −∑
k
λkF

*
k (34)

Let v′� vk(t1) and v� vk(tk), then

E v′ − ω*
���� ����2

� E v − ω* − η1∇Fk v( ) × λk∇Fk v( ) + uk v − ω( )[ ]∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2
� E( v − ω*‖ ‖2 + η1

2 λk∇Fk v( ) + uk v − ω( )[ ]2 − 2η1 ×

< v − ω*, λk∇Fk v( ) + uk v − ω( )[ ]∇Fk v( )> ) (35)
in which

−2η1 < v − ω*, λk∇Fk v( ) + uk v − ω( )[ ]∇Fk v( )>
� −2η1 < v − ω + ω − ω*, λk∇Fk v( ) + uk v − ω( )[ ]∇Fk v( )>

≤ − 2η1 ukTk + μ

2
v − ω*‖ ‖2[ ] + 6ΓLη12 − λkTk (36)

λk∇Fk v( ) + uk v − ω( )[ ]2
� λk

2∇Fk v( )2 + uk
2 v − ω‖ ‖2 + 2λkμk∇Fk v( ) v − ω( )

≤ λk2G2 + uk
2Tk + 2λkuk

μ

2
Tk (37)

In summary, the original equation can be converted as follow:

E v′ − ω*
���� ����2 ≤ 1 − η1μ( )E v − ω*‖ ‖2+η12B − (λk + 2η1uk)Tk (38)

B � 6ΓL + λk
2G2 + uk

2Tk + λkukμTk (39)

As in Eqs 35–39, this convergence analysis is formally similar to
that of FedAvg. However the equation in this paper subtracts one
more positive term, which show that the iterative process is
convergent.

4.3 Decentralization mechanism

Considering the demand for distributed power time-series data
prediction and the disadvantages of centralized processing, the
approach of applying blockchain technology in this case is
proposed in this paper in order to decentralize prediction,

TABLE 4 Comparison of RMSE under different federated learning algorithms.

Federated learning algorithms epochs = 5 epochs = 10 epochs = 20

rounds = 20 rounds = 10 rounds = 5

RMSE Average RMSE RMSE Average RMSE RMSE Average RMSE

FedAvg 2.685 2.547 2.377 2.362 2.419 2.368

2.405 2.495 2.228

2.479 2.484 2.288

2.506 2.269 2.259

2.660 2.185 2.646

FedProx 2.550 2.543 2.267 2.358 2.218 2.365

2.516 2.336 2.323

2.489 2.447 2.388

2.505 2.284 2.391

2.655 2.456 2.505

FedPer 2.690 2.546 2.302 2.357 2.227 2.372

2.495 2.406 2.203

2.411 2.333 2.237

2.553 2.309 2.399

2.581 2.435 2.794

DAAFed 2.447 2.460 2.282 2.313 2.398 2.334

2.317 2.294 2.255

2.386 2.316 2.429

2.414 2.308 2.267

2.736 2.365 2.321
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leveraging its global data ledger sharing and non-tamperability,
which can further ensure the trust, security, transparency and
traceability of data in the power industry.

In this paper, the federated learning global model parameter
updating process described in the previous subsection is
implemented by placing it on a blockchain. The blockchain
guarantees the operation of a shared and trusted distributed
ledger on a peer-to-peer network, which in the prediction
scenario of this paper is the shared set of global model
parameters blocks. The global model used for prediction is
placed on the blockchain for updating so that it is not under the
control of any single node, but each regional node has equal rights to

validate and access the global model in the blockchain in such a way
that it not only avoids a single point of failure, but also protects
against data attacks in terms of security.

The workflow of the communication layer of the decentralized
federated learning framework used in this paper broadly includes
the processes of block generation, consensus verification and global
maintenance. The decentralized implementation of the prediction
framework includes the following:

1) Setting permissions for each regional participant, only
participants with permissions for electricity data
prediction can jointly train the federation model, and

FIGURE 7
Comparison of iteration curves under different iteration parameter settings.

FIGURE 8
Predicted results of FedAvg.

FIGURE 9
Predicted results of FedProx.
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new nodes can join and receive the current federation model
only if they meet the permission conditions when accessing.

2) After each edge node completes a round of local training, it
packages and broadcasts the privacy protected local model
parameters and other data to the network, which includes the
local task start time tk, the local task completion time t1, the
local model parameters vk(t1), and the task completion
situation φk(t1) and other data to be recorded.

The local update is completed to form a data packet:

TX0 � tk, t1, vk t1( ), . . .{ } (40)

3) Each edge node collects the latest packet TX0 broadcast in the
network, completes the update of the global model by block
mining, calculates the global model aggregation ω(t1), and
packages the data before and after the aggregation.

The global aggregation is completed to form a data packet:

TX1 � φk t1( ),ω t1( ), . . .{ } (41)

4) The node that completes block mining packages the above
packets to form a block, and broadcasts it to the network
of nodes waiting for verification. The block consists of a
block body and a block header, where the block body
contains the data before and after aggregation, and the
block header contains the predecessor hash and the
root hash, and the specific process of block
generation includes:

Local updating and global aggregation of data packets together
form the block body:

BodyN � TX{ } � TX0,TX1, . . .{ } (42)

Hash algorithm achieves the irreversible mapping from
plaintext to ciphertext, this paper uses SHA256 to calculate the
hash value. The successor hash is the hash value of the previous
block and the root hash is generated based on the hash value of the
packet TX{ }:

PrevHash � Hash HeaderN−1( ) (43)
RootHash � MerkleTree TX{ }( ) (44)

The successor hash and the root hash together form the block
header of the block:

HeaderN � PrevHash,RootHash{ } (45)
The block header and the block body together form the block:

BlockN � HeaderN ,BodyN{ } (46)

5) After receiving blocks, all nodes in the network collaboratively
verify updates to the global model. The fastest node to
complete verification within each region sends its signature
to the other nodes for verification. Once all nodes have reached
a consensus, the block is added to the global model block set.
The most recent global model, along with signatures and
timestamps, form new blocks and attach to the blockchain.
Finally, each node receives a copy of the most recent global
model block to synchronise the model. Additionally, all nodes
collectively store and maintain the block set of the
global model.

At the same time, as shown in Eqs 47, 48, the node that
successfully mines a new block can obtain the block reward
BlockReward(k), which in turn encourages the nodes to jointly
maintain the update of the global model. Meanwhile, the node under
the proof-of-work mechanism can obtain the reward f(Sk)
proportional to the size of the sample data, which in turn
encourages the participants to contribute the data and the model.
After joining the prediction federation, participants can obtain
additional financial benefits by earning rewards while obtaining
accurate prediction models.

Reward k( ) � BlockReward k( ) + f Sk( ) (47)

BlockReward k( ) � BaseReward, successfulmining
0, others

{ (48)

FIGURE 10
Predicted results of FedPer.

FIGURE 11
Predicted results of DAAFed.

Frontiers in Energy Research frontiersin.org11

Li et al. 10.3389/fenrg.2023.1340639

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1340639


4.4 The overall process

In summary, the pseudo-code of the decentralized asynchronous
adaptive federated learning algorithmic process is shown in Table 1.
Combining the advantages of federated learning and blockchain, the
framework achieves privacy protection for local multi-source data
while removing the dependence on a centralized central server. The
approach improves training reliability and reduces communication
costs, while ensuring the scalability of the edge node network and
reducing the risk of single point of failure.

5 Experiments and results

5.1 Data and setup

The proposed method is implemented on a high performance
server equipped with Intel Xeon Gold 6136 and NVIDIA TITAN
XP. The Python libraries, including TensorFlow and Keras are used
to build our model. The experimental data was selected as a dataset
of historical data from 1st January 2015 to 31st December 2018 for
five regions of the Spanish electricity market, which consists of time-
series data on electricity price, generation, load, weather, and date
information, sampled every 1 h, where the price of electricity is used
as a label for the prediction. Missing values and outliers in the series
are filled and replaced using linear interpolation, normalization is
used before prediction training to prevent the effect of different
magnitudes, and inverse normalization is used for prediction output
to restore the relevance of the output data.

5.2 Analysis of the overall
implementation effect

First of all, to show the overall implementation effect of the
proposed framework in this paper, the data set is divided into
training set, validation set and test set for prediction training, the
RMSE of the training set and validation set in the iterative process is
recorded, and finally the prediction of the test set is performed and
the result is compared with the real value, and the partial tariff
prediction results and RMSE iteration curves of the nodes are shown
in Figure 3.

To verify the improvement of the prediction performance of the
proposed framework in this paper, the distributed regional tariff
prediction model and the centralized tariff prediction model are
compared and analyzed, and the prediction results of the two are
shown in Figure 4.

As shown in Figure 4, the predicted and actual values of the two
prediction models are relatively close to each other, and the
predicted value of the distributed model is slightly different from
the actual value, because the samples used for training in the
centralized model are the data of all nodes, while the samples
used for training in each node in the distributed model are only
the local data, but the distributed model strengthens the correlation
between nodes by protecting the transmission of the model
parameters and overcomes the phenomenon of data islanding.

The prediction performances of the distributed and centralized
modes are shown in Table 2, except for the prediction accuracy, the

distributed mode mostly outperforms the centralized mode. In
terms of running time, since the computational tasks are
assigned to each edge node in the distributed mode, and only
local data is used for single-point training, the computational
volume of a single computational unit is greatly reduced, and the
single-point training time in the distributed mode is less than that in
the centralized mode. In terms of data transmission, only the model
parameters are transmitted in the distributed mode, which protects
the data of each node and does not reveal the private data such as
power generation information and user habits, and “53601”
represents the sum of the elements of the weight matrix and bias
vector of the prediction model. The centralized mode requires the
transmission of all sample data, which has the risk of data leakage,
where “5 × 35064 × 33” means that there are 35,064 sample data in
each of the five nodes, and each sample contains 33 dimensions of
data. Therefore, the distributed model can effectively reduce the
amount of data transmitted in a single transmission and provide a
certain level of security to protect the privacy of electricity.

5.3 Comparative analysis of edge node
prediction models

Choosing a more appropriate model for distributed
prediction at the edge nodes can effectively improve the
overall prediction accuracy. To improve the implementation
effect of the method proposed in this paper, LSTM model,
CNN model and CNN-LSTM model are used at the edge
nodes to predict the electricity price for the same data set. The
model parameters are adjusted based on the method proposed in
the related literature, and the prediction performance under the
three models is compared and analyzed, as shown in Figure 5. The
RMSE is calculated again after converting the model output into
real size, and the results of the RMSE of each model evaluation
index are shown in Table 3.

From Figures 5, 6 and Table 3, it can be seen that the overall
prediction value of CNN-LSTM is closest to the real value, and the
efficiency of the training iteration is also higher. The main reason is
that CNN-LSTM combines the advantages of CNN and LSTM,
capturing both local and global temporal features at different time
scales through sliding window and loop structure, while the feature
of parameter sharing of convolutional layer reduces the number of
parameters of LSTM network and improves the computational
efficiency. Therefore, choosing CNN-LSTM model for prediction
at edge nodes can have good accuracy and efficiency.

5.4 Comparative analysis of federated
learning algorithms

To verify that the DAAFed algorithm proposed in this paper has
better prediction performance, FedAvg, FedProx (Li et al., 2020b),
FedPer (Arivazhagan et al., 2019) and DAAFed are used to predict
the electricity price on the same dataset, and the prediction
performance of the above algorithms are compared and analysed.
FedProx adds regularization terms to constrain the similarity
between the global model and the local model to prevent
overfitting (Li et al., 2020a). Each node model in FedPer has its
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own personalization layer that preserves the characteristics of the
node data (Arivazhagan et al., 2019).

The RMSE and average RMSE for each node using the above
federated learning algorithms with different iteration settings are
shown in Table 4. FedProx adds a regularization term to limit the
similarity between the global model and the local model and prevent
overfitting; and each node has its own personalization layer in each
node’s model in FedPer, which is used to preserve the node data’s
own characteristics. Table 4 shows that the prediction performance
of these two improved algorithms is similar to that of FedAvg. The
DAAFed algorithm used in this paper has a smaller error compared
to the other three algorithms, because the asynchronous mechanism
used in the aggregation of the global model allows the nodes to
update the model based on the latest global model, and at the same
time, the step size is adaptively adjusted in the updating of the node’s
local model, so the model learns to the better parameter faster, and
thus the overall performance is better. Therefore, the overall
performance is better.

From Table 4, it can be seen that setting different local iteration
epochs and global aggregation rounds has different prediction
effects, and choosing the appropriate settings can fully exploit the
advantages of the federated learning framework.

Figure 7 shows the iteration curves under different settings. It
shows that when epochs = 10 and rounds = 10 there is better
iteration efficiency than the other two settings. When epochs =
5 there is a slower decrease in the iteration curve because when the
number of local iterations is small, the local model of each node does
not have enough performance and cannot make full use of the local
data. When epochs = 20 there is a slow decrease in the iteration
curve before global aggregation, which means that a higher number
of local iterations leads to a slower decrease of the iteration curve
before global aggregation. This means that if the number of local
iterations is high, it can lead to overfitting, which affects the ability of
global model generalization, so the setting of epochs = 10 and
rounds = 10 can give better federated learning results.

Based on this setting, the prediction results of a node under each
of the above algorithms are shown in Figures 8–11, from which it
can be seen that the predicted value of DAAFed is closer to the real
value compared to several other federated learning algorithms.

6 Conclusion

In order to solve the problems of high computational cost and
low data security under the traditional centralized electricity data
forecasting method, this paper proposes a distributed regional
electricity market electricity price forecasting method based on
decentralized adaptive federated learning. The following
conclusions are drawn from the analysis of the arithmetic
example of the Spanish electricity market.

Compared to the conventional centralized prediction method,
the distributed data prediction method reduces the amount of
prediction calculation and data transmission, and approaches the
centralized prediction accuracy in the implementation process,
while protecting the local data in each region. Precise selection of
prediction models on each node and appropriate configuration of
the number of local iterations and global update rounds can be
highly effective in enhancing the accuracy and efficiency of

prediction. Compared to the Federated Learning algorithm,
DAAFed enhances prediction accuracy by introducing an
asynchronous adaptive mechanism. The validity of this proposed
method is verified.

At present, privacy protection is becoming increasingly
important in the power industry, which brings new challenges to
distributed electricity price prediction. Therefore, how to further
consider the protection effect of privacy protection mechanism and
communication efficiency optimization will be the focus of the next
research work.
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