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During the course of actual oilfield development, judicious selection and design of
well placement are paramount due to cost constraints and operating conditions.
This paper introduces the Matrix Directional Continuous Elements Summation
Algorithm (MDCESA), which is utilized to identify that segment with the largest
summation for a given length in a 2D or a 3D matrix. An additional function that
accounts for the distance between segments was added when searching for
multiple segments to avoid intersections or overlaps between segments. The well
placement optimization was transformed into a segment summation on a 3D
matrix. Our findings reveal significant advancements in well placement
optimization. Employing the MDCESA method, six producers were identified
and their production performance was compared against two previously
selected producers using a reservoir numerical simulator. The results
demonstrated that the wells selected through MDCESA exhibited a substantial
improvement in production efficiency. Specifically, there was an 11.6% increase in
average cumulative oil production over a 15-year period compared to the wells
selected by traditional methods. This research not only presents a significant leap
in well placement optimization but also sets a foundation for further innovations in
reservoir management and development strategies in offshore oilfields.
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1 Introduction

Offshore oilfield development plays a vital role in the global energy supply. Estimates
from the United States Geological Survey (USGS), approximately 30 percent of the world’s
hydrocarbon resources are located in the oceans, with around 60 percent of the oil and
40 percent of the natural gas located in deep and ultra-deep water areas. Recent
advancements in deep-water drilling technologies have rendered the exploitation of these
resources feasible, positioning deep-water fields as future pivotal contributors to the
augmentation of hydrocarbon production (Rogner, 1997; Zou et al., 2015).

However, oilfield development, especially offshore oil and gas development, is a
high-risk, high-investment business model that requires huge capital investments to
support complex equipment construction, exploration, drilling, production and
transportation (Behrenbruch, 1993; Wang et al., 2019). Therefore, compared with the
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development of onshore oil fields, the strategic development of
offshore oil fields (especially deepwater oil fields) typically
prioritizes reservoirs with better physical conditions in order
to reduce the development cost, which are characterized by low
viscosity, high oil abundance, high porosity and high
permeability (Gupta and Grossmann, 2016; 2017). In actual
oilfield production, the development strategy of “fewer wells,
higher production” is mainly adopted, so for reservoir engineers,
reasonable well placement selection and well pattern design are of
paramount importance.

The well placement optimization problem is considered a
challenging task because it involves numerous static and dynamic
factors such as reservoir physical properties, heterogeneity, and fluid
flow characteristics (Tavallali et al., 2013; Chen et al., 2018). Finding
the optimal well placement requires executing a large number of
reservoir simulations, which is computationally intensive, so it is
crucial to establish a novel efficient well placement optimization
method (Islam et al., 2020). In recent years, many researchers have
carried out a large number of studies for the well placement
optimization problem, which can be mainly divided into three
main categories: 1) reservoir numerical simulation method, 2)
reservoir potential/quality map method, and 3) surrogate model
based intelligent optimization method.

The first mainstream approach to well placement optimization is
reservoir numerical simulation. Reservoir numerical simulation is a
very important and widely used tool in oilfield development (Coats,
1982, 12290; Peaceman, 2000; Ertekin et al., 2001; Chen, 2007). It
utilizes mathematical models and computational techniques to
simulate fluid flow and interactions within the reservoir to
predict full reservoir and individual well production performance
(Kazemi et al., 1976; Matthäi et al., 2007; Dumkwu et al., 2012).

Reservoir engineers often use the predicted development
performance to optimize development plans. Wei et al. (2017)
utilized a comprehensive dataset, including seismic data, well
logs, and production history, to categorize a super-giant
carbonate reservoir into three types (good, medium, and poor),
established their distribution patterns, and proposed tailored water
flooding plans based on fine-scale geological modeling and reservoir
numerical simulation, effectively increasing the estimated ultimate
recovery (EUR) bymore than 20% compared to natural depletion. Li
et al. (2016) introduced a systematic technique combining analytical
and numerical production analysis, pressure transient analysis,
material balance analysis, and geological analysis to effectively
evaluate reservoir properties and forecast production
performance of fractured vuggy carbonate gas condensate
reservoirs with complex characteristics. Agada et al. (2014)

TABLE 1 Comparison of advantages and disadvantages of three main well placement optimization methods.

Techniques Advantage Disadvantage

Reservoir numerical simulation • High prediction accuracy • High computational complexity

• High credibility of calculation
results

• Requiring substantial computational resources

Reservoir production potential map based optimization
method

• High computational efficiency • Less effective in large-scale reservoir model

• Production potential map formula need to be modified for the specific
reservoir

Surrogate model based intelligent optimization method • High computational efficiency • Results are degraded in high dimension

• Fewer applications in large-scale actual reservoir model

FIGURE 1
Schematic diagram of a two-dimensional planar matrix: (A) a two-dimensional planar matrix; (B) Ignored grid distribution considering the well
spacing = 1.
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utilized a high-resolution three-dimensional outcrop model of a
Jurassic carbonate ramp to perform detailed and systematic flow
simulations, demonstrating that reservoir performance and oil
recovery in carbonate reservoirs are significantly influenced by
small- and large-scale geological features, with subseismic faults
and oyster bioherms identified as major controls, and showcased
how optimizing well placement and injection fluid can mitigate fluid
channelling and enhance oil recovery.

Simulation based method also widely used in well placement
optimization. Forouzanfar et al. (2010) developed a two-stage well
placement optimization method, employing a gradient-based
algorithm with the adjoint method and gradient projection for
constraints, effectively determining the optimal number,
locations, and rates of water injection and producing wells, while

mitigating the effects of pre-specifying well rates and operational
reservoir life. Taware et al. (2012) utilized a novel method based on
streamline simulation and total time of flight calculations to
optimize well placements in a mature offshore carbonate field,
outperforming traditional well placement techniques and
successfully validating the approach with subsequent field infill
drilling. Deng et al. (2010) implemented a comprehensive
approach integrating proactive well placement technology,
thorough rock physics and petrophysics studies, geomechanical
analysis, and real-time interpretation and reservoir simulation,
successfully enhancing productivity beyond initial predictions for
horizontal wells in the complex offshore field of Bohai Bay. Yu et al.
(2015) applied numerical reservoir simulation to model CO2

injection as a huff-n-puff process in Bakken tight oil reservoirs,
revealing that CO2 molecular diffusion significantly enhances oil
recovery, especially in formations with lower permeability, longer
fracture half-length, and more heterogeneity, providing valuable
insights into the effectiveness and key parameters of CO2 enhanced
oil recovery in unconventional tight oil reservoirs. van Vark et al.
(2004) conducted a simulation study evaluating various enhanced
oil recovery processes in low permeability carbonate reservoirs in
Abu Dhabi, concluding that miscible acid gas injection emerges as
the preferable recovery method due to its favorable interaction with
native oil, efficient asphaltene dissolution, and advantageous
mobility ratio. Al-Fadhli et al. (2019) utilized modeling and
simulation to implement the downhole water sink technique with
an inverted ESP completion in Greater Burgan Field, achieving
increased ultimate oil recovery, mitigated rapid water coning
conditions in a high permeability water drive reservoir, and
established an optimal development strategy, resulting in a 25%
increase in oil production and an 18% reduction in water production
over 5 years in the study well.

The second commonly used method of well placement
optimization is the reservoir production potential map or quality
mapmethod. The reservoir production potential map, also known as
a quality map, is a visual graphical tool used to characterize the
differences in production potential among various regions of a
reservoir. It is usually based on the results of reservoir numerical
simulation, and integrates some key reservoir parameters and

FIGURE 2
Schematic diagram of a three-dimensional matrix.

TABLE 2 All possible directions in a 3D matrix starting from a specific point.

Type Direction (dx, dy, dz)

On the X-axis Left and Right (-1, 0, 0) and (1, 0, 0)

On the Y-axis Up and Down (0, −1, 0) and (0, 1, 0)

On the Z-axis Front and Back (0, 0, −1) and (0, 0, 1)

On the XY plane Upper-left, Upper-right, Lower-left, and Lower-right (-1, 1, 0), (1, 1, 0), (−1, −1, 0), and (1, −1, 0)

On the XZ plane Left-front, Left-back, Right-front, and Right-back (-1, 0, 1), (−1, 0, −1), (1, 0, 1) and (1, 0, −1)

On the YZ plane Upper-front, Upper-back, Lower-front, and Lower-back (0, −1, −1), (0, −1, 1), (0, 1, −1), and (0, 1, 1)

Diagonal directions of the three axes Upper-left-front and Upper-left-back (-1, −1, −1) and (−1, −1, 1)

Upper-right-front and Upper-right-back (1, −1, −1) and (1, −1, 1)

Lower-left-front and Lower-left-back (-1, 1, −1) and (−1, 1, 1)

Lower-right-front and Lower-right-back (1, 1, −1) and (1, 1, 1)
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production data to visualize complex data and help reservoir
engineers make more rational decisions.

The concept of the reservoir production potential map was first
introduced by da Cruz et al. (1999). Da Cruz et al. (2004) introduced
the “quality map” a 2D representation aiding in reservoir
management by visualizing reservoir responses and uncertainties.
The “quality map” is created by running flow simulations with
varied well locations and generating multiple stochastic realizations
to capture geological uncertainties, with applications demonstrated
across 50 realistic reservoir models.

Some researchers have improved the calculation method of
production potential map on the basis of previous studies in
order to better characterize the production performance and

FIGURE 3
Application of MDCESA to random 2D and 3D matrix: (A) Result of 2D matrix; (B) Result of 3D matrix.

FIGURE 4
Application of MDCESA in random 2D matrix (Considering well spacing): (A) Well count is 4; (B) Well count is 6.

TABLE 3 Results of application of MDCESA in random 2D matrix (Considering
well spacing).

Segment
name

Value Start
position

End
position

Direction

W-1 347 (13, 3) (16, 6) (1, 1)

W-2 339 (4, 2) (4, 5) (0, 1)

W-3 339 (7, 4) (7, 7) (0, 1)

W-4 333 (7, 10) (7, 13) (0, 1)

W-5 330 (13, 10) (13, 13) (0, 1)

W-6 328 (1, 3) (1, 6) (0, 1)
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FIGURE 5
Comparison of reservoir oil saturation map and reservoir production potential map: (A) Oil saturation map; (B) Production potential map.

FIGURE 6
Workflow of case study in actual reservoir model.

FIGURE 7
Oil saturation map and well placement optimization results: (A) Oil saturation map in the 3rd layer of F reservoir; (B) Well placement optimization
result of F reservoir based on the oil saturation map.
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represent the internal differences of reservoirs. Badru (2003)
presented basic and modified quality map approaches which
provide a straightforward two-dimensional reservoir
representation requiring no simulation runs. The approaches
enhanced efficiency of well placement optimization by using the
quality map as a preliminary screening tool (Badru and Kabir, 2003).
De et al. (2005) developed a faster and reliable methodology for
generating quality maps, essential tools in defining and optimizing
production strategies, by integrating geological and fluid variables to
identify areas with varying production potentials. The effectiveness
of this approach is demonstrated using three reservoir models. Liu
and Jalali (2006) presented a methodology that transforms standard
reservoir models into maps of production potential, guiding the
strategic placement of wells across various phases of field
development. This approach shows a marked improvement in
field recovery factor when compared to traditional fixed spacing
approaches. Ding et al. (2014) modified the productivity model to
account for the negative effects of bottom water and gas cap on field
development, thereby providing a more accurate representation of
the production potential in various grid blocks of the reservoir.

Some researchers have combined production potential map and
stochastic search algorithms to develop some well placement
optimization methods. Chen et al. (2017) employed an analytical
formula-based objective function and Cat Swarm Optimization
(CSO) algorithm to establish a well placement optimization
method, solving the problem of low efficiency in traditional well

placement optimization processes that rely on numerical simulators,
and significantly accelerating the well placement optimization
process. Ding et al. (2019) utilized the Direct Mapping of
Productivity Potential (DMPP) technique and Threshold Value
of Productivity Potential (TVPP) management strategy in
conjunction with Particle Swarm Optimization (PSO), to
establish a more efficient well placement optimization process,
significantly reducing optimization time while maintaining
optimization effectiveness in oil field development. Harb et al.
(2020) implemented the black hole particle swarm optimization
(BHPSO)method, a hybrid evolutionary optimization technique, for
simultaneous well placement optimization in terms of well count,
location, type, and trajectory, achieving superior performance
compared to the standard PSO with reduced computational
requirements.

The third method used for well placement optimization is an
artificial intelligence approach based on an surrogate model. Some
researchers believe that potential maps and stochastic search
algorithms are not always effective in solving well placement
optimization problems. Therefore, they look for new ways to
establish surrogate models as the basis of optimization
algorithms, and data-driven artificial intelligence models are one
of them (Liu et al., 2021; Peng et al., 2022; Zhang et al., 2022; Zhong
et al., 2022).

Salehian et al. (2022) utilized an ensemble learning of surrogate-
models-assisted optimization framework, incorporating
Convolutional Neural Network (CNN) and Simultaneous
Perturbation Stochastic Approximation (SPSA), to provide
diverse and near-optimum well placement solutions with reduced
computational cost, achieving superior operational flexibility and
computational efficiency compared to conventional methods in the
Brugge and Egg field case studies. Moolya et al. (2022) employed a
hybrid approach combining surrogate modeling and Multiperiod
Mixed-Integer Linear Programming (MILP), alongside a novel
methodology of Spatial Aggregation and Disaggregation, to
efficiently determine optimal producer locations accounting for
surface infrastructure constraints, significantly reducing
computational expenses while ensuring maximization of the
NPV. Foroud et al. (2012) employed various metamodeling
techniques, including 18 different metamodels, and integrated the

FIGURE 8
Production potential map and well placement optimization results: (A) Production potential map in the 3rd layer of F reservoir; (B) Well placement
optimization result of F reservoir based on the production potential map.

TABLE 4 Results of optimization based on F reservoir production potential
model.

Well
name

Production
potential value

Start
position

End
position

Direction

W-1 63.91 (78, 86, 9) (78, 101, 9) (0, 1, 0)

W-2 60.04 (77, 87, 12) (77, 102, 12) (0, 1, 0)

W-3 54.53 (64, 95, 18) (79, 95, 18) (1, 0, 0)

W-4 54.36 (66, 92, 18) (81, 92, 18) (1, 0, 0)

W-5 51.51 (60, 94, 10) (75, 94, 10) (1, 0, 0)

W-6 50.79 (80, 92, 15) (65, 92, 15) (−1, 0, 0)
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best performing model with a Genetic algorithm for global
optimization search, to efficiently determine the optimal location,
direction, and length of a new horizontal well in a mature oil

reservoir, resulting in a substantial increase in accumulative oil
production and a significant reduction in computation time.
Arouri et al. (2022) utilized a surrogate-based well-placement

FIGURE 10
Location of the previous manually selected well A5H: (A) Oil saturation map; (B) Production potential map.

FIGURE 11
Location of the previous manually selected well A9H: (A) Oil saturation map; (B) Production potential map.

FIGURE 9
Simulatedwell performance of the selected six producers and the previousmanually selected two producers: (A)Oil production rate; (B)Cumulative
oil production.
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optimization approach, incorporating both analytical and physics-
based surrogates with manifold mapping, a multi-fidelity technique,
in derivative-free, noninvasive corrections to optimize drilling
locations within hydrocarbon reservoirs, demonstrating
noticeable computational acceleration and effective well
placement in hydrocarbon fields under stringent computing
resource constraints. Nasir et al. (2020) developed a hybrid
optimization framework named E-MADS, integrating the
Enhanced Success History-Based Adaptive Differential Evolution
(ESHADE) strategy with a Mesh Adaptive Direct Search (MADS)
local pattern search method, and employed a gradient boosting
machine learning technique to create a surrogate model, achieving
superior performance in the joint optimization of well location and
time-varying control for oil fields. Redouane et al. (2019)
implemented a hybrid intelligent system combining a Genetic
Algorithm (GA), a hybrid constraint-handling strategy, Gaussian
Process (GP) surrogate modeling, and an adaptive sampling routine,
optimizing well placement in fractured reservoirs with arbitrary well
trajectories, complex grids, and various constraints, showcasing high
accuracy and efficiency in the challenging real well placement
project in El Gassi field, Hassi-Massoud, Algeria. Pouladi et al.
(2017) introduced a novel proxy using the Fast Marching Method
(FMM) for volumetric pressure approximation to optimize
production well placement, achieving satisfactory results with
significantly reduced computational costs, demonstrated through
application to single and multiple production well placements in
standard reservoir models, and comparison with conventional
simulator-based methods. Miyagi et al. (2018) applied various
variants of the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) with mixed integer support to optimize well placement
and injection scheduling in a Carbon dioxide Capture and Storage
(CCS) project, discovering that the CMA-ES with step-size lower
bound outperformed other variants, showcasing robustness and
effectiveness in handling mixed integer programming problems
in geologic CO2 storage optimization. Redouane et al. (2018)
developed a hybrid intelligent approach, integrating adaptive
space-filling surrogate modeling with an evolutionary algorithm,
to optimize well placement under field constraints, resulting in a
more accurate, reliable, and efficient solution compared to
traditional automatic optimization routines, even with a realistic
and complex reservoir model. Hamida et al. (2017) utilized a
modified Genetic Algorithm (GA) incorporating a novel
“Similarity Operator” for optimal well placement in oil fields,
enhancing the solution quality by considering interactions with
pre-located wells and geological features, demonstrating robust
performance on both the PUNQ-S3 and Brugge field datasets.

Based on the previous literature research we found that there are
advantages and disadvantages of these three methods as listed in
Table 1. Reservoir numerical simulation is currently the most credible
tool for optimization, but its high computational complexity and the
need to run a large number of cases when faced with a well
optimization problem leads to its low computational efficiency.
The optimization method that combines the reservoir production
potential map and the stochastic search algorithm offers higher
computational efficiency, but this method is generally ineffective in
the application of large-scale real reservoir model, which is less
practical for the actual production of oilfield. Surrogate model
based intelligent optimization method also has similar problems,

this method is predominantly applied to theoretical model or
mechanism model, and less applied in the actual reservoir model.
Currently, the surrogate model unable to fully supplant the reservoir
simulation model.

This paper establishes a fast well placement optimization
workflow considering the practical application needs of oilfield
production. The basic process involves establishing the Matrix
Directional Continuous Elements Summation Algorithm
(MDCESA) for 2D planar matrix and 3D spatial matrix,
constructing a modified production potential map
characterization formula for a specific reservoir, and then using
the algorithm to execute a well placement optimization task. This
article is divided into the following sections. In Section 2, we
introduce the methodology of the Matrix Directional Continuous
Elements Summation Algorithm (MDCESA) and reservoir
production potential calculation method. Section 3 introduces the
application of the proposed method in a actual deep-water reservoir
model. The discussion and conclusions are given in Section 4, 5.

2 Methodology

2.1 Matrix directional continuous elements
summation algorithm (MDCESA)

The core idea of this method is transforming the horizontal well
placement optimization problem into a matrix element summation
problem, the reservoir model into a matrix model, and the
horizontal section of a horizontal well into a segment of
continuous elements of length l.

2.1.1 Calculate max sum of segment
In a two-dimensional planar matrix, this task can be

transformed into finding a segment of consecutive points of
length l in all possible directions from a given point (m, n), and
compute the cumulative value of these sequences to find the
sequence with the largest value. This function is defined as
“Calculate Max Sum of Segment”.

The principle of “Calculate Max Sum of Segment” is as follows.
Assuming that the two-dimensional planar matrix A (Figure 1A) is
composed of elements Amn and dimensions (M × N), whereM is the
number of rows and N is the number of columns.

For a given point (m, n) and a direction vector (dx, dy), a
segment S is delineated as Eq. 1

S k( ) � Am+k·dx,n+k·dy , f or 0≤ k < l (1)
where S(k) is the kth element of the segment S, l is the length of
the segment.

For a two-dimensional planar matrix, there are eight directions
from a given point: [(1, 0), (−1, 0), (0, 1), (0, −1), (1, 1), (1, −1), (−1,
1), (−1, −1)].

The summation for a segment of length l is given by Eq. 2

Sum S( ) � ∑
l−1

k�0
S k( ) (2)

The pseudocode for “Calculate Max Sum of Segment” is
encapsulated in Algorithm 1. We need to input the matrix and
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the coordinates of a given point, set the length of the segment, and
subsequently computes the sum of the segments in all possible
directions and output the value and direction of the max one. The
possible cases for each element of the matrix can be calculated
through iterative loop traversal.

Input: m,n,l (coordinates and length), matrix

(MxN matrix)

Output: max sum (maximum sum of segment), max dir

(direction of the segment)

1: function CALCULATESEGMENTSUM (m,n,l,matrix)
2: lenX ← numberofrowsinmatrix

3: lenY ← numberofcolumnsinmatrix

4: max sum ← 0

5: max dir ← None

6: directions ← (1,0), (−1,0), (0,1), (0,−1), (1,1),{
(1,−1), (−1,1), (−1,−1)}

7: for each (dx,dy) in directions do

8: segment sum ← 0

9: for p ← 0 to l − 1 do

10: if 0≤m + k · dx < lenX and 0≤n + k · dy < lenY then

11: segment sum ← segment sum + matrix

[m + k · dx] [n + k · dy]
12: end if

13: end for

14: if segment sum > max sum then

15: max sum ← segment sum

16: max dir ← (dx,dy)
17: end if

18: end for

19: return (max sum, max dir)
20: end function

Algorithm 1. Calculate Max Sum of Segment.

2.1.2 Set horizontal well spacing
Based on the actual situation of oilfield development, well

placement optimization needs to consider the distance between
wells to preclude the intersection or overlap of wells.

To address this requirement, we introduce a methodology
whereby subsequent to the selection of the initial segment, the
segment itself along with its adjacent elements are designated as
“ignored”. This strategy ensures that the selection of the ensuing
segment does not incorporate the constituents of the initial
segment. Figure 1 illustrates the basic principle of this
approach. The red line represents the horizontal well, and X
represents the grid that is ignored when the distance around
the horizontal well is 1.

Given a matrix A, a starting point (m, n), a direction vector (dx,
dy), the length of segment l, and the well spacing distance, the
principle of method is as follows Eq. 3

All Ignored � Segment Ignored ∪ { sx, sy( ) | 0≤ k < l} (3)
Where, All Ignored represents all ignored elements;
Segment Ignored represents the elements of the previous
segment; (sx, sy) | 0≤ k< l{ } represents the set of elements to be
ignored around the previous segment, as shown in Eqs 4, 5

sx � m + k · dx + surround dx (4)
sy � n + k · dy + surround dy (5)

Where, surround dx and surround dy are integers from
−distance to distance representing the offsets in the x and y
directions when searching around each position (m + k · dx, n +
k · dy).

The pseudocode for Set Horizontal Well Spacing is outlined in
Algorithm 2. The “distance” in Algorithm 2 represents the
minimum spacing between horizontal wells, by this function we
can make sure that horizontal wells will not intersect or overlap
with each other. The spacing between them will be greater than
value of “distance”.

1: Input: (m,n) - start coordinates of the segment

2: l - length of the segment

3: (dx,dy) - direction vector of the segment

4: ignored - current set of ignored points

5: distance - surrounding distance to ignore

6: Output: Updated set of ignored points

7: function

SETSURROUNDINGTOIGNORE (m,n,l,dx,dy,ignored,distance)
8: lenX ← numberofrowsinmatrix

9: lenY ← numberofcolumnsinmatrix ⊳ Iterate over

each point in the segment

10: for k ← 0 to l − 1 do

11: currentX ← m + k · dx
12: currentY ← n + k · dy ⊳ Iterate over the

surrounding area of the current point

13: for surround dx ← − distance todistance do

14: for surround dy ← − distancetodistance do

15: surroundX ← currentX + surround dx

16: surroundY ← currentY + surround dy ⊳ Check

if the surrounding point is within the

matrix boundaries

17: if 0≤surroundX < lenX and 0≤surroundY <
lenY then

18: ignored ← ignored ∪ (surroundX,{
surroundY)}

19: end if

20: end for

21: end for

22: end for

23: return ignored

24: end function

Algorithm 2. Set Horizontal Well Spacing.

2.1.3 The framework of the proposed method
The pseudocode delineating the framework of the proposed

methodology is encapsulated in Algorithm 3. This framework solves
the well placement optimization for a two-dimensional matrix
considering horizontal section length and well spacing
conditions. Inputting predefined parameters of length of
segments (horizontal well length), number of segments (number
of horizontal wells), and distance (well spacing), this framework
finds the optimal result.

Frontiers in Energy Research frontiersin.org09

Huang et al. 10.3389/fenrg.2023.1340008

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1340008


1: Input: matrix, l (length of segments), segments_

count (number of segments to find)

2: Output: max_sums (list of maximum sums), max_

positions (starting positions of segments), max_

directions (directions of segments)

3: function CALCULATESEGMENTSUM (m,n,l,matrix)
4: Compute the sum of segments in all directions from

(m,n) with length l

5: return the maximum sum and its direction

6: end function

7: function

SETSURROUNDINGTOIGNORE (m,n,l,dx,dy,ignored,distance)
8: Mark the surroundings of the segment starting at (m,n)

with direction (dx,dy) and length l as ignored

9: end function

10: function ISSEGMENTIGNORED (m,n,l,dx,dy,ignored)
11: Check if the segment starting at (m,n) with direction

(dx,dy) and length l is in the ignored set

12: return True if ignored, False otherwise

13: end function

14: function

FINDMAXSEGMENT (matrix,l,m,n,ignored,distance)
15: Find the segment with the maximum sum in the matrix

that is not ignored

16: return the maximum sum, its starting position,

and direction

17: end function

18:

19: procedure MAIN

20: Load matrix from an Excel file

21: Initialize variables: max_sums, max_positions,

max_directions, ignored

22: for segments_count times do

23: Find the segment with the maximum sum using

FINDMAXSEGMENT

24: Add the results to max_sums, max_positions, and

max_directions

25: Update the ignored set using SETSURROUNDINGTOIGNORE

26: end for

27: Display the results

28: Plot the original matrix and the found segments

29: end procedure

Algorithm 3. Framework of The Proposed Method.

2.1.4 Extending the algorithm to 3D
reservoir modeling

The reservoir is a three-dimensional spatial distribution field,
and the well placement optimization results based on a two-
dimensional planar distribution field are inaccurate. To better
simulate the real situation of the reservoir, the application of the
proposed framework is extended to a three-dimensional
spatial matrix.

The principle of modified Calculate Max Sum of Segment is as
follows. Assume that the three-dimensional planar matrix A
(Figure 2) has elements Amnp and dimensions (M × N × P),
where M is the number of rows, N is the number of columns,
and P is the depth.

For a given point (m, n, p) and a direction vector (dx, dy, dz), we
can define a segment S as Eq. 6

S r( ) � Am+r·dx,n+r·dy,p+r·dz , f or 0≤ r < l (6)

where S(r) is the rth element of the segment S, l is the length of
the segment.

In the 3D matrix, there are 26 possible directions from a given
start point, as listed in Table 2.

The sum of segment of length l as Eq. 7

Sum S( ) � ∑
l−1

r�0
S r( ) (7)

The pseudocode for modified Calculate Max Sum of Segment is
similar with Algorithm 1. Change the possible directions of the 2D
matrix to the possible directions of the 3D matrix (Table 2). In this
way, we can find the maximum segment in the 3D matrix for a
given length l.

2.2 Application in theoretical models

To validate the proposedmethod, it is applied to random 2D and
3Dmatrices. A two-dimensional matrix of dimensions (11 × 11)was
synthesized, with each element assigned a random integer ranging
from 0 to 100, as illustrated in Figure 3A.

The segment length was designated as 4, MDCESA was utilized
to systematically assess each element within the matrix. The
algorithm computed the sum of the elements spanned by the
segment, subsequently identifying the segment’s maximal value,
start point, end point, and direction. Similarly, a 3D matrix (11 ×
11 × 11) is randomly generated and the same operation is
performed using the MDCESA. The visualization results are
shown in Figure 3.

In the 2D matrix scenario, value of optimal segment is 354,
start position is (3, 2), end position is (6, 2), direction is (1, 0).
In the 3D matrix scenario, value of optimal segment is 387,
start position is (7, 4, 0), end position is (10, 4, 0), direction is
(1, 0, 0).

In order to validate the multi-well optimization considering
well spacing, a random two-dimensional matrix with dimensions
(20 × 20) was generated for the validation process. Within the
MDCESA, the segment length was set at 4, and the well count was
set at 4 and 6, respectively. The optimization results are depicted in
Figure 4; Table 3. The framework demonstrated robust
performance on the random matrix, adeptly identifying optimal
segments while ensuring that these segments maintained a
separation that met or exceeded a predefined threshold and did
not intersect or overlap.

2.3 Reservoir production potential

In order to comprehensively consider the influence of reservoir
abundance, pore pressure, formation permeability, distance from
the boundary and structure position on production capacity, Liu and
Jalali (2006) proposed the concept of reservoir production potential
based on the study of da Cruz et al. (1999), i.e., the potential oil and
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gas resource production capacity of the material and energy
embedded in the reservoir under the comprehensive
consideration of the static and dynamic influencing factors of
the reservoir.

The formula for this calculation is outlined as follows:

Jm,n,p t( ) � So,m,n,p t( )−Sor[ ] · Po,m,n,p t( )−Pmin[ ] · lnKm,n,p · lnrm,n,p

m� 1,2,/,nx;n� 1,2,/,ny;p� 1,2,/,nz( )
(8)

where Jm,n,p(t), So,m,n,p(t), and Po,m,n,p(t) is the production
potential, oil saturation, and pressure at the grid (m, n, p) at t
time respectively. Sor is the residual oil saturation; Pmin is the
minimum well bottom pressure; Km,n,p is the permeability at the
grid (m, n, p); rm,n,p is the distance from the grid (m, n, p) to the
closest boundary.

In this study, the formula for calculating production potential
was tailored to accommodate the specific reservoir type, taking into
account the relationships between the target reservoir type, oil-water
distribution relationship, structure features, and fluid flow
characteristics. This involved an integration of pertinent data,
including porosity, permeability, pressure, reservoir thickness,
structure elevation, boundary data, and fluid viscosity, to refine
the formula, enhancing its specificity and adaptability.

The modified calculation formula is as follows:

Jm,n,p t( ) � So,m,n,p t( ) − Sor[ ] · Po,m,n,p t( ) − Pmin[ ] · 1/μm,n,p · Km,n,p

· φm,n,p · ln rm,n,p · hm,n,p/H( ) m � 1, 2,/, nx;(
n � 1, 2,/, ny; p � 1, 2,/, nz)

(9)
where μm,n,p is the viscosity at the grid (m, n, p); φm,n,p is the porosity
at the grid (m, n, p); hm,n,p is the thickness of the formation (the
distance from the grid (m, n, p) to the oil-water interface, indicating
the effect of the location of the structure on the production
potential); H is the distance from the highest point of the
reservoir to the oil-water interface.

Moreover, we refrained from applying logarithmic
transformation to the permeability values as such a conversion
could significantly diminish the influence of permeability on the
estimated production potential, a factor particularly critical in low-
permeability reservoirs.

The production potential for Reservoir F was estimated utilizing
the aforementioned Eqs 8, 9, and the results are visually represented
in Figure 5. Figure 5A illustrates the oil saturation distribution of the
3rd layer of the F reservoir. Figure 5B depicts the computed
production potential map, with zones of the model where Net to
Gross (NTG) equals zero being purposefully omitted, hence
appearing as voids on the map.

3 Case study

3.1 Workflow

This section aims to apply and validate the proposed MDCESA
on the actual offshore reservoir model; the workflow is shown in
Figure 6. First, the reservoir model data, formatted in GRDECL, is
exported and subjected to data processing. Second, the MDCESA is

deployed to optimize well placement based on maps depicting oil
saturation and production potential. Finally, the production
performance of the optimally positioned wells is corroborated
using a reservoir numerical simulator, and the results are
benchmarked against those from previously manually chosen wells.

3.2 Reservoir background

The F reservoir, a deepwater reservoir, is located in the eastern part
of the South China Sea, in the northern part of a sag in the
Zhujiangkou Basin, where the water depth is about 286 m. The
reservoir is a point-reef reservoir developed on the coastal deposit.
The sedimentary phases can be categorized as littoral, carbonate
plateau, bio-banking, and bio-reef phases in the following order
from bottom to top. The depth of the reservoir is
from −1802.0 to −1862.5 m, and the reservoir type is low-
permeability reef limestone reservoir, with strong non-homogeneity,
average porosity of 17.9%–22.3%, average permeability of
5.5–50.1 mD, which belongs to medium-porosity, low-permeability
reservoir, and the development of high-angle tectonic fissures.

The fluid of F reservoir is light oil, the viscosity of formation
crude oil is 5.5–5.6 mPa·s, and the fluidity is poor. Considering the
lack of natural energy in the limestone reservoir, the reservoir is
developed by combining natural energy and artificial water flooding.
A total of 10 producers and 3 water injectors are designed, of which
most of the producers are long horizontal wells and maximum
reservoir contact (MRC) wells in order to maximize the use of
reserves and enhance oil recovery. The F reservoir was put into
production in September 2022, and a total of 11 wells have been put
into production so far.

3.3 Optimization on saturation map

Oil saturation is an important parameter in reservoir
development; therefore, the oil saturation map is commonly used
to guide well placement optimization. We used MDCESA to
optimize on the oil saturation map by setting the number of
horizontal wells = 5, horizontal section length = 15 grids
(750 m), and minimum well spacing = 4 grids (200 m). Oil
saturation map in the 3rd layer of F reservoir is shown in
Figure 7A. From the well placement optimization result
(Figure 7B), it can be seen that the ideally sited wells
predominantly occupy zones with high oil saturation, congruent
with established petrophysical principles.

Nevertheless, the optimization derived solely from the oil saturation
map overlooked critical factors such as fluid flow capacity, reservoir
permeability, reservoir energy, structural complexities, and boundary
constraints, all of which significantly impact a well’s production
performance. This oversight resulted in the suboptimal placement of
well W-5, positioned perilously close to a water body, thereby exposing
it to the imminent threat of water breakthrough despite its location in
an area of locally high oil saturation.

The reliance on an oil saturation map for well placement is thus
deemed inadequate; a more comprehensive approach necessitates
the use of a production potential map. This realization underpins the
rationale for revising the production potential calculation formula,
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aiming to integrate all aforementioned factors for a more cogent
optimization strategy.

3.4 Optimization on potential map

Facing the challenges of optimization based on oil saturation
map, we calculated the production potential map of F reservoir, in
which the 3rd layer is shown in Figure 8A. We set the same
parameters for the optimization algorithm: the number of
horizontal wells = 5, horizontal section length = 15 grids
(750 m), and minimum well spacing = 4 grids (200 m). From the
well placement optimization result (Figure 8B), it can be seen that
the optimization results are more reasonable compared to the
optimization result based on the oil saturation map.

Similarly, we apply MDCESA to the reservoir-wide production
potential model for well optimization, setting the number of
horizontal wells = 5, horizontal section length = 15 grids (750 m),
and minimum well spacing = 4 grids (200 m). The results including
the well name, production potential value, start and end positions and
direction of each well are shown in Table 4.

3.5 Optimization results evaluation

In order to validate the production performance of the selected
horizontal producers, we imported the six producers (W-1,W-2,W-
3, W-4, W-5, and W-6) into the reservoir numerical simulator and
compared the production of these wells with the previous manually
selected wells (A5H and A9H).

Oil production rate and cumulative oil production for these
8 wells are summarized in Figure 9. The performance of the six wells
(W-1 through W-6) shows a decreasing sequence that is consistent
with their production potential values. The two previously manually
planned producers (A5H and A9H) performed worse than the wells
selected based on the MDCESA in terms of the length of the plateau,
the rate of decline, and the cumulative oil production. Comparing
the 15-year cumulative oil production of these wells, the newly
selected wells showed an 11.6% increase in average cumulative oil
production over the previously selected wells.

Plotting A5H and A9H on the production potential map
(Figures 10B, 11B) shows that both wells are located away from
the core area of the production potential map. This locational
disadvantage is the primary cause for their diminished production.

The MDCESA method offers superior benefits in terms of
precision and efficiency in optimization. Traditional well
placement optimization, which rely on geological modeling and
iterative reservoir simulation workflows, typically incur substantial
time investments—ranging from several days to weeks. In contrast,
the MDCESA approach completes the process in a mere fraction of
that time, often within minutes to hours.

4 Discussion

The purpose of this research is to develop a novel methodology
for quickly obtaining optimal horizontal well placement during the
reservoir development. Currently, the traditional workflow of

geologic modeling and reservoir numerical simulation consumes
a lot of time and computational costs. The application of artificial
intelligence techniques that utilize surrogate models and algorithms
optimizing multiple parameters has not been extensively realized in
practical reservoir scenarios. The utilization of a reservoir
production potential map emerges as an effective instrument for
guiding the well design and selection process.

The main advantage of the proposed method in this study is that it
can quickly identity reasonable well placements, computational
efficiency is substantially improved over conventional methods, and
the production performance of screened wells is improved, and this
method can serve as an important component in the early-stage ormid-
stage of the traditional workflow of modeling and simulation to assist in
the planning and selection of well placements.

The development of the MDCESA represents a significant step
forward in the field of well placement optimization, particularly in
the context of offshore oilfield development. The primary objective
of this work was to introduce a method that can efficiently identify
the most productive segments for well placement in both 2D and 3D
matrices. MDCESA stands out in its ability to consider the distance
between multiple segments, thus avoiding intersections or overlaps.
This approach redefines well placement optimization, transitioning
from heuristic and manual selection processes to a more systematic,
algorithm-driven method.

While the results obtained using theMDCESA are promising, it is
important to acknowledge certain limitations of this method. Firstly,
the algorithm’s current form assumes a certain level of uniformity in
reservoir characteristics, which may not always be the case in more
heterogeneous formations. This could affect the algorithm’s
applicability in reservoirs with highly variable geological features.
Secondly, the MDCESA, in its current iteration, does not explicitly
account for operational constraints such as drilling difficulties or
economic factors that could influence well placement decisions.
Future versions of the algorithm could be enhanced to include
these aspects for a more holistic approach to well placement.

In light of these limitations, future research should focus on
enhancing the MDCESA to incorporate a broader range of
geological and operational variables. Efforts could also be
directed towards testing the algorithm’s effectiveness in different
types of reservoirs and under varying operational conditions.

5 Conclusion

In this study, the Matrix Directional Continuous Elements
Summation Algorithm (MDCESA) was developed to determine the
segment with the maximum value in the 2D and 3D matrices
considering the distance between multiple segments. Subsequently,
the reservoir production potential calculation formula was modified,
which takes into full consideration the static geological characteristics
and the dynamic performance of the reservoir. Finally, we
transformed the well placement optimization into segment
summation on a 3D matrix, and successfully applied MDCESA to
actual offshore reservoir development. Our key findings demonstrate
that MDCESA significantly enhances well placement decisions, as
evidenced by an 11.6% increase in average cumulative oil production
over a 15-year period compared to traditional selection methods. In
conclusion, the MDCESA offers a novel and effective solution to well
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placement challenges in offshore oilfields, with promising
implications for the future of oil and gas extraction and reservoir
management. The specific conclusions are as follows.

1. The establishment of the Matrix Directional Continuous
Elements Summation Algorithm (MDCESA) is designed to
identify the segment with the highest summation value for a
specified length within 2D or 3D matrices. Furthermore, the
algorithm has been enhanced by incorporating a feature that
accounts for the distance between multiple segments, effectively
preventing any intersection or overlap among them.

2. Modified reservoir production potential calculation formula
was developed in this study. Compared to the oil saturation
map, the production potential map comprehensively
characterizes the potential resource production capacity of
the material and energy contained in the reservoir, while
considering the effects of static and dynamic parameters of
the reservoir. The updated formula, which now includes
considerations for fluid viscosity, structural elevation, and oil
formation thickness, offers a more pragmatic and
comprehensive tool for reservoir evaluation.

3. The process of well placement optimization was redefined as a
problem of segment summation within a 3D matrix, and the
MDCESA was adeptly employed to locate optimal well
positions in an actual offshore reservoir based on the
production potential map. Six producers were selected using
the MDCESA approach and the production performance of
each of these six wells and two previously manually selected
producers was calculated by using the reservoir numerical
simulator. Comparing the 15-year cumulative oil production
of these wells, the newly selected wells demonstrated an 11.6%
increase in average cumulative oil production over the
previously selected wells.
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