AUTHOR=Lan Jian , Zhou Yanzhen , Guo Qinglai , Sun Hongbin TITLE=A data-driven approach for generating load profiles based on InfoGAN and MKDE JOURNAL=Frontiers in Energy Research VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2023.1339543 DOI=10.3389/fenrg.2023.1339543 ISSN=2296-598X ABSTRACT=

High-quality demand-side management requires an abundance of load profiles to support decision-making processes. However, customer energy consumption data often contains sensitive personal information, and service providers face significant challenges in accessing a substantial amount of energy consumption data. To generate a large volume of customer data without compromising privacy, this study introduces a data-driven approach integrating Information Maximizing Generative Adversarial Networks (InfoGAN) with Multivariate Kernel Density Estimation (MKDE) for the generation of load profiles. InfoGAN is firstly trained based on existing customer load profiles, with the Q network disentangling the load into feature variables and the generator producing realistic profiles. Subsequently, MKDE is utilized to assess the distribution of these features, enabling the generation of new profiles by sampling new feature variables. The proposed method circumvents the need for intricate sampling or modeling processes and generates realistic data that represents the inherent uncertainties and fluctuations characterizing customers’ electricity consumption. The generated data could be used as the substitution for real electricity consumption data, thereby facilitating further applications without compromising privacy concerns.