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With the rapid development of power grid infrastructure, especially the increasing
number of ultra-high voltage (UHV) projects, knowledge extracted fromhistorical
engineering data is collected and can be potentially used to assist in the review of
power transmission and transformation projects. However, conventional
knowledge modeling and knowledge reasoning methods cannot meet the
current needs of power grid construction. In this paper, considering the more
supernumerary and distinctive information brought by multi-view data which
could be beneficial for feature representation and knowledge reasoning from the
constructed knowledge base, a multi-view graph convolutional network (GCN)
based on knowledge graph is proposed to make classification for power grid
infrastructure projects. Specifically, several views are constructed based on
attribute information of a knowledge graph. In addition, a Haar convolution-
based pooling mechanism is employed to capture the structural features
represented by a chain of subgraphs. And then an aggregator that combines
both attribute and structural information is used to classify UHV projects. Results
from both UHV and NCI-1 datasets indicate that our proposed method is more
has higher accuracy and generalization ability.
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1 Introduction

With the proposal of carbon peaking and carbon neutralization (J. Liu et al., 2021; Luo
et al., 2023; Ren et al., 2021), a new power system based on clean energy consumption has
become an important part of achieving dual-carbon goals. In this context, photovoltaic and
wind power from the western region of China have become important power sources with a
total scale of 450 million kilowatts and increasing. Due to the long distance of electricity
transmission, UHV projects are expected to enter a larger-scale construction stage. Unlike
conventional power transmission and transformation projects, UHV projects are larger in
construction scale with multiple companies involved, which lead to a huge amount of
accumulated historical data in terms of quantity and complexity. With the development of
digital technology and artificial intelligence and the deep integration of technology and
information technology in the field of power grid engineering construction, the concept of
digital infrastructure has emerged. As an important part of engineering construction
management and control, engineering review is still in an inefficient mode that relies
mainly on expert experience and offline review, which makes it difficult to meet the analysis
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requirements of the current ever-expanding construction scale of
power transmission and transformation projects. Therefore, it is
urgent to build an auxiliary review system with knowledge storage
and reasoning components based on historical data of power
transmission and transformation projects, which leads to an
improvement of the digitalization level and the efficiency of
power grid infrastructure project review.

At present, the studies of auxiliary review platforms of power
transmission and transformation projects are still in the early stages.
Browser/Server(B/S) architecture and SQL server databases are two
key technologies of these systems that have already been put into the
production phase. Built for various voltage levels and different
workflows, three key functions are implemented such as data
entry, key factor extraction, and data searching (Huang, 2018; Li
et al., 2021). Although the application of these platforms has
simplified the review process and improved the efficiency of data
processing, there are three difficulties yet not be solved: 1) the
knowledge extracted from heterogeneous data is stored in relational
databases and their connection relationships have not been
modeled; 2) knowledge reasoning is difficult based on existing
models and data storage methods; 3) knowledge extraction
methods are heavily based on expert experiences and human
labor. Therefore, knowledge graph technology, which has the
advantages of high scalability, high query efficiency, and good
visualization, has become one of the excellent technologies to
choose from in building the next-generation power transmission
and transformation engineering auxiliary review platform.

The knowledge graph is a structured semantic knowledge base
that integrates knowledge extraction, data storage, reasoning, and
analysis capabilities (Ji et al., 2022). It has been widely used in many
fields (Yang et al., 2022; Zou and Lu, 2022; Wu et al., 2023). At
present, the application of knowledge graphs in the power field is
mainly oriented to aspects such as dispatching, operation and
maintenance, and fault handling, and has achieved good results
(Pu et al., 2021; Tian et al., 2022; Liu et al., 2023). These
researches mainly focus on construction methods such as named
entity recognition and relation extraction algorithms of different
domains. However, the methodologies and applications of
knowledge reasoning technology based on domain knowledge
graphs in electric power systems are still in an early stage.
Knowledge graphs can be represented as semantic triples or
attributed networks (Gao et al., 2023), which are all non-European
structural graphs. Traditional deep learning methods such as
convolutional neural network(CNN) and recurrent neural
network(RNN) cannot be used in such scenarios because
representations of graph-structured data is generally irregular,
therefore a new deep learning mechanism is needed to process
graph structure. In this context, the graph neural network (GNN)
is proposed to get the latent representations embedded from nodes,
attributes, and structural information of graphs. Compared to the
basic network structure of the neural network, the fully connected
layer (MLP), whichmultiplies the featurematrix by the weightmatrix,
the graph neural network considers structural information, and adds
an adjacency matrix as input. With the development of the study,
several GNN variants have been proposed. For the first time, graph
convolution networks(GCN) introduce convolution operations in
image processing to process graph-structured data (Kipf and
Welling, 2016). Various experiments show the effectiveness of

GCN due to the ability to encode the structural information of the
graph. However, the shortcomings of GCN are also obvious: 1) GCN
needs to put the entire graph data into memory and graphics
processing unit(GPU), which requires high-performance
equipment when dealing with large graphs. 2) GCN has high
computational complexity due to the eigendecomposition
operation of graph Laplacian. To handle the problems mentioned
above, graph sample and aggregate(GraphSAGE) are proposed
(Hamilton et al., 2017). GraphSAGE is an inductive learning
framework. In practice, it only retains the training sample to the
edge of the training sample during training, and then includes the two
major steps which are sample and aggregate. Then, to solve the
problem that GNN does not take into account the different
importance of different neighbor nodes when aggregating neighbor
nodes, graph attention networks (GAT) take the idea of Transformer
and introduce themasked self-attentionmechanism (Veličković et al.,
2017).When calculating the representation of each node in the graph,
different weights are assigned to neighbor nodes based on their
different characteristics.

However, there are different types of attributes of a node in the
knowledge graph. For instance, a transformer could have three
attributes such as device model, quantity, and rated voltage. Both
of the latter two are usually numeric properties and the first one is a
combination of letters and numbers. Conventional GNN-based
knowledge modeling and reasoning methods take these attributes
as a single matrix, which may lead a confusion about attribute
characteristics (Peng et al., 2020). To solve the knowledge reasoning
problem in power grid infrastructure projects, a deep multi-view
graph convolutional network is introduced considering both the
attribute and structural information. This model mainly contains
3 components: a multi-view graph encoder, an aggregator, and
classification module. The key contributions are as follows:

1) Multi-view information is used separately in knowledge
reasoning of UHV projects. It can provide a more accurate
feature embedding than a single-view latent representation.

2) A more effective pooling mechanism based on the Haar
convolution method is introduced considering the structural
information of the knowledge graph in the UHV projects.

3) Based on the construction of knowledge graphs in the UHV
projects domain and the proposition of a deep multi-view
graph convolutional network, the problem of knowledge
reasoning on project classification is solved, which lays the
foundation for the downstream application of the power
transmission and transformation auxiliary review platform.

2 Problem formulation

The knowledge graph of UHV projects can be divided into two
categories based on the attributes of the nodes and the structural
information of the graph. Specifically, nodes of knowledge graph can
be seen as nodes in the attribute matrix, and the structure
information can be modeled by adjacency matrix. As shown in
Figure 1, three views are generated based on different attribute types,
with each view representing a single aspect of the node attributes,
such as rated voltage, device model, and quantity. Several subgraphs
are also produced based on the structural information of the graph,
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such as the electrical primary part, electrical secondary part,
protection part, telecontrol part, and so on.

Following the commonly used notations, a knowledge graph is
denoted as G(V, A, X), where V denotes the set of nodes, A denotes
the adjacency matrix and X denotes the attribute matrix. Thus, a
multi-view graph of the graph G can be represented as Gmg=(V, A,
Xmg), where Xmg∈ Rn×dmg

is a submatrix of X and n � |V| is the
number of nodes, dmg contains k distinct attribute features of the
graph. As is illustrated above, a multi-view graph has the same
structure as the original graph which V and A remain unchanged,
while the attributes of the nodes are part of X. On the other hand, a
subgraph of G can be denoted as Gs=(Vs, As, X), where Vs and As are
the submatrix of the originalV and A, representing a divide from the
structural aspect.

Our purpose is to classify the knowledge graph subgraphs, which
is a fundamental function for the review of power transmission and
transformation projects. Therefore, a function to generate a
probability of each graph should be learned with both Gmg and
Gs as input, which could be represented by the following Equation
(1), where Z denotes the probability of the graph, f is a trainable
function of the deep multi-view graph convolutional network, Xmg

and XS denotes the embeddings of Gmg and Gs respectively.

Z � f Xmg Gmg( ), XS Gs( )( ) (1)

3 Framework and methodologies

Considering both the attribute and structural information of
the UHV knowledge graph, the knowledge reasoning framework
mainly takes five steps. Firstly, with the analysis of historical
structured, semi-structured, and unstructured data, a UHV
knowledge graph is constructed. Secondly, considering the
attribute information of the knowledge graph, a series of multi-
view graphs are generated and GCN is leveraged to learn the latent
representation of each graph. Thirdly, an aggregator is used to
combine multi-view representations. Fourthly, a hierarchical Haar
graph pooling method is adopted to replace the graph Laplacian-
based GNN considering the structural information of the graph.
Finally, a unified representation of the knowledge graph is
generated and ready for graph classification and other
downstream applications. The framework of the knowledge
reasoning method is shown in Figure 2. More details will be
elaborated in the following sections.

FIGURE 1
A UHV example to illustrate the multiple views and structural divide.

Frontiers in Energy Research frontiersin.org03

Hu et al. 10.3389/fenrg.2023.1339416

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1339416


3.1 Knowledge graph construction based on
UHV projects

Data from the UHV projects mainly contains three parts:
structural, simi-structural, and non-structural data. Project
investment table, equipment list are typical structural data.
Equipment inventory is simi-structural data because the
properties can be put into the same cell and break the structural
feature of the data. Preliminary design instructions, feasibility study
reports are some of the non-structural data, which account for a
large proportion. The knowledge graph is a structured semantic
knowledge base used to describe concepts in the physical world and
their relationships in symbolic form. In this section, a two-stage
method is proposed to construct a UHV knowledge graph.

1) Knowledge graph ontology construction

Ontology is a model and a pattern constraint on the data that
constitutes the knowledge graph. Building an ontology in a specific
domain requires cooperation with multiple experts in vertical fields.
The inputs for constructing ontology include domain knowledge,
terminology dictionary, experience of experts, etc. The output
includes the entity categories that constitute the knowledge
graph, as well as the relationships between categories, the set of
attributes that entities of a specific category, and so on. There are
generally three methods for constructing knowledge graph ontology:
top-down, bottom-up, and a combination of the two. Among them,
the top-down approach is to define the most common top-level
concepts in the field and then expand downwards in sequence. It
requires a thorough understanding of a specific domain both in the
business aspect and the data aspect as well. The bottom-up method
is just the opposite. It starts with entities, summarizes and organizes
entities to form low-level concepts, and then gradually abstracts
upward to form upper-level concepts.

In the UHV projects knowledge domain, heterogeneous data
comes from different sources. On the one hand, existing data models
such as traditional power system engineering systems and expert
knowledge bases can provide equipment information and other
constraints. On the other hand, rich knowledge is buried in various
types of data such as unstructured, semi-structured, and structured
data, which needs to be added to the knowledge base using data
mining methods. To ensure the integrity of UHV knowledge graph
ontology, a combination of top-down and bottom-up is used. Expert
experiences are regarded as the guidelines of the construction, while

knowledge extracted from data is a supplement to the ontology.
These two aspects together form the conceptual part of the
knowledge graph.

2) Knowledge graph construction for UHV projects

Knowledge construction for UHV projects constitutes the data
layer of the knowledge graph. It mainly contains 2 components:
knowledge extraction and knowledge fusion.

Knowledge extraction is a technology that automatically
extracts structured information such as entities, relationships,
and entity attributes from heterogeneous data. Conventional
named entity recognition(NER) algorithm includes BiBERT-
LSTM-CRF (Huang et al., 2015), RoBerta-CRF (Liu et al.,
2019), and other deep neural network models. To solve the
nested entity problem, methods based on entity matrix such as
GlobalPointer are proposed. Other methods such as TPLinker,
Tencent Muti-head, and Deep Biaffine are also suitable for solving
nested NER problems. As for relation extraction, recent research
mainly focuses on joint extraction methods, which can be divided
into two categories: sequence annotation-based methods which
converts joint extraction problem into sequence annotation
problem when decoding, and sequence-to-sequence based
methods (Zeng et al., 2018; Takanobu et al., 2019). For
constructing a UHV knowledge graph, due to the fact that
there exists a nested NER phenomenon, a combination of
manual annotation and GlobalPointer is recommended. For
example, given a sentence “The Beijing 1000 kV substation
project requires four new main transformers”, which describes
the quantity of transformers in the project. To recognize the
nested entity “Beijing 1000 kV substation project”, GlobalPointer
first lists all the entity candidates and then Pick out the real
entities with entity labels. It can be concluded that a sentence with
n words could generate n(n+1)

2 candidates. With m labels, the NER
problem is then converted to a multi-label classification problem.
Although the time complexity is σ(n2), with the use of
Transformer and the design of parallel computing, it can be
reduced to σ(1).

Knowledge fusion refers to the fusion of description
information about the same entity or concept from multiple data
sources and the integration and disambiguation of heterogeneous
data under unified standards for knowledge graphs. It requires two
processes such as implement entity linking and knowledge merging.
The process of entity linking is to use a given entity referent to

FIGURE 2
A framework of the knowledge reasoning method based on UHV projects.
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perform entity disambiguation and coreference resolution through
similarity calculation. After confirming the correct entity object, the
entity referent is linked to the corresponding entity in the knowledge
graph. Among them, entity disambiguation solves the problem of
ambiguity of entities with the same name, and coreference
resolution solves the problem of multiple references
corresponding to the same entity object.

Based on the data extracted from a UHV project, Figure 3 shows
the constructed knowledge graph. As can be seen, a UHV project
mainly contains six parts: electrical primary part, electrical
secondary part, hydraulic part, HVAC part, remote control part
and protection part, which is represented as orange nodes in the
figure. Each part contains multiple equipment, with
components followed.

FIGURE 3
Part of a knowledge graph based on a UHV project.

FIGURE 4
A subgraph chain of UHV knowledge graph.
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3.2 Multi-view graphs encoder

After obtaining the knowledge graph of UHV projects, we use
attributed network model to analyze the knowledge reasoning
problem. To transform knowledge graphs to attributed networks,
we take entities as nodes and edges between entities become edges
between nodes. And attributes of each node are embedded before
concatenated as a vector. For a specific UHV graph, we divide it into
multi-view graphs considering the difference of multiple attributes
of a node. Taking the accuracy and effectiveness of the multi-view
divide into account, there are two principles: 1) attributes with
different units need to be divided into different views in order to
avoid confusion of attribute information due to excessive numerical
differences; 2) pure numeric properties and mixed text and numeric
properties should be separated into separate views.

After the construction of multi-view graphs, a GCN-based encoder
is adopted to get the latent representation of each graph. GCN is a
convolutional neural network that can directly act on graphs and utilize
their attribute and structural information. To get the most precious
embedding of the graph, several layers of GCN are usually used. Given a
graph G(V, A, X) with k views, each of the multi-view graph can be
denoted as Gmg

i (V,A,Xmg
i ), where X � (Xmg

1 ,Xmg
2 , . . . ,Xmg

k ). The
embedding of each layer can be denoted as:

Hl+1 � f Hl,A,Wl( ) (2)
where Hl is the input of the layer l, and Wl is the trainable
parameters.

More specifically, the function f(Hl ,A,Wl) can be expressed
as follows:

f Hl ,A,Wl( ) � σ ~D
−1
2 ~A~D

−1
2HlWl( ) (3)

where ~A � A + I, ~D is the degree matrix of the nodes with
~Di,i � ∑j

~Ai,j, σ is an activation function such as Relu. To simplify
the calculation,Wl is shared for all the nodes. It is worth noticing that
GCN can only capture the information of the neighborhood for a
specific node. In order to take long-range information into
consideration, a deep GCN network with k convolutional layers is

required. However due to an over-smoothing problem, the number of
layers is no more than three. In this paper, a UHV knowledge graph is
built with a depth of three, thus a three-layer GCN network is used. The
final feature representation can be expressed as:

Zmg
i � Relu Relu Relu Xmg,A,W0( ),A,W1( )A,W2( ) (4)

3.3 Multi-view graphs aggregator

For every low-dimensional feature representation, it is
important to understand that each view only contains part of the
attribute information of the nodes. To be more specific, in the UHV
knowledge graph, Zmg

1 , Zmg
2 and Zmg

3 represent he embedding of
rated voltage, quantity and device model respectively. To get the full
description of the nodes, an aggregator gathering all information
from every view seems sensible. There are usually two methods
when it comes to representation aggregation, concatenation and
weighted addition. As each attribute is equally important to a
specific node, we apply concatenation to polymerize each
representation. The unified representation of the original
knowledge graph can be denoted as follows:

Z � concat Zmg
1 ,Zmg

2 ,Zmg
3( ) (5)

3.4 Construction of subgraphs based on
Haar pooling

After obtaining the unified representation of the UHV
knowledge graph, traditional algorithms take it as an input to
a multilayer perceptron(MLP) and output a possibility score of
each category. Because the electric power grid infrastructure
domain has a strong hierarchical relationship, especially in the
equipment selection area, we can use a clustering method to get
the node aggregation features in the knowledge graph. Further

FIGURE 5
A framework of graph classification based on the Haar pooling mechanism.
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analysis of the knowledge graph shows a sparse characteristic
which means the number of edges is far less than the number of
nodes. Traditional algorithms such as the k-nearest neighbors
algorithm(KNN) use the distance between nodes as the basis for
classification, which is not suitable for graph data because it
ignores the topology information. Therefore, considering the
clear hierarchy relationship in components, parts, and

equipment in the electric power equipment knowledge graph,
we can obtain a chain of subgraphs based on the facts of the
business situation without adopting a clustering algorithm. In
this context, getting a series of representation of subgraphs
effectively becomes the focus of this problem. In this paper, a
Haar convolution-based pooling mechanism is leveraged to the
graph unified representation.

FIGURE 6
A line chart of training loss and accuracy for UHV project classification. (A) Training loose of each epoch. (B) Training accuracy of each epoch.

TABLE 1 UHV projects classification considering multi-view mechanism.

Algorithm Epochs Test accuracy Test loss Time

Haar pool with multi-view mechanism 188 0.7083 0.4600 0.2645

Haar pool without multi-view mechanism 187 0.5833 0.6774 0.2436

FIGURE 7
Training accuracy based on the number of Haar pooling layers.
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Given a chain of the subgraphs (G0, G1, . . ., Gm), each node in
Gi is a set of nodes in Gi+1. As shown in Figure 4, G0 represents the
original knowledge graph, while G3 can be a single node that
represent the whole knowledge graph. The Haar convolutional-
based pooling mechanism should be used in every layer of the

chain, getting a smaller graph from Gi to Gi+1. Since a readout
module is used afterward to integrate every representation of
subgraphs, it is important to guarantee each matrix has the same
output dimension. The output of a specific subgraph Gi(V

i, Ei) is
defined as:

TABLE 2 Test results of different pooling mechanisms.

Algorithm Test accuracy Test loss Time

Multi-view mechanism with Haar pool 0.7083 0.4600 0.2645

Multi-view mechanism with SAGPoll 0.6753 0.7521 0.2015

Multi-view mechanism with CGIPool 0.6861 0.8652 0.3054

Multi-view mechanism with GSAPool 0.6675 0.8534 0.2465

FIGURE 8
A line chart of training loss and accuracy for NCI-1 classification. (A) Training loose of each epoch. (B) Training accuracy of each epoch.
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Xoutput
i � ΦT

i X
input
i (6)

where ΦT
i is the transpose of Harr basis matrix of the ith

subgraph, Vi, Ei represents the nodes and edges of Gi

respectively.
Then the Haar basis could be obtained using the following steps:

1) order Vi by their degrees of nodes as vi1, v
i
2, . . . , v

i
N{ }, where N

denotes the number of nodes inGi; 2) theN vectors can be calculated
by the following equations:

Φi
1 �

1��
N

√ l � 1,

Φi
l �

��������
N − l + 1
N − l + 2

√
xi
l−1 −

∑N
j�lx

i
j

N − l + 1
⎛⎝ ⎞⎠ (7)

where xi
j is a function for jth node, which could be expressed as:

xi
j v( ) � 1, v � vij

0, v ∈ Vi\ vij{ }{ (8)

To speed up the calculation process, a compressed Haar basis
matrix is used to replace the originalΦi. Considering the fact that the
first Ni+1 represents the low frequency coefficients which contains
the majority information of the graph, we adopt a tailor operation to
reduce the size of Φi. The Haar convolutional-based pooling
mechanism requires less computational complexity than the
traditional graph Fourier transform. The use of fast algorithms
further improves calculation speed. The key to the fast
algorithms is the Haar basis, which are sparse matrixes to which
a compressive method can be adopted. Specifically, given a chain of
subgraphs (G0,G1, . . .,Gm), whereGm is the coarsest graph with only
one node. Each subgraph could generate a set of n orthogonal
vectors called Haar basis, where n is the number of nodes in the
specific subgraph. They are the representations of the input in the
Haar domain. Analysis shows that these matrixes are sparse and
several low-frequency coefficients contains most of the information
of the input. Therefore, we use first nj+1 Haar basis vector in our
pooling layer, while the other components are aborted.

In order to minimize errors caused by information loss, a
hierarchical mechanism is adopted. As shown in Figure 5, every
low-dimensional representation is aggregated together using a
Readout module and then an MLP is used to get the probability
of each label for subgraph Gi.

Y � softmax MLP XReadout( )( ) (9)

4 Case studies

In this section, we tested our proposed method on two datasets
along with several traditional methods as comparison algorithms.
The two datasets are UHV_Projects and NCI-1. Among them,
UHV_Projects is constructed on historical engineering data, and
NCI-1 is an open-source dataset widely used to test the classification
performance of different algorithms. All these experiments are
performed on a laptop with Intel Core i7-11800H CPU and
NVIDIA GeForce RTX 3070 Laptop GPU. Some of the
hyperparameters are set as follows: batch size is fixed to 50;
learning rate is fixed to 0.001.

4.1 UHV projects data classification

The construction of the UHV projects knowledge graph
contains heterogeneous data from multiple data sources such as
Preliminary Design Instructions, Equipment Inventory, Specialized
Reports, and so on. It requires efforts from experts from both the
power electrical domain and computer domain. Due to the
complexity of different business needs, we only construct a
dataset based on the requirements of power transmission and
transformation project review with a focus on equipment.
Therefore, the dataset mainly contains four levels: the first level
is the name of the projects; the second level contains six professional
fields based on construction guidelines, such as electrical primary
part, electrical secondary part, protection part, telecontrol part,
hydraulic part and fire-controlling part; the third level mainly
refers to major equipment of each part of second level, such as
main transformers, 1000 kV power distribution unit; the tertiary
level contains parts of the major equipment, such as cable, voltage
transformer, current transformer, breaker and so on.

Taking each project as a subgraph, a label is assigned to each
graph indicating the type of the project, which are the new
substation project, substation expansion project, and bay
expansion project. The difference between the three kinds of
projects mainly lies on the quantity and equipment models. For

FIGURE 9
Training accuracy based on the number of Haar pooling layers.
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example, a new substation project usually has more main
transformers than substation expansion projects and a bay
expansion project may only have some in-bay equipment such as
isolating switches and lightning protectors. Thus, we constructed
120 graphs, with an average of 130 nodes and 128 edges per graph.
We first test our model and our model without multi-view
mechanism on this dataset and the results are illustrated in
Figure 6 and Table 1. It can be seen that the accuracy of our
model with a multi-view mechanism is improved by 21.43% with a
little more time consumption.

We also add an analysis regarding the number of Haar pooling
layers. It describes the number of subgraphs which is an indicator of
different clustering methods. It should be noted that 1 layer represents
the model without the Haar pooling strategy, and 2 layers only consist
of two subgraphs which are the original knowledge graph and the final
knowledge graph with only one node. The results are shown in
Figure 7. Due to the fact that the UHV knowledge graph could be
divided into three levels which are professional domains, equipment,
and parts, a three-level clustering is most proper and the result of the
experience also proves the conclusion.

To test the performance of the Haar pool, we selected three
traditional pooling methods as the control group such as SAGPoll
(Lee et al., 2019), CGIPool (Pang et al., 2021), and GSAPool (Zhang
et al., 2020). The results are illustrated in Table 2. According to test
results of different pooling mechanisms, our proposed model shows
excellent performance both in accuracy and loss. Although a multi-
view mechanism with SAGPoll achieves the highest computational
efficiency, the accuracy and the loss of our proposed model
outperforms it by 4.88% and 63.5%. It shows that a little sacrifice
of the time complexity returns good performance.

4.2 NCI-1 data classification

To test the generalizability of our proposed model, we use the
NCI-1 dataset as our input. NCI-1 is a popular open-source
benchmark dataset mainly focused on chemical and medical
domain. It contains 4,100 compounds, each one of which
could be seen as a graph sample. Among them, nodes
represent atoms and edges represent chemical bonds. The task

of the dataset is to determine whether the compound has
properties that hinder the growth of cancer cells. As
experiments in Section 4.1, we first test multi-view mechanism
on this dataset. The results are shown in Figure 8 and Table 3. It
shows an increase in test accuracy by 18.67% when comparing the
model with a multi-view mechanism to the one without. As the
number of samples increases, the running time is also extended.
The difference between both algorithms is extended when
compared to UHV datasets, which implies that traditional
GCN has a non-linear computational complexity.

As for the number of Haar pooling layers, there is no obvious
structure of the NCI-1 dataset. We make a test from layer 1 to layer
5. The results are shown in Figure 9. According to training accuracy,
apart from the results for 1 layer, the rest of the results are
almost the same.

To test the performance of the Haar pool, we also employ the
traditional pooling mechanism as in Section 4.1. And the results are
shown in Table 4. It demonstrates that our proposed method is best-
considering test accuracy and test loss. Due to the multi-view
mechanism, the running time is not the shortest of all
experiments, but considering the increase in performance, it is
completely acceptable.

5 Conclusion

This paper proposed a novel multi-view knowledge reasoning
method that takes both attribute and structural characteristics into
consideration. Firstly, a knowledge graph construction method is
proposed based on UHV project data. Secondly, considering the
difference of multiple attributes, a series of multi-view graphs are
constructed and represented using traditional GCN. Thirdly, a Haar
convolutional-based pooling method is leveraged to deal with the
structural information with high efficiency. Results from the UHV
dataset and NCI-1 dataset prove the feasibility of our algorithm. In
general, our contributions are as follows:

1) The introduction of a multi-view mechanism to the knowledge
reasoning framework improves the accuracy of graph
representation learning.

TABLE 3 NCI-1 classification considering multi-view mechanism.

Algorithm Epochs Test accuracy Test loss Time

Haar pool with multi-view mechanism 57 0.7385 0.5286 5.5319

Haar pool without multi-view mechanism 70 0.6223 0.6419 4.8624

TABLE 4 Test results of different pooling mechanisms.

Algorithm Test accuracy Test loss Time

Multi-view mechanism with Haar pool 0.7385 0.5286 5.5319

Multi-view mechanism with SAGPoll 0.6967 0.6519 5.1864

Multi-view mechanism with CGIPool 0.7058 0.7622 5.9571

Multi-view mechanism with GSAPool 0.6885 0.6681 5.3748
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2) A Haar convolutional-based pooling mechanism is used in the
UHV knowledge graph, which proposes a better way when
analyzing knowledge graphs with hierarchical structures.

3) Although running time increases, our proposed method shows
various improvements in accuracy in different datasets.

In the future, knowledge graphs will become more and more
popular in the electric power domain. Knowledge reasoning methods
should surely serve in various downstream applications. Our proposed
methodmentioned abovemainly focus on graph classification and could
be used in power transmission and transformation review platform.
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