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Virtual power plants (VPPs), serving as an integration and coordination platform
for energy sources, have been rapidly developed in recent years. With the rapid
expansion of distributed energy sources, disturbance problems within the VPP
and cluster are becoming increasingly prominent. In this study, we commence by
addressing the internal fluctuations within the VPP through the construction of a
source–load uncertainty model. Then, we integrate the Nash bargaining game
theory, treating different VPPs as participants in the game. This approach
significantly mitigates disturbances within both VPPs and the cluster through
the negotiation of power trading strategies. In addition, the coordination between
VPPs and their coordination with the distribution network in the network-wide
interaction is considered, and an optimization algorithm for distributed electricity
trading based on the alternating direction method of multipliers is proposed to
solve themodel. The results show that the proposedmodel effectively copes with
the internal and external disturbances of the VPP, improves the system’s ability to
cope with the uncertainty risk, and reduces the operation cost.
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1 Introduction

In pursuit of the goals of “2030 carbon peak” and “2060 carbon neutral,” China is
accelerating the reform of its energy structure, building a clean and low-carbon energy
system and improving the efficiency of renewable energy use (Han et al., 2021; Li et al., 2021;
Sheng et al., 2021). This makes the power system face unprecedented challenges. One of
them is the source–load fluctuation problem in both directions, mainly due to the
distributed energy systems, such as solar power and wind power, whose power
generation is affected by the weather and wind speed, as well as the uncertainty of the
users’ electricity consumption behavior, leading to a two-way fluctuation between power
supply and demand (Deng et al., 2023; Gao et al., 2023; Tang et al., 2023).

Virtual power plants (VPPs) have been rapidly developed because of their advantages in
meeting diversified energy demand and integrating distributed energy sources (Yin et al.,
2018; Sheng et al., 2019). Integrating and coordinating distributed energy sources and
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utilizing flexible energy scheduling strategies help reduce the impact
of source–load fluctuations on the power system and are a key
technology to cope with the problem of bidirectional source–load
fluctuations (Pan et al., 2023a).

The source–load fluctuation problem has been studied by many
scholars. Various forecasting methods have been developed to
improve the energy utilization within the VPP, such as new
energy output prediction and load prediction. A new energy
prediction control technique with feedback correction and an
adaptive predictive energy management strategy for the real-time
optimal operation of the VPP was proposed in the work of Mohy-
Ud-Din et al. (2021), but it cannot achieve the dual prediction of
source and load. Appino et al. (2021) and Li et al. (2023) used
stochastic models to predict renewable energy output and load, and
the algorithm can obtain the optimal scheduling scheme with perfect
prediction. In the work of Alabi et al. (2022), a deep learning
approach for day-ahead prediction and applying a stochastic
modeling approach for optimal decision making for the day-
ahead scheduling of VPPs were discussed. The stochastic nature
of weather and electricity consumption behavior leads to large
deviations between forecasts and the actual situation, and the
scheduling plan is unable to meet the demand for energy.

To address the issue of inadequate accuracy in forecasting new
energy output and load, we employ game theory. This theory treats
diverse energy entities as participants in a game, employing
negotiations on power trading strategies to compensate for
forecast deviations. The goal is to minimize the influence of
power fluctuations on the VPP. A game optimization model of
the VPP and other energy subjects was proposed in the work of
Wang et al. (2022a) and Pan et al. (2023b), taking into account the
interests of VPP operators and other energy subjects. In the work of
Liu (2023), a two-layer game scheduling method for the VPP with
multiple integrated energy systems (IESs) was proposed to ensure
the reliable operation of the VPP and maximize the benefits of
multiple IESs. However, the behavior of each subject in pursuit of
maximizing its interests will harm the reduction of source–load
uncertainty. Wang et al. (2022b) and Ju et al. (2022) constructed a
VPP game model considering flexible demand response and electric
vehicles to balance the multiple objectives of output fluctuation,
competitive behaviors, and dispatch costs, which achieves energy
complementarity and improves the overall operating economy.
These studies focus on the competitive relationship among
energy subjects; the potential for cooperation among different
energy subjects is not sufficiently considered, and the inter-
subject perturbation problem affected by the competitive
relationship cannot be reasonably solved.

In response to the expanding scale of power systems, researchers
have proposed cooperative optimization strategies for multi-virtual
power plants (MVPPs) to address perturbation issues among VPPs.
Zhou et al. (2018a), Ge et al. (2023a), and Cao et al. (2023)
introduced cooperative game strategies for energy systems,
accounting for constraints in distribution network operation,
leading to enhanced stability in overall VPP operation and
reduced operational costs. In the work of Liu et al. (2023), inter-
VPP perturbations and various internal uncertainties were
considered, proposing an MVPP optimization methodology that
acknowledges the risky nature of operations. Zhou et al. (2018b)
suggested a dual-compensation demand response mechanism for

the operator and MVPP to balance conflicting market interests.
They employed a Stackelberg game strategy for operators and
MVPPs with dual-compensation demand response mechanisms,
achieving optimal energy scheduling strategies for each VPP.
Huang et al. (2023) solved the problem using a distributed,
robust optimization method. Additionally, to safeguard
participant privacy, an alternating direction method of
multipliers (ADMM)-based distributionary robust optimization
algorithm was utilized to address trading issues in a distributed
framework. Qiu et al. (2021) explored the cooperation mode of the
MVPP, establishing multi-objective individual and joint scheduling
models for single and MVPPs, respectively. They applied
cooperative game theory to effectively enhance the anti-
disturbance capability of VPPs. Despite these advancements in
MVPP systems realizing the cooperative mode of multiple
entities, the issue of uncertainty in new energy output
and load is insufficiently considered, limiting the improvement
of system economy.

With the continual increase in distributed energy source
penetration, the uncertainty in their output poses substantial
challenges to the secure and stable operation of the MVPP
system and its cooperative entities. Ge et al. (2023b) and Song
et al. (2023) formulated a non-cooperative dynamic game model for
day-ahead market optimization and trading within the MVPP,
accounting for the uncertainty in renewable energy output. In the
work of Yi et al. (2020), Hou et al. (2023), and Xie et al. (2023), an
MVPP coalition game optimizationmodel was proposed, addressing
multiple uncertainties in the VPP and limited dispatch flexibility,
thereby enhancing the comprehensive operational efficiency of the
MVPP. Sabella et al. (2016) explored a three-layer non-cooperative
energy trading approach among multi-interconnected multi-energy
microgrids (MEMGs) in a restructured integrated energy market.
Heterogeneous uncertainties arising from renewable energy sources,
market prices, and electrical loads are addressed using a risk-averse
stochastic programming method. Despite the consideration of
uncertainties, energy trading is confined to VPPs and does not
account for interactions with the distribution network. Ikpehai et al.
(2019) and Zh et al. (2023) proposed a two-stage MVPP distributed
coordination optimization model, considering distribution network
characteristics to enhance MVPP operation stability while
incorporating cooperative scheduling objectives for the
distribution network. Cui et al. (2021) investigated point-to-point
energy trading among multiple microgrids (MGs) under
uncertainties. The paper suggests a two-level distributed
optimization framework to bridge the gap between the physical
power flow supervised by the distribution system operator and the
logical point-to-point transactions among multiple MGs under
uncertainty.

The aforementioned studies offer crucial insights into the
optimal scheduling of the MVPP under source–load uncertainty.
However, there is a paucity of research that comprehensively
considers the bidirectional fluctuations of both the source and
load, as well as disturbances between the MVPP and the
distribution network. Consequently, this paper introduces a Nash
bargaining gamemodel for theMVPP that incorporates source–load
uncertainty.

With regard to the lack of the above literature and in order to
focus on addressing the disturbance problem within VPPs and
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clusters, this paper proposes a Nash game model for the MVPP that
takes into account the source–load uncertainty. The main
contributions of this paper are as follows: 1) a source load
uncertainty model is formulated. By adjusting the uncertainty
level to align with the specific risk preferences of each VPP, it is
demonstrated that, under varying source–load fluctuations, the
collaboration model enhances VPPs’ capacity to manage
uncertainty risks effectively. 2) A cooperative operational model
for power sharing among MVPPs is formulated using the Nash
bargaining theory. In this model, various VPPs are treated as
participants in a game, engaging in negotiations to establish
power trading strategies. This approach, combining cooperation
and competition, mitigates disturbances among VPPs. 3) The
ADMM is adopted to solve the optimization problem of power
trading among VPPs and between them and the distribution
network. Each VPP only needs to interact with the expected
power trading value and power trading price information, which
ensures the privacy of each VPP’s information while achieving good
convergence.

2 MVPP model

2.1 Structure of an MVPP

In this paper, we propose an MVPP power sharing model based
on the Internet of Things technology, as shown in Figure 1. Each
VPP is equipped with a smart meter device, and VPPs communicate
with each other using a wireless access network (Ma et al., 2021).
VPPs are internally set up with an energy trading client (ETC),
which connects to the smart meter through a wireless network. The

software that implements the trading function together with the
smart meter and external communication is called an energy trading
agent (ETA) (Wang et al., 2023). When considering privacy
protection needs, the optimization strategies within each VPP
can be solved locally, and only limited transaction information is
exchanged through the ETA platform.

The VPP mainly consists of new energy equipment, an energy
storage system, a combined heat and power (CHP) unit with a
carbon capture system (CCS) and power to gas (P2G), and electric
and heat flexible loads, which fully satisfy the load demand within
the system through energy interaction with the higher-level grid.
Each VPP within the cluster optimizes the energy price, traded
power, and system unit output according to its own objectives and
resource characteristics to ensure its own electric and heat load
demand. The energy trading framework of this paper is shown
in Figure 2.

2.2 Mathematical model of the VPP

2.2.1 CHP model with a CCS and P2G
The power model of combined heat and power is shown

as follows:

PCHP
i,t � VCHP

i,t ηCHPXgas, (1)

where VCHP
i,t is the natural gas consumption, ηCHP is the power

generation efficiency of the gas turbine, and Xgas is the calorific
value of natural gas. Given the constraint of “electricity demand
based on heat” on the CHP output of the gas turbine, the heating
power of the gas turbine during period t can be delineated by the
following inequality:

FIGURE 1
Structure of the MVPP.

Frontiers in Energy Research frontiersin.org03

Chu et al. 10.3389/fenrg.2023.1337205

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1337205


max Pmin − h1H
CHP
i,t , hm HCHP

i,t −Hi,0( ){ }≤PCHP
i,t ≤Pmax − h2H

CHP
i,t ,

(2)
whereHCHP

i,t is the heating power of the CHP unit at period t, h1 and
h2 are the electric-heat conversion coefficients of the CHP unit
corresponding to the minimum and maximum output power,
respectively, hm is the linear slope of the cogeneration power,
and Hi,0 is the cogeneration power at the minimum of the CHP
unit’s power.

HGB
i,t � VGB

i,t ηGBXgas, (3)
H GB

min ≤HGB
i,t

≤H GB
max , (4)

−ΔHGB ≤HGB
i,t

−HGB
i,t−1 ≤ΔHGB, (5)

where VGB
i,t is the natural gas consumption of the gas turbine, ηGB

is the heating efficiency of the gas turbine, and HGB
i,min, H

GB
i,max,

and ΔHGB
i are the maximum output power, minimum output

power, and maximum climbing power of gas turbine,
respectively.

In the CHPmodel with P2G and a CCS, the generated electricity
can be divided into three parts based on its utilization:

PCHP
i,t � PE

i,t + PCCS
i,t + PP2G

i,t , (6)

where PE
i,t is the power supplied to meet the electricity demand of the

CHP unit, PP2G
i,t is the power supplied for P2G consumption, and

PCCS
i,t is the power supplied for the CCS.
The power consumption of P2G to produce natural gas is

given by

VP2G
i,t � αPP2G

i,t , (7)

where α is the electrical conversion efficiency for P2G gas
production.

The corresponding amount of CO2 required for P2G is
calculated using the following equation:

WCO2
i,t � βPP2G

i,t , (8)

where β is the coefficient for calculating the amount of CO2.
The electric power corresponding to the CO2 captured for P2G

by the CCS is given by

PCCS
i,t � γWCO2

i,t , (9)

where γ is the conversion coefficient for the consumed electric
energy in capturing CO2. The electric powers of the CCS, P2G, and
the CHP should all be within their respective power limits:

P CCS
min ≤PCCS

i,t ≤P CCS
max , (10)

P P2G
min ≤PP2G

i,t ≤P P2G
max , (11)

P CHP
min ≤PCHP

i,t ≤P CHP
max , (12)

where Pmin
CCS and Pmax

CCS are the lower and upper bounds of the
electric power consumption of the CCS, respectively, Pmin

P2G and
Pmax

P2G are the lower and upper bounds of the electric power
consumption of P2G, respectively, and Pmin

CHP and Pmax
CHP are the

lower and upper bounds of the electric power generation of the
CHP, respectively.

Substituting the upper and lower constraints of Eqs. 2, (6), (10),
and (11) into Eq. 13, we obtain the new coupled characteristics of
CHP electric thermal power with P2G and the CCS:

max P min
E − h1H

CHP
i,t , hm HCHP

i,t −H0
i( ) − P max

P2G − P max
CCS{ }≤PE

i,t ≤P max
E

−h2HCHP
i,t − P min

P2G − P min
CCS .

(13)

2.2.2 Battery storage system model
The charging and discharging model of the battery is shown

as follows.

Et
bat � 1 − eloss( )Et−1

bat + PBch
i,t ebat,ec − PBdis

i,t

ebat,ed
( )Δt, (14)

0≤PBch
i,t ≤ ut

batP max
Bch , (15)

0≤PBdis
i,t ≤ 1 − ut

bat( )Pmax
Bdis , (16)

Emin
bat ≤Et

bat ≤E max
bat , (17)

ET
bat � E0

bat, (18)
where energy loss coefficient eloss <<1, Pmax

Bch and Pmax
Bdis are the

maximum charging and discharging power, respectively, and
Emin
bat and Emax

bat are the minimum and maximum storage capacity
of the energy storage system, respectively.

FIGURE 2
Energy trading framework.
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2.2.3 Models of electrical and heating loads
The electric load at period t in the VPP consists of three parts:

fixed, transferable, and curtailable electric loads, which can be
expressed as follows:

Pload
i,t � Pload0

i,t + Ptran
i,t + Pcut

i,t , (19)

∑T
t�1
Ptran
i,t Δt

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣≤ ktranPload

i,t , (20)

0≤Pcut
i,t ≤Pmax

cut , (21)

where Ptran
i,t is the transferable electric load and Pcut

i,t is the curtailable
electric load.

The heat load in the VPP is divided into two parts: the fixed heat
load and the curtailable heat load.

Hload
i,t � Hload0

i,t −Hcut
i,t , (22)

0≤Hcut
i,t ≤H cut

max , (23)

where Hcut
i,t is the curtailable heat load and Hcut

i,max is the upper limit
of the curtailable heat load.

2.3 Source–load uncertainty model

PWT
i,t ∈ P̂

WT

i,t − δWTΔP̂
WT

i,t , P̂
WT

i,t + δWTΔP̂
WT

i,t{ }, (24)

PPV
i,t ∈ P̂

PV

i,t − δPVΔP̂
PV

i,t , P̂
PV + δPVΔP̂

PV

i,t{ }, (25)

Pload0
i,t ∈ P̂

load0
i,t − δeΔP̂

e

i,t, P̂
load0
i,t + δeΔP̂

e

i,t{ }, (26)

Hload0
i,t ∈ Ĥ

load0
i,t − δhΔĤ

h

i,t, Ĥ
load0
i,t + δhΔĤ

h

i,t{ }, (27)
∑
t∈T

δWT ≤ ΓWT,∑
t∈T

δPV ≤ ΓPV, (28)

∑
t∈T

δe ≤ Γe,∑
t∈T

δh ≤ Γh. (29)

The distributed energy output,PWT
i,t andPPV

i,t , and load power,P
load0
i,t

and Hload0
i,t , are composed of two parts: forecast value and deviation

value. P̂
WT

, P̂
PV
i,t , P̂

load0
i,t , and Ĥ

load0
i,t denote the forecast value of

distributed energy output and load power, ΔP̂WT
i,t , ΔP̂PV

, ΔP̂e
i,t, and

ΔĤh
i,t denote the deviation value of distributed energy output and load

power, δWT, δPV, δe, and δh are binary variables, 0 means that the
uncertain variables are not taken, 1 means that the uncertain variables
are taken to the extremes of the uncertainty set, and ΓWT, ΓPV, Γe, and Γh
denote the degree of uncertainty. The uncertainty modeling of
the source load using this method allows a reasonable regulation
of the degree of uncertainty, facilitating a comparison of the
scheduling methods.

2.4 The objective function of the
MVPP model

Based on the established MVPP power cooperation and sharing
model, the VPP operation cost mainly consists of CHP unit
operation cost, energy purchase cost, storage system operation

and degradation cost, demand response cost, power transmission
cost, and power sharing cost. The cost mathematical model of the
VPP can be described using the following equation:

CVPP
i � CCHP

i + Cw
i + CESS

i + Cdr
i + Ctran

i + Cnet
i , (30)

where CVPP
i is the operating cost of the ith VPP in the MVPPmodel.

Each cost term is specified as follows:

1. CHP operation cost

CCHP
i � ∑T

t�1
a1 PCHP

i,t( )2 + b1P
CHP
i,t + c1[ ], (31)

where a1 and b1 are the operation cost coefficients of the CHP and c1
is the operation cost constant.

2. External purchased energy cost

Cw
i � ∑T

t�1
λbuyt Pbuy

i,t − λsellt Psell
i,t( ) + λCH4

i,t Vbuy
i,t[ ], (32)

where λCH4
i,t is the price of natural gas,Vbuy

i,t is the total gas purchased
by the CHP system in period t, and λbuyt and λsellt are the purchase
and selling prices of power, respectively.

3. Operation degradation costs of the battery energy storage system

CESS
i � ∑T

t�1
ζ PBch

i,t + PBdis
i,t( ), (33)

where ζ is the degradation cost per unit of charge and discharge
(Britz et al., 2010).

4. Carbon quota and carbon trading cost

The carbon emission quota of the VPP is calculated using the
following equation:

W0
i,t � D PCHP

i,t + PPV
i,t + PWT

i,t( ), (34)
where D is the carbon emission quota for the CHP VPP per unit of
electricity production. The derivation of carbon trading cost is
as follows:

CCO2
i � ∑T

t�1
ε WCO2

i,t −W0
i,t( ), (35)

where ε is the carbon trading cost coefficient.

5. Demand response cost

Cdr
i � ∑T

t�1
λcute Pcut

i,t + λtrane Ptran
i,t + λcuth Hcut

i,t( ), (36)

whereCdr
i is the demand response cost and λcute , λtrane , and λtranh are the

compensation unit price for the transferable and curtailable loads.

6. Power transmission cost

Ctran
i � ∑T

t�1
∑ϒ
j ≠ i

aeP
net
i−j,t. (37)
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Transmission of power between VPPs necessitates the payment
of a crossing charge to the distribution network operator. ae is the
crossing charge per unit of electricity. The VPP cluster is defined as
ϒ, where i, j ∈ ϒ but j ≠ i.

7. Power sharing cost

The power sharing cost is defined as the amount of energy
trading between VPPi and VPPj at period t. If Pnet

i−j,t > 0, VPPi will
obtain energy from VPPj. Conversely, energy will be supplied to
VPPj. The price per unit of energy that needs to be paid for the
amount of electricity Pnet

i−j,t is the power sharing cost, and the cost of
energy sharing Cnet

i is shown in the following equality:

Cnet
i � ∑T

t�1
∑ϒ
j ≠ i

rneti−j,tP
net
i−j,t. (38)

2.5 Constraints

1. Electric power balance constraint

PPV
i,t + PWT

i,t + PCHP
i,t + PBdis

i,t + Pbuy
i,t + Psell

i,t � Pload
i,t + PBch

i,t + Pnet
i−j,t.

(39)

2. Heat power balance constraint

HCHP
i,t +HGB

i,t � Hload
i,t . (40)

3. Natural gas balance constraint

Vbuy
i,t � VCHP

i,t + VGB
i,t . (41)

4. Power trading constraint

The power output or received between VPPs at each period t
should be within the limits of the transmission power limit of the wires.

0≤Pnet
i−j,tξ

b
i,t ≤P max

net ,∀j ∈ ϒ, j ≠ i, (42)
−P max

net ≤Pnet
j−i,tξ

s
i,t ≤ 0,∀j ∈ ϒ, j ≠ i, (43)

0≤Pbuy
i,t ξbi,t ≤P max

grid ,∀i ∈ ϒ, (44)
−P max

grid ≤Psell
i,t ξ

s
i,t ≤ 0,∀i ∈ ϒ, (45)

ξsi,t + ξbi,t ≤ 1, (46)

where Pnet
i,t is the total amount of electricity trading by VPPi in period

t and the corresponding payment to be paid is ]i,t. VPPs participating
in electricity trading must satisfy the energy sharing balance
constraint (44) and the trading payment balance constraint (45).

∑
i∈ϒ

Pnet
i,t � 0,∀t, (47)

∑
i∈ϒ

]i,t � 0,∀t. (48)

3 Model solving of an MVPP based on
Nash bargaining theory

In this study, Nash game theory and the ADMM are used to
optimize the power allocation to VPPs, aiming to improve the
MVPP system’s ability to cope with the source–load fluctuation
problem and reduce the impact of disturbances between VPPs and
between them and the distribution network.

3.1 Nash bargaining theory

The Nash negotiation optimization model studied in this paper is a
cooperative game, where the MVPP distributes cooperative gains among
multiple participants by negotiating with each other after maximizing the
benefits of the entire participating group. The Nash negotiation model
satisfies a set of axioms, including symmetry and Pareto optimization.
The standard Nash negotiation model is shown in equality (46). The
solution that maximizes the Nash product is the equilibrium solution to
the Nash negotiation game problem (Tomohiko, 2014).

max∏
i∈ϒ

Ui − U0
i( )

s.t. Ui ≥U0
i

⎧⎪⎨⎪⎩ , (49)

where Ui is the benefit of the negotiating subject; U0
i is the benefit of

the subject before participating in the cooperation—the point of
negotiation rupture. The Nash negotiation model is a non-convex
nonlinear problem, so the above model decomposition is converted
into two sub-problems: the VPP cluster cost minimization sub-
problem (P1) and the benefit distribution sub-problem (P2), which
are solved sequentially.

3.2 MVPP model solution

To protect the privacy of each subject, P1 applies the ADMM
algorithm and uses the trading power between subjects as a coupling
variable to find out the optimal trading power between subjects while

FIGURE 3
VPP2 electric power balance.
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simultaneously obtaining the scheduling results for each subject.
P2 applies the ADMM algorithm and uses the trading price of
electricity between subjects as a coupling variable to find out the
optimal trading price of electricity between subjects while
simultaneously obtaining the optimal revenue distribution results for
each subject.

3.2.1 Solution of P1

min∏ϒ
i�1

CVPP
i Pnet

i,t( )[ ]
s.t. 1( ) − 29( ), 39( ) − 48( )

⎧⎪⎪⎨⎪⎪⎩ . (50)

In the solution of P1, when the equation is satisfied, it indicates
that there is a consensus on electrical power transaction between
VPPi and VPPj.

Pnet
i−j,t + Pnet

j−i,t � 0,∀i, (51)

where Pnet
i−j,t is the value of power that VPPi expects to trade with

VPPj and Pnet
j−i,t is the value of power that VPPj expects to trade

with VPPi.
The augmented Lagrange function for P1 is constructed

as follows:

LPl
i � CVPP

i +∑ϒ
j

∑T
t�1
λP1i−j Pnet

i−j,t + Pnet
j−i,t( ) +∑ϒ

j

ρPli
2
∑T
t�1

‖ Pnet
i−j,t + Pnet

j−i,t‖22,

(52)
where λP1i−j is the Lagrangemultiplier; the penalty parameter is set as ρP1i =
10–4. The optimal traded electric power between each VPP is determined
by alternatively solving equalities (50)–(52) using the ADMM.

Pnet
i−j,t k + 1( ) � argminLP1

i λP1i−j k( ), Pnet
i−j,t k( ), Pnet

j−i,t k( )( ), (53)
Pnet
j−i,t k + 1( ) � argminLP1

j λP1j−i k( ), Pnet
i−j,t k + 1( ), Pnet

j−i,t k( )( ), (54)
λP1i−j k + 1( ) � λP1i−j k( ) + ρP1i Pnet

i−j,t + Pnet
j−i,t( ). (55)

3.2.2 Solution of P2
In the paper, a nonlinear function is used to quantify the

contribution size of different VPPs in power sharing, and VPPs
negotiate with each other according to their respective contributions
as bargaining power to determine the trading price of power among
them and achieve fair allocation. First, the energy supplied and the
energy gained by each VPP during the participation optimization
cycle are calculated to constitute a nonlinear energy mapping
function to quantify the magnitude of the bargaining power of
each VPP based on the contribution of participation in
power sharing.

Ψs
i � ∑T

t�1
max 0, Pnet

i−j,t( )
Ψr

i � −∑T
t�1

min 0, Pnet
i−j,t( )

, (56)

βi � eΨ
s
i/Ψ s

max − e
− Ψr

i
Ψ r
max

( )
, (57)

where Ψ s
max is the maximum value of supplied power in the VPP

andΨ r
max is the maximum value of received power in each VPP. The

MVPP asymmetric bargaining revenue sharing model is constructed
based on the Nash negotiation model as follows:

max∏ϒ
i�1

C0
i − CVPP

i + Cnet
i( )βi

s.t. 38( ), 47( )

⎧⎪⎪⎨⎪⎪⎩ , (58)

C0
i − CVPP

i + Cnet
i > 0, (59)

where C0
i is the cost of VPPi before power sharing. The maximum

value problem is converted into a minimum value problem.
Following the same procedure as in P1, the multi-coupling
constraints on trade balance are decoupled to transform them
into double-coupling constraints.

min∏ϒ
i�1

− βi ln C0
i − CVPP

i + Cnet
i( ), (60)

rneti−j,t − rnetj−i,t � 0,∀i, (61)

FIGURE 4
VPP cluster power trading.

FIGURE 5
VPP2 purchase and sale of power.
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where rneti−j,t is the transaction price expected byVPPi for the transaction
power Pnet

i−j,t that has been solved in P1, rnetj−i,t is the transaction price
expected by VPPj, and rneti−j,t = rnetj−i,t indicates that the two sides have
reached a consensus. The specific solution steps of P2 are similar to
those of P1, so there is no need to go into details here.

3.2.3 Analysis of algorithm convergence
The convergence curves of P1 and P2 of this paper’s algorithm are

shown in Figure A1 and Figure A2. P1 converges after 32 iterations
with a computation time of 275 s. P2 converges after 24 iterations with
a computation time of 138 s. The results show that this paper’s
distributed algorithm based on the ADMM can achieve the
distributed and efficient solution to the two sub-problems while
considering the privacy protection of all stakeholders.

4 Case analysis

4.1 Basic data

In this paper, we consider the problemof power sharing and trading
among three VPPs: the electrical and heat loads of VPPs are shown in
Figures A3A, B, the new energy unit of VPP1 is wind power, the new
energy unit of VPP2 and VPP3 is photovoltaic power, and VPP2’s CHP
unit contains carbon capture and power-to-gas equipment. The
efficiency of the equipment is assumed to be constant, and the effect

of the load ratio on the efficiency is ignored. The electric and heating
load predictions of each VPP are shown in Figure A3. The distributed
energy output forecast is shown in Figure A4. The parameters of the
main equipment are shown in Table A1, and the information about
electricity prices of the grid and gas prices is shown in Table A2.

4.2 Analysis of results

4.2.1 Optimization results for MVPP power trading
1. VPP internal power balance results

Figure 3 shows the power optimization paradigm within VPP2,
representing a typical instance under the MVPP synergy architecture.
VPP2 actively engages in the comprehensive power coordination and
optimization process across the entire cluster. This involvement is
contingent on satisfying its internal power demands first. Notably, the
power production of the PV unit varies throughout the day. In the 11:
00–18:00 time period, the PV unit generates power to meet local
demand and can redistribute excess power to other VPPs. In contrast,
during the periods of 0:00–10:00 and 19:00–24:00, when PV
production capacity is limited, VPP2 initially draws power from
other VPPs and supplements any shortage through grid purchases.
This collaborative model serves a dual purpose: it diminishes energy
fluctuations within the system andminimizes reliance on external grid
power, thereby curbing overall operational expenses. The electrical

FIGURE 7
Power load of VPP2 under uncertainty.

FIGURE 6
Trading price results of the VPP cluster.

TABLE 1 Cost analysis before and after cooperation.

Participant Bargaining
factor (βi)

Costs before
cooperative
operation/¥

Costs after
cooperative
operation/¥

Final allocated
cost/¥

Value of cost
reduction/¥

VPP1 2.3310 21,756.02 25,065.31 16,274.98 5,481.04

VPP2 1.1001 43,160.78 29,055.43 39,760.90 3,399.88

VPP3 0.8475 22,895.05 22,910.66 20,995.52 1,899.53

VPP cluster — 87,811.85 77,031.40 0 10,780.45
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and heat power balances for the other VPPs are shown in Figures
A5A, C.

2. VPP cluster power trading results

The optimization results of the electrical energy interaction of each
VPP are shown in Figure 4. In the 00:00–10:00 and 16:00–24:00 time
periods, thewind power production capacity inVPP1 is in surplus, which
provides electrical energy for VPP2 and VPP3 to make up for the lack of
electrical energy at night. On the contrary, during the 10:00–16:00 time
period, the sharp increase in electric load during the daytime leads to the
insufficient supply of electric energy in VPP1 when the photovoltaic
power generation capacity of VPP2 andVPP3 is at its peak, in which case
VPP2 and VPP3 deliver electric energy to VPP1. This complementary
power sharing mechanism helps mitigate the power fluctuation among
VPP clusters and improve the overall stability of the system.

3. VPP purchase and sale of power results

The external power trading of VPP2 is shown in Figure 5. When
the generation equipment within VPP2 cannot meet load demand,
VPP2 first purchases electric energy from other VPPs; if it still
cannot meet the load demand, it considers purchasing the required
electric energy from the grid. When VPP2 has excess power, it
prioritizes power trading with other members in the cluster and only
considers selling power to the grid if it meets the power demand of
the cluster. Through this prioritized power trading strategy, the
power fluctuation problem within the VPP cluster is effectively
solved, ensuring that the power interaction between the VPP cluster
and the distribution grid is reasonable and efficient.

4. Trading price results of the VPP cluster

The power trading price among VPPs is shown in Figure 6. It
can be seen that the bargaining method is used to trade electricity
between VPPs, and the electricity price is maintained within the
upstream grid selling and purchasing price ranges at different
periods. This strategy enables VPPs to sell electricity at a price

higher than the grid purchase price and buy electricity at a price
lower than the grid sale price. It increases the VPP’s revenue.

4.2.2 Effects on source load uncertainty
To validate the impact of source load uncertainty and its model on

the operation of the MVPP system, a case study is conducted under the
following uncertainty conditions: load and wind power output
uncertainties are set to 12, photovoltaic output uncertainty is set to
6, and deviation of new energy output and load power is set to 20% of
the predicted values. The most adverse scenario for VPP2 under the
mentioned uncertainty conditions is obtained. Taking load data as an
example, the comparison analysis between the worst-case scenario and
the initial predicted data is plotted in Figure 7.

From Figure 7, it can be observed that, under the consideration of
uncertainty factors, the electric load power of VPP2 in the worst-case
scenario is higher than the predicted values during the time periods of
06:00–08:00 and 14:00–19:00. When considering uncertainty, there is
an increase in the load level, leading to a higher peak-to-valley difference
and accentuating the volatility of the power load curve. To enhance the
system’s capability to address uncertainty factors, it is apparent that the
operational costs of the VPP will increase.

To study the effect of uncertainty on the operation cost of the
MVPP, seven sets of uncertainty parameters are selected to calculate the
operation cost under the modes of cooperative and independent
operation among the VPP members, respectively, and the results are
shown in Figure 8.When the uncertainty is 2, the costs in the twomodes
are ¥95,760 and ¥84,689, respectively, and the cost of cooperative
operation is reduced by 11. 56% based on non-cooperative operation.
The cost under the cooperative mode of operation is ¥98,960 when the
uncertainty is 8, which is similar to the non-cooperative operation cost of
¥99,886 when the uncertainty is 4. As the uncertainty increases, the
operating cost of the system increases accordingly, but the effect of
uncertainty on the operating cost can be significantly reduced by
cooperative operation.

4.2.3 Cost results of the MVPP
Table 1 presents the operation cost data of each VPP before and

after the cooperative operation. The results show that the cost of the
VPP cluster is reduced by ¥10,780.45. Specifically, the cost of each VPP
is reduced by ¥5,481.04, ¥3,399.88, and ¥1,899.53, reaching 25.19%,
7.88%, and 8.30% of the pre-cooperation cost, respectively. It shows that
the cooperative game not only effectively reduces the impact of
source–load fluctuations on the system but also achieves a more
equitable cost distribution.

5 Conclusion

In considering the increasing percentage of distributed energy in the
power system and the challenges resulting from the power system’s
fluctuation in distributed energy, this study introduces the Nash
bargaining theory, builds a source–load uncertainty model, and uses
the alternating directionmethod ofmultipliers to establish an integrated
scheduling framework for a virtual power plant and its integration with
the distribution network. The following are the main conclusions.

1) The constructed uncertainty model for source loads can flexibly
reflect the VPP’s actual risk preferences. By increasing the

FIGURE 8
Operation cost of the MVPP with different uncertainties.
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uncertainty of source loads, it further intensifies the volatility of
the power load curve. To enhance the system’s capability to
address uncertainties, there is a need to increase the operational
costs of the VPP. However, adopting a cooperative game
approach reveals that the total operating cost is less than the
independent operation cost, effectively boosting the system’s
adaptability to uncertainty risks. This indicates that the strategy
of collaborative cooperation not only reduces overall costs but
also, while increasing flexibility, enhances the robustness of the
VPP, enabling it to better adapt to dynamic environments and
uncertain conditions.

2) Through cooperative operations among MVPPs, individual
member costs are reduced by 25.19%, 7.88%, and 8.30%,
respectively, compared to independent VPP operations. The
total cost of the MVPP has decreased by 13.38%, considering
both individual and collective interests. This approach
effectively curtails the operational costs of the VPP.

3) TheMVPP operation optimization strategy, grounded in Nash
game theory, employs the ADMM algorithm for distributed
solving. This algorithm facilitates the exchange of limited
information on traded electricity and prices, ensuring the
privacy of each participating entity, and exhibits
commendable convergence properties.

In addition to the source–load fluctuation problem and the existence
of perturbations among the VPP cluster, the efficiency and capacity
allocation of the main equipment have some degree of influence on the
cooperative operation of the MVPP. The authors intend to conduct
further research on the above issues as a follow-up to this paper.
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Appendix

FIGURE A1
Convergence process of P1.

FIGURE A2
Convergence process of P2.

FIGURE A3
(A) Electrical load. (B) Heat load.
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FIGURE A4
Distributed energy output forecast.

TABLE A1 VPP system parameters.

Parameter Value Parameter Value Parameter Value

ηCHP 0.35 P Bdis
max /kW 500 a1 (¥/kW) 0.01170

ηGB 0.85 ktran 0.15 b1 (¥/kW) 4.00 × 10−6

Χgas (MJ/M3) 35 Pi−j,max/kW 2,000 c1 (¥/kW) 0.02

h1 0.155 H GB
min /kW 0 ae (¥/kW) 0.02

h2 0.20 H GB
max /kW 800 ζ (¥/kW) 0.015

hm 0.85 E bat
min

500 λcute (¥/kW) 0.3

Pmin/kW 1,200 E bat
max

1,800 λtrane (¥/kW) 0.1

Pmax/kW 3,200 P CCS
min /kW 0 λcuth (¥/kW) 0.2

ebat,c 0.95 P CCS
max /kW 600 α/(m3/kW) 0.5

ebat,d 0.95 P P2G
min /kW 0 β/(kg/kW) 0.5

P Bch
max /kW 500 P P2G

max /kW 300 γ/(kW·h/kg) 1.02

TABLE A2 Electricity prices of grid and gas prices.

Type Period Price

Electricity prices Peak period (12:00–14:00, 19:00–22:00) 1.20 (¥/kW·h)

Bottom period (23:00–07:00) 0.40 (¥/kW·h)

Normal period (08:00–11:00, 15:00–18:00) 0.75 (¥/kW·h)

Natural gas price Whole day 3.50 (¥/m3)
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FIGURE A5
Other VPP power balance, (A) VPP1, (B) VPP2, and (C) VPP3.
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