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Improving energy efficiency is crucial for China’s power industry to meet global
energy conservation and emission reduction goals. The rapid development of
photovoltaic (PV) and hydropower has greatly assisted in the construction of
China’s novel power system. The stochastic characteristics of PV power
generation pose significant challenges to the reliable and economical
scheduling of power systems. In fact, the cascade hydropower station can
effectively address the issue. To fully utilize the advantages of hydropower, this
paper proposes a bi-layer scheduling optimizationmodel for the cascade hydro-PV
complementary system considering power market. The upper-layer model
simultaneously maximizes the benefit and minimizes the output volatility of the
complementary system. The lower-layer model carries out market clearing with
the objective of social cost. Besides, PV uncertainty and market price volatility are
considered in the decision-making process for power market transactions. To
solve the bi-layer model, a novel meta-heuristic algorithm (geometric mean
optimizer) is applied, demonstrating excellent performance compared to similar
methods. For the complementary system, the results show that its total power
output can be improved, and its output volatility can be effectively alleviated.
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1 Introduction

In recent years, due to climate change and the goal of building novel power systems, the
development of renewable energy represented by photovoltaics has been excessive (Ming
et al., 2018; Yin et al., 2019). However, the strong uncertainty in solar resources and large-
scale access will increase the power fluctuation of the grid, thus threatening the safe and
stable operation of the grid (Zhu et al., 2018). By utilizing the flexibility of hydropower and
natural resource complementarity, renewable energy consumption can be effectively
promoted. (Xu et al., 2019; Chen et al.,2016; Huang et al., 2021). Hydropower-PV
complementary system is a vital operation mode to promote grid-connected PV
consumption. The key to smoothing the variability of PV is to utilize the regulation
ability of hydropower stations, allowing PV to support the power grid effectively.

Research on optimizing multi-energy complementarity of renewable sources like
hydropower and PV is focused on planning, design, and operation scheduling. (Li and
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Qiu, 2016; Zhang et al., 2019; Yang et al., 2021). Ming et al. (2019)
established the connection between short-term and long-term
scheduling models based on the PV loss function. They proposed a
self-adaptive operation rule for the hydro-PV complementary system.
An et al. (2015) established a computational model of hydropower/PV
complementary operation based on the Longyangxia project, showing
that hydropower can improve the power quality of PV in short-term
dispatch, and hydropower shortage can make up for PV in medium-
and long-term dispatch. Kougias et al. (2016) quantitatively analyzed
the water-PV complementary performance, and their research results
are of great significance to the joint scheduling of multiple power
stations. Wang et al. (2019a) and Wang et al. (2018) discussed the
principle of complementary operation of multi-energy power
generation systems and the coordinated operation modes and
strategies to maximize the new energy consumption and promote
carbon emission reduction. Tan et al. (2021) considered the hydraulic
coupling between the upstream and downstream of the stepped
hydropower plant, optimized the stepped hydropower power
generation plan to maximize the total day-ahead power generation,
and constructed an intraday hydropower regulation method
considering the risk of the hydropower plant due to the stepped
hydropower providing regulation for PV. Lu et al. (2021) used
kernel density estimation to simulate the probability distribution of
PV output by generating a large number of PV output scenarios and a
representative uncertainty set of PV through K-means clustering. It is
helpful to study the stochastic optimal scheduling method of hydro-
wind-solar complementation to maximize the revenue of the
co-generation system. Liu et al. (2020) constructed a chance
constraint model based on PV probability distribution for hydro-
wind-solar complementary operation. None of the above literature
considers the decision-making behavior of the hydro-PV
complementary system in the power market transaction, which is
not conducive to the long-term economic and stable development of
hydropower plants.

The types of objective functions in the optimization model of
water-PV complementary systems mainly include maximizing power
generation output and benefit, minimizing output fluctuation, and
improving energy efficiency. The generation output type models
include maximizing the generation capacity of the complementary
system and PV output (Wang et al., 2018; Wang et al., 2019b). On the
other hand, (Ming et al., 2019), proposed an energy-efficient model by
maximizing hydropower storage or minimizing the abandoned
power. (Zhang et al., 2017; Lu et al., 2021). presented an
efficiency-optimal model to maximize the power generation
revenue and reduce the system operation cost. Based on the above
research, this paper combines these four types to establish a decision
optimization model for the cascade hydro-PV complementary system
in the powermarket. Themodel is a bi-layermodel. In the upper layer,
a multi-objective function model is proposed to maximize the return
andminimize the volatility of the complementary system. In the lower
layer, the power market clearing model is presented. The bi-layer
model fully considers the reservoir capacity constraints, water flow
constraints, and power constraints of the cascade hydropower, PV,
and other units. The mixed-integer linear programming is usually
used to solve this type problem (Yuan et al., 2021). To solve the
problem, the bi-layer model should be converted into a single-layer
model and the nonlinear terms of the lower-layer model should
be linearized. This significantly increases the algorithm’s

complexity. This work utilizes a combination of linear
programming and intelligent optimization algorithms to solve this
bi-layer model. The upper-level model is solved by using a linear
programming approach and the lower level is solved by an intelligent
optimization algorithm. During the solving process, the upper layer
model needs to pass the market decision of the solved complementary
system to the lower-layer model. The lower-layer model solves on the
basis of the upper layer model and passes the solved market clearing
result back to the upper layer. Convergence is achieved by iterating
through this cycle to produce the final result. The lower layer model is
solved by the geometric mean optimizer (GMO) (Rezaei et al., 2023),
which does not require pre-set parameter values and has a strong
ability to detach from the local solution during the solving process.
The algorithm is used to solve the lower layermodel. The rationality of
themodel and the feasibility of GMOs are verified by a case study. The
main contributions of this paper are as follows.

(1) A multi-objective model is proposed for a hydro-PV cascade
system. The model takes into account market demand and
price fluctuations to optimize scheduling decisions for
maximum economic efficiency and minimum volatility.

(2) GMO and linear programming methods are used to solve a bi-
layer optimization model with considering nonlinear elements.

(3) Based on the cascade hydropower-PV complementary system
model, the benefits of hydropower plants in the Southwest
China region are evaluated.

The rest of this paper is organized as follows: Section 2
introduces the output model for each unit participating in the
market transaction. Section 3 introduces the bi-layer model and
the constraints; Section 4 introduces the solution methodology and
the solution steps.; Section 5 illustrates the case study and discusses
the results; Section 6 concludes this paper and suggests future work.

2 Power generation models of the units

2.1 PV power generation model

PV output has a strong uncertainty, positively correlated with
the light intensity and the surrounding temperature in different
scenarios. The PV power output is:

PPV,t � Pm
PV∑S

s

λstL
s
AC,t( ) 1 +KT Tc,t − Tr( )/Lstc[ ] (1)

where LsAC,t is the light intensity of the PV power station at time t in
scene s. λst is the corresponding scene probability. Pm

PV is the
maximum power of the PV panel in the standard test
environment. KT is the power temperature coefficient. Tc,t is the
ambient temperature of the PV power station. Tr is the reference
temperature, set as 25°C. Lstc is the light intensity in the standard test
environment, set as 1000 W/m2. S is the number of scenarios.

The power output constraint of PV is as follows

0≤PPV,t ≤Ppre
PV,t (2)

where Ppre
PV,t is the predicted output of the PV plant at moment t.
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2.2 Cascade hydropower power
generation model

The cascade hydropower plant needs to consider the power
generation flow relationship between the upper and lower levels of
the plant, the time lag relationship of the water flow, the natural water
inflow, and the constraints of the reservoir level. The water resources
available for hydropower plants in the entire cascade basin are limited,
so the scheduling of hydropower plants is interrelated at various times.
The scheduling plan of the higher-level hydropower plant affects the
available water resources of its lower-level hydropower plant and affects
the whole scheduling plan. The output of hydropower plants is
generally modelled as follows:

Ph,i,t � ηi•g•qh,i,t•Hi,t�θiqh,i,t (3)

where g is a constant. This paper takes the value of 9.8. ηi is the
power generation efficiency coefficient of hydropower station i. qh,i,t
is the power generation flow of hydropower station i in t time.Hi,t is
the reservoir head of hydropower station i in t time. θi is the
conversion coefficient between water flow and power generation
of hydropower station i.

Hydropower plant capacity constraint is bounded. The equation
of the constraint is as follows:

Vh,i,t
min ≤Vh,i,t ≤Vh,i,t

max (4)
where Vh,i,t

min and Vh,i,t
max are the minimum and maximum values of

hydropower plant i at time t, respectively.
The constraint of water flow in cascade hydropower generation

is as follows:

qh,i,t
min ≤ qh,i,t ≤ qh,i,tmax (5)

where qh,i,t
min and qh,i,t

max are the minimum and maximum flow rates
allowed for hydropower plant i in time t, respectively.

The power generation output constraint of the cascade
hydropower plant is as follows:

Ph,i,t
min ≤Ph,i,t ≤Ph,i,t

max (6)
where Ph,i,t

min and Ph,i,t
max are the minimum and maximum outputs of

hydropower plant i, respectively.
Water balance constraint for cascade hydropower plants is

as follows:

Vh,i,t � Vh,i,t−1 + Qh,i,t − qh,i,t + ∑
j∈Ωi

qh,j,t−τj (7)

where Vh,i,t and Qh,i,t are the reservoir volume and natural inflow of
hydropower station i at time t, respectively. Vh,i,t−1 is the reservoir
volume of hydropower station i at time t-1. qh,j,t−τj is the power
generation flow of upstream power station j before the τj th hour.

2.3 Thermal power generation model

In the process of power generation, the main costs of thermal
power units are fixed costs and fuel costs. Therefore, the cost
function of thermal power units can be written in the form of a
quadratic function, as shown in the following formula (8). The
marginal cost of thermal power units is shown in formula (9).

Cth,j � cth,j + bth,jPth,j + 0.5ath,jP
2
th,j (8)

λth,j � bth,j + ath,jPth,j (9)

where Pth,j is the thermal power unit j generation output. cth,j is the
fixed cost coefficient of the unit j. bth,j and ath,j are the variable cost
coefficient of the unit j. λth,j and Cth,j are the marginal cost and the
generation cost of thermal power unit j.

The generation constraints of thermal power units are as follows:

Pth,j
min ≤Pth,j ≤Pth,j

max (10)

where Pth,j
min and Pth,j

max are the upper limit and lower limit of output of
thermal power unit j.

3 Cascade hydro—photovoltaic
complementary optimal
scheduling model

This paper proposes a model for optimizing the scheduling of
cascaded hydropower and PV, using a bi-layer approach. The cascade
hydro-photovoltaic complementary system is shown in Figure 1. The
upper layer of the model is the decision trading model for the cascaded
hydropower and PV, with the objective of maximizing income while
minimizing fluctuations in power generation to ensure the stability and
security of the power grid transmission. The upper layer constitutes a
multi-objective function. The lower model, on the other hand, is the
market clearing model, aimed at maximizing social welfare and
minimizing social transaction costs. The relationship between the
upper and lower models is illustrated in Figure 2.

3.1 The upper model: market trading
decisions of the cascade hydropower-
photovoltaic complementary system

The cascade hydropower-PV complementary system can inhibit
the fluctuation of PV with the advantage of strong adjustability of
hydropower station and improve the usage rate of renewable energy.
Therefore, in order to guarantee the reliable and economic operation of
the system, this paper comprehensively considers the economy of
system operation and the fluctuation of water-PV output, and
proposes the optimal scheduling of multi-objective function.
Formula (11) is the objective function. Formula (12) represents the
output of the complementary system. The benefits of complementary
systems is shown in formula (13).

f1 � maxE (11)

Ph,t � ∑I
i�1
Ph,i,t + PPV,t (12)

E � ∑T
t�1
πtPh,t

� Pm
PV∑T

t�1
∑S
s�1
∑I
i�1

Ph,i,t + πt λstL
s
AC,t( ) 1 +KT Tc,t − Tr( )/Lstc[ ]{ } (13)

where f1 is the objective function to maximize the economy of this
system. E is benefits of the cascade hydropower-PV complementary
system. Ph,t is the total output of this system at time t. πt is the price of
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FIGURE 1
The cascade hydropower-PV complementary system.

FIGURE 2
The relationship between the upper and lower models.
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electricity sold in the electricity spot market at time t. I is the number of
hydroelectric power stations.

The function that aims to minimum volatility is:

f2 � minF (14)

F �

������������
1
T
∑T
t�1

Pt − �P( )2√√
(15)

where F is the volatility of the system’s output. �P is the average
output of the system.

The constraints of the upper model are formula (5)
to formula (7).

3.2 The lower model: market clearing

This paper discusses the process of generator bidding in the
market. The generator is required to provide the quotation and

quantity of each unit. The trading center then collects the price of
each unit in descending order and clears them. As a price taker, the
user only quotes the quantity and not the price during the day-ahead
market transaction. The daily market clearing model is then
optimized to minimize the total social cost using the
following formulas.

f3 � maxC (16)

C � ∑T
t�1
∑Nth

j

λh,tPh,t + λth,j,tPth,j,t( ) (17)

λh,t � max δh, γPV( )Ph,t (18)
where f3 is the function with the objective of minimize the total
social cost. C is the total social cost. Nth is total number of
thermal power units. λh,t and λth,j,t are the quotations of
complementary system and thermal power unit j at time t
respectively. Ph,t and Pth,j,t are the quantities of the
complementary system and thermal power unit j at time t,

FIGURE 3
Flowchart of the bi-layer optimization model solution.
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respectively. δh and γPV are the variable cost coefficient of the
cascade hydropower and PV, respectively.

The constraints of the lower model are as follows:

∑T
t�1

Ph,t + Pth,j,t( ) � ∑T
t�1
Dt (19)

where Dt is the users’ electricity demand at time t.
The other constraints are formula (6) and formula (10).

4 Model solution

4.1 Uncertainty analysis of PV output

PV power generation is highly uncertain. Therefore,
describing uncertainty through probabilistic forecasting is
better suited for decision-making in uncertain environments.
In this paper, PV power generation is treated as obeying a normal
distribution as PPV ~ N(μ, σ2), and the probability density
function is:

f PPV( ) � 1����
2πσ

√ exp
− PPV − μ( )2

2σ2
[ ] (20)

where μ is the mean, and μ = 0. σ2 is the variance, and σ2 = 10.
In this paper, PV scenarios are generated using the Monte Carlo

method, which is a random simulation technique. If the probability
distribution of the data is known, random samples can be obtained
by sampling, and the characteristics can be analyzed. PV has certain
regularity, and PV scenarios are similar. In order to ensure
operational speed, simulation accuracy, and scenario typicality,
initial scenarios should be classified. According to the law that
the prediction error of PV output follows normal distribution,
100 scenarios are initially generated by Monte Carlo method.
The array formed by the predicted values of illumination and
other days is normalized as a whole, and the reduction method
considering Kantorovich distance is used for scenario processing,
and finally 10 typical scenarios are obtained.

FIGURE 4
The PV generation data and electrical load data.
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4.2 Multi-objective function
solution analysis

In this paper, we adopt the adaptive variable weighting method to
transform the two objective functions into a single objective function,
and adaptively adjust the weight coefficients of the two sub-objectives
according to the operation of the cascade hydropower-PV
complementary system. Due to the different magnitudes of the two
sub-objective functions, they need to be normalized. The objective
function is shown in formula (21). Formula (22) and formula (23) are
represented as normalising formula (11) and formula (14), respectively.

f � min αf1
* + 1 − α( )f2

*[ ] (21)
f1

* � f1
max − f1

f1
max − f1

min
(22)

f2
* � f2 − f2

min

f2
max − f2

min
(23)

where α is the adaptive weight coefficient. When the objective
function f1 changes, the relationship between f1

* and the weight
coefficient can be dynamically adjusted. When the
comprehensive operating cost of the system is higher, the
weight coefficient of the objective will be increased
appropriately. f1

* and f2
* are the value after the normalization

of the two objective functions. f1
max and f1

min are the maximum
and minimum values of f1, respectively. f2

max and f2
min are the

maximum and minimum values of f2, respectively.

4.3 The method of solving Bi-Level model

In this paper, the upper model obtains the biding amount of
the combined power generation by calculating the value of the
multiple objective functions, and passes it to the lower model.
The lower model determines the market clearing price by

FIGURE 5
Scenario generation and scenario reduction for PV generation.

FIGURE 6
The output of each unit in the cascade hydropower-PV
complementary system.

FIGURE 7
Electricity traded in electricity markets by cascade hydro-PV
complementary systems without considering volatility.
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calculating the objective function and passes it to the upper
model. The upper model changes its strategy according to the
market clearing price. In this way, the optimal solution can be
obtained. Considering that the upper model is linear and the
lower model has a nonlinear part, the objective function is solved
using the solver Cplex for the upper model and GMO for the
lower model.

GMO is a new meta-heuristic algorithm. It simulates the
unique properties of geometric average operators in
mathematics. The operator can simultaneously evaluate the
fitness and diversity of search individuals in the search space.
In GMO, when solving an optimization problem, the geometric
mean of the scale target values of an individual’s opposite is
assigned as its weight, representing its overall qualification to
guide other individuals in the search process. Therefore, the
algorithm does not need to set parameters according to the

form of the objective function, which greatly improves the
universality and calculation speed of the algorithm. The results
were published in Soft computing in 2023 by scholars such as
Farshad Rezaei. The flow chart of solving the bi-level model is
shown in Figure 3.

5 Case study

In this paper, the bi-level optimization model established above
is validated and analyzed using GMO and Cplex with a cascade
hydro–PV complementary system in a basin in Southwest China as
an arithmetic example.

5.1 Data

According to statistics, The PV generation data and electrical
load data for a typical day are shown in Figure 4. The data of cascade
hydropower stations is shown in Table 1, and all three hydropower
stations have daily regulation capacity. Both the initial population
number and the maximum number of iterations for GMO are
set to 100.

5.2 Results analysis

Due to the strong randomness of natural resources such as light,
this paper reduces the error of scheduling results by selecting typical
PV power scenarios. Figure 5 shows the scenario reduction results of
PV output in 24 h.

Figure 6 shows the results of the joint participation of the
cascade hydro-PV in electricity market trading. Figure 7 shows
the results of the complementary system participating in electricity
market trading when volatility is not considered. Therefore, Figure 7
is the results of the separate participation of the cascade hydro-PV in
electricity market trading.

TABLE 2 System failure rates corresponding to different impact indicators in a specific region.

a 0.1 0.3 0.5 0.7 0.9

Max/MWh 1718.330768 1,480 1,463.392147 1,442.757536 1,137.320986

Min/MWh 364 364 364 364 1,039.732709

Average/MWh 1,076.517898 1,085.976329 1,096.360761 1,099.017898 1,099.017898

F 445.9381366 400.26495 351.8940968 216.186045 15.03067535

Revenue/¥ 8,853,812.55 8,835,948.65 8761316.334 8652440.068 8586751.584

TABLE 3 Results from ten iterations of PSO and GMO.

Number of iterations 1 2 3 4 5 6 7 8 9 10

PSO/¥ 1,182,872 1,190,344 1,056,545 1,019,599 1,033,513 1,019,598 1,060,111 1,031,231 1,019,598 1,019,598

GMO/¥ 1,019,598 1,019,598 1,019,598 1,019,598 1,019,598 1,019,598 1,019,598 1,019,598 1,019,598 1,019,598

FIGURE 8
Comparison of PSO and GMO operating results.
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In Figure 6, the total power generation of the complementary
system of the cascade hydro-PV after participating in the market
trading is 28,896 MWh. Among them, the power generation of
terraced hydropower units 1, 2 and 3 is 7,680, 8,400 and
7,776 MWh respectively, which accounts for 26.58%, 29.07% and
26.91% of the total power generation, respectively. Photovoltaic
power generation amounted to 2,520 MWh, accounting for 8.72% of
the total power generation.

The total benefit of the complementary system is
9,554,994 yuan and the volatility of output is 15.03, of which
8,586,751 yuan is generated by the cascading hydropower.
However, the total return from the separate market
participation of the cascade hydro-PV is 9,739,344 yuan and
the volatility of the output is 445.94, of which 8,835,948 yuan for
the cascade hydropower. Comparison of Figures 6, 7 shows that
the return of the complementary system is reduced, but its
volatility is much higher. For the cascade hydropower, the
return is reduced by 2.8%, but the volatility is much lower,
which greatly improves the stability of the unit’s output. The low
volatility is more favorable, both from the point of view of the
security of grid operation and from the point of view of the
lifetime of the unit generation. At the same time, the revenue of
the PV units in the complementary system was increased by
64,846 yuan, reducing the abandonment rate and
volatility costs.

Therefore, the complementary system improves the stability of
the system power generation and the stability of the grid power
supply while reducing the part of the revenue of the cascade
hydropower. Such measures can be taken when there is a high
demand for power supply stability in some areas.

Table 2 shows the maximum generation, minimum generation,
average generation, volatility, and returns per hour when the
complementary system participates in the market under
different a. From the data in the table, it can be seen that as a
gets larger, the average generation of the complementary system is
more, but the willingness to pay and the volatility are less. With the
same amount of incoming water, more average generation means
less water abandonment and higher resource utilization. With the
shortage of renewable resources, the high utilization of water
resources is more in line with the current concept of energy
utilization.

5.3 Comparative analysis of GMO and PSO

In this paper, GMO is used to solve the objective function. In
order to show the advantage of GMO, PSO is additionally used to
solve the objective function in this paper as a comparison. The
initialization program sets the PSO parameters w to 0.8, c1 to 1.5,
and c2 to 1.5. The results show that PSO has fewer steps in the
time scale of the solution, so the solution time will be shorter. PSO
and GMO run for 1.04877 and 1.38686 s, respectively. However,
PSO needs to set the values of parameters w, c1 and c2 in advance,
and it consumes a lot of time to adjust them with the results of the
computation. GMO does not need to set the parameters and
adapts automatically with the solved function. In the final
calculation result, GMO and PSO have about the same data.
However, in this paper, the number of particles that need to be

solved is large, which causes PSO to often fall into localized
solutions when solving, while GMO does not. As can be seen
from Table 3, when the number of calculations is 10 times, PSO
has a 60% probability of falling into a localized solution, while
GMO does not appear to fall into a localized solution. When the
number of populations increases, the PSO’s trapped local
solutions decrease, but the running time increases. The results
of one of the best PSO and GMO runs were selected for
comparison, as shown in Figure 8. The results show that GMO
is able to converge in a very short number of iterations, while PSO
takes longer to find the correct result. It can be concluded that
GMO has better algorithmic accuracy.

6 Conclusion and future work

The proportion of installed capacity of renewable energy
sources, such as PV, will continue to rise in China’s efforts to
build a new power system. Hydropower, with the largest
adjustable clean power capacity in China, must fulfill the dual
purpose of supporting grid power supply and regulating new
energy. Based on this, a scheduling decision-making model is
constructed for optimizing the cascade hydropower-PV
complementary system. This model provides decision support
for safe and economic operation. The bi-layer model consists of
two layers, with the upper layer optimizing multiple objectives
that include maximizing returns and minimizing volatility for
the complementary system. The lower layer deals with the
clearing of various types of generating units to facilitate
market transactions. A bi-level GMO is used to solve the
model. The results show that the volatility of complementary
systems is much lower than that of systems without joint market
participation. Moreover, the revenue of PV in the
complementary system is increased, and the resource
curtailment rate of the cascade hydro-PV is reduced, which
greatly improves the utilization of renewable energy. Low
generation volatility is more favorable for the safe and stable
operation of the grid. It has been verified that utilizing GMO as
the solution algorithm for solving the bi-level optimization
model is simpler and more stable compared to PSO.

The paper focuses on the participation of thermal units and
complementary units in electricity market trading. However, the
impact of other units on market trading and the participation of
thermal units in carbon market trading are not considered.
Additionally, the impact of the difference in PV output and
incoming water during the rainy and dry seasons on the
complementary system is also not considered. Future work will
investigate the impact of the participation of complementary
systems in market transactions during different seasons and
the impact of carbon market development on power
market clearing.
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