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Under the background of the shortage of traditional energy and the increasingly
serious environmental problems, this paper proposes a bi-level optimization
configuration method for microgrids based on stepped carbon trading and
price-based demand response. The stepped carbon trading mechanism is
introduced into the planning model to clarify the impact of construction
processes on land carbon emissions. Simultaneously, price-based demand
response during system operation is introduced, guiding users to change the
electricity consumption strategies to promote the consumption of renewable
energy. Then, a bi-level optimal configuration framework is constructed. The
upper level is optimized to allocate the capacity of the microgrid, with the lowest
annual equivalent comprehensive cost as the objective function. The lower level
is optimized for microgrid operation, with the minimum sum of the microgrid
operation cost and carbon emission cost as the objective function. In view of the
advantages of enhanced whale optimization algorithm (E-WOA) in solving multi-
dimensional feature selection problems, E-WOA and CPLEX solver are combined
to solve the bi-level optimizationmodel for the first time. Simulation results show
that after introducing a stepped carbon trading mechanism, the system carbon
emissions decreased by 23.09%. Considering price-based demand response
under the premise of introducing a stepped carbon trading mechanism, the
total cost decreased by 3.57% and the carbon emissions decreased by 19.83%.
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1 Introduction

Under the backdrop of traditional energy shortages and increasingly serious
environmental problems, the development of renewable energy is one of the main
objectives to achieve sustainable energy development (Zhang and Kang, 2022; Dorahaki
et al., 2023). The microgrid (MG) has become a key research object for energy cleanliness
due to its characteristics of improving the utilization rate of renewable energy and the
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reliability of power supply. Optimizing MG configuration is the core
issue in the planning and design of an MG. Considering investment
costs while reducing carbon emissions in the optimization of MG
configuration is in line with the current development trend.

Due to the power interaction between the MG and main net, the
MG produces a large amount of carbon emissions (Kang et al.,
2015). To effectively reduce MG carbon emissions and minimize the
operation cost of the system, the carbon emission quota trading
mode is introduced into the MG optimal dispatching process to
guide MG low-carbon operation, and it has been an effective means
to reduce carbon emissions (Fan et al., 2021). The application of the
carbon trading mechanism has been widely discussed in the
literature. Wang et al. (2020) proposed a low-carbon
optimization scheduling strategy for integrated energy systems
(IES) based on the carbon trading mechanism, achieving low-
carbon operation of the integrated energy system. Tan et al.
(2019) constructed an optimization model for a wind power joint
scheduling system under a carbon trading mechanism. Zhang et al.
(2019) introduced a carbon trading mechanism into traditional
power systems, which improves the installed capacity of
renewable energy and the overall benefits of the system. In the
aspect of the carbon trading price model, most existing studies adopt
the fixed carbon trading price or the stepped carbon trading price to
limit the carbon emissions of the system (Chen et al., 2022). The
fixed carbon trading price means the same carbon price in the entire
carbon emission interval. Cheng et al. (2020) and He et al. (2020)
found that the use of a fixed carbon trading mechanism can reduce
the output of high-intensity carbon-emitting units to a certain
extent, but when the carbon emissions reach a certain level, it
cannot further incentivize the system to further reduce carbon
emissions. In order to further reduce carbon emissions, a stepped
carbon trading price mechanism is proposed. The carbon trading
price in the stepped carbon trading system increases gradually with
the level of carbon emissions. When the carbon emissions exceed the
limit, the carbon price will increase punishingly. Li et al. (2022)
proposed a reward and punishment stepped carbon trading model
and analyzed its limitations on carbon emissions, verifying the
effectiveness of the proposed model in balancing the system low-
carbon and economic efficiency. Jin et al. (2023) established a low-
carbon economic dispatch model based on stepped carbon trading
to achieve economic and low-carbon development in industrial
parks. Xiaohui et al. (2019) considered an improved hierarchical
reward and punishment carbon trading model and proposed a
multi-agent scheduling optimization method. Chen et al. (2021)
constructed an IES optimal scheduling model considering the
ladder-type carbon trading mechanism and the flexible dual
response of supply and demand. Liu et al. (2022) proposed a
configuration method for low-carbon equipment in IES
considering life-cycle carbon emissions and ladder-type carbon
trading costs. Compared to the traditional carbon trading
mechanism, tiered carbon trading has better emission reduction
capabilities. It can incentivize users participating in carbon trading
to reduce carbon emissions by increasing carbon trading prices. The
above literature works mainly focused on the application of the
carbon trading mechanism in the optimization of IES and the
operation of MG. Its application in MG optimization
configuration is relatively limited, and there are shortcomings
such as incomplete consideration of carbon emission sources. In

the process of MG planning, the carbon absorption rate of the
original land will be reduced, and industrial activities will generate
certain carbon emissions. Therefore, considering changes in land
types during the construction of MG provides a new way to reduce
carbon emissions.

The high penetration rate of distributed generation (DG)will have a
significant impact on the stability of the distribution network, and
relying solely on DG generation to maintain system power balance will
lead to poor economics. Therefore, rational planning for important
distributed energy resources such as energy storage equipment and
demand-side response loads will greatly improve the stability and
economics of the distribution network (Le et al., 2022). At present,
demand response is mainly divided into the following two types: one is
to sign an interruptible agreement with users to reduce or interrupt
power consumption during peak load periods to obtain relevant
compensation. However, this scheme is mainly aimed at large
industrial users with high power consumption flexibility and is not
applicable to residential users (Li et al., 2023). The other is based on the
elasticity matrix of electricity price, which affects users’ electricity
consumption behavior through the dynamic change of electricity
price and realizes “peak shaving and valley filling” through transfer,
while the total load remains unchanged. Price-based DR programs can
eventually determine the actual energy prices such that energy users can
be encouraged to change their consumption patterns and shift demand
from peak hours to off-peak hours (Dou et al., 2020). Sobhan et al.
(2020) proposed a power outagemanagement system that considers the
emergency demand response program and provides the cost of load
shedding in a time of emergency. Experiments show that emergency
demand response can effectively reduce the cost of power failure and
increase the service load. To reduce the gap between supply and
demand, Boqtob et al. (2023a) proposed an incentive-based load-
transfer demand response. Zheng et al. (2022) and Boqtob et al.
(2023b) used incentive demand response to encourage consumers to
change their energy consumption behavior so as to reduce their power
consumption and maintain system reliability during peak periods. Pal
et al. (2017) proposed a demand response framework to build an
economic and appropriate approach to meet the residential user
demand in the smart grid structure. The simulation results
demonstrate that the economic benefits reaped by the customers are
highly motivational to execute such an approach in practical scenarios.
To reduce the operating costs of MG, Ali et al. (2023) proposed a new
method that considers demand response tominimize the operating cost
in MGs integrated with renewable sources and energy storage systems.
For residential loads, cutting off the interruptible load during peak
hours can improve the stability of the system, but it can reduce the
comfort of users. In addition, the transfer of load in a certain period will
affect the load demand in other periods. Thus, the goal of reducing the
cost of electricity can be achieved through dynamic changes in
electricity prices affecting the user’s electricity consumption behavior,
taking into account the comfort of urban residents in the load
transfer process.

Through the analysis of Table 1, it is found that the carbon
trading mechanism and demand response are rarely considered at
the same time in the configuration of MG, and carbon emission
sources are not fully considered in the construction of MG. When
considering the coupling between the carbon trading mechanism
and demand response, it is also necessary to consider the impact of
both on users’ electricity consumption and carbon emissions.
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Therefore, it is a new research idea to introduce price-based demand
response under the premise of stepped carbon trading in the optimal
configuration of MGs and study the impact of flexible load transfer
on user-side demand changes, carbon emissions, and DG capacity.

The optimal configuration of MG needs to comprehensively
consider energy sources, energy storage, load demand, and other
factors and select the optimal configuration scheme under different
conditions, so it belongs to a multi-dimensional feature selection
problem. For the optimal configuration of MG, it is necessary to
select the appropriate type and capacity of DG according to the load
demand and consider the minimum operation cost of the MG. As for
the solution of optimal configuration of MG, Huynh et al. (2022) used
the improved artificial bee colony (IABC) algorithm to solve the
problem with the lowest energy cost as the objective function and
proved that the IABC algorithm is superior to the ABC algorithm in
convergence value and speed. Zhao et al. (2022) proposed an improved
gray wolf optimization (IGWO) algorithm to determine the optimal
combination of WT-PV-BS-DE island MG. Ahmad et al. (2021)
proposed a hybrid algorithm (BAPSO) based on the advantages of

particle swarm optimization (PSO) and bat algorithm (BA) and applied
it to the capacity configuration optimization of MG. However, when
there are multiple types of new energy in the MG, the single-level
solution in the optimization configuration is not practical and can easily
fall into local optimization. Hence, a bi-level optimization model can be
constructed to divide the planning and operation of MG into the upper
and lower levels to reduce the difficulty of the solution. Ma et al. (2021)
proposed a bi-level optimization configuration method for island MG
that considers the impact of energy storage life and used the genetic
algorithm (GA) to solve the model. However, the bi-level model is
solved by a single algorithm, which will reduce the solving efficiency.
Ying et al. (2023) constructed a bi-level optimization model and
integrated the artificial fish school algorithm (AFSA) and CPLEX
solver to solve the bi-level optimization model. The optimization
objective of the upper level is mainly to obtain the optimal
configuration capacity. Due to the fact that the upper-level
optimization is a nonlinear optimization problem, the AFSA is used
to solve it. The lower-level optimization is a mixed integer linear
programming problem, so the CPLEX solver is used to solve it.

TABLE 1 Comparison of research content in different literature works.

Reference Carbon trading
model

Land factor Demand response model System
type

Optimization horizon

Typical Stepped Interrupt protocol Price IES MG Planning Operation

Wang et al. (2020) — — — √ — √ — — √

Tan et al. (2019) √ — — — — — √ - √

Zhang et al. (2019) √ — — — — — √ √ √

Chen et al. (2022) √ — — — √ — √ — √

Cheng et al. (2020) √ — — — — — √ — √

He et al. (2020) √ — — √ — √ — — √

Li et al. (2022) — √ — √ — √ — — √

Jin et al. (2023) — √ — — — √ — — √

Xiaohui et al. (2019) — √ — — — √ — — √

Chen et al. (2021) — √ — — √ √ — — √

Liu et al. (2022) — √ — — — √ — √ √

Sobhan et al. (2020) — — — √ — √ — — √

Boqtob et al. (2023a) — — — √ — — √ — √

Zheng et al. (2022) — — — — √ — √ — √

Boqtob et al. (2023b) — — — — √ — √ — √

Pal et al. (2017) — — — — √ — √ — √

Ali et al. (2023) — — — √ — — √ — √

Huynh et al. (2022) — — — — — — √ √ √

Zhao et al. (2022) — — — — — — √ √ √

Ahmad et al. (2021) — — — — — — √ √ √

Ma et al. (2021) — — — — — — √ √ √

Ying et al. (2023) — — — — — — √ √ √

Current Study — √ √ — √ — √ √ √
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Sobhan et al. (2023) constructed a bi-level optimization model to
coordinate the interaction between downstream multi-energy
systems and upstream multi-carrier network operator (MCNO) and
converted the bi-level optimization into a single-level through strong
duality. However, when the bi-level optimization is converted into a
single level, there is a risk of increasing computational complexity and
difficulty in solving. Therefore, the solution of the bi-level model
becomes the key to the optimization configuration problem of MG.
The solution for the bi-level model can be solved by combining two
algorithms according to the different types of problems in the upper and
lower layers to reduce the difficulty of solving. Mohammad et al. (2023)
proposed the enhanced whale optimization algorithm (E-WOA) for
multi-dimensional feature selection and proved that E-WOA has better
convergence speed and accuracy than other well-known optimization
algorithms and WOA variants through experiments. Given the
advantages of the E-WOA in the selection of multi-dimensional
feature selection, this is the first study to combine E-WOA and
CPLEX solver to solve the bi-level optimization model.

Based on the above analysis, this paper proposes a bi-level
capacity allocation method that considers stepped carbon trading
and price-based demand response and combines E-WOA and
CPLEX solver to solve the model. Finally, the feasibility of this
method is verified through the use of measured data scenarios. The
main contributions of this paper are as follows:

1. In order to reduce the carbon emissions of the MG system, this
paper introduces the stepped carbon trading mechanism.
Considering that the construction process of MG will
reduce the original carbon absorption rate of land and the
carbon emissions generated by construction activities, the
influence of the land factor on the configuration capacity of
MG is analyzed.

2. Under the premise of introducing the carbon trading
mechanism, the price-based demand response is introduced
to further analyze the impact of the coupling between the two
on the total cost and total carbon emissions.

3. E-WOA and CPLEX solver are combined to solve the bi-level
optimal configuration model for the first time. Through the
comparison of different algorithms, the superiority of the
proposed algorithm is verified.

2 Microgrid structures and carbon
trading models

2.1 Microgrid structures

The structure of hydrogen-containing energy storage MG is
shown in Figure 1, which is mainly composed of the wind turbine

FIGURE 1
MG structure diagram.
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(WT), photovoltaic (PV) array, diesel generator (DE), hydrogen
energy storage system, and user load and related power electronic
conversion equipment. The hydrogen energy storage system mainly
consists of electrolytic cells, hydrogen storage tanks, and fuel cells.
WT, PV, and DE can serve as distributed power sources to provide
power to users. When the output power of wind and solar power
exceeds the load demand, the surplus electricity is consumed by the
electrolysis tank, and hydrogen is produced by the electrolysis of
water, which is stored in the hydrogen storage tank, improving the
consumption level of renewable energy. When the output power of
wind and solar power is less than the load demand, the fuel cell uses
hydrogen and oxygen as raw materials to undergo a chemical
reaction to produce electricity to meet the load demand,
improving the reliability of the system. MG can also switch
between main net parallel and off-grid modes through circuit
breakers. In the grid-connected mode, the MG sells or purchases
electricity from the main net, thereby reducing the rate of wind and
solar curtailment. In addition, when the main net malfunctions or
experiences a power outage, the MG can disconnect from the main
net and provide power on its own, improving the reliability and
stability of electrical equipment.

Regarding the modeling of the main equipment in the MG studied
in this paper, the mathematical models of WT, PV, and DE were
derived from Zhao et al. (2022). The mathematical models of hydrogen
energy storage devices were derived from Wang Jinshi et al. (2022).

2.2 Carbon trading mechanism

Carbon trading is an effective means for the market mechanism
to deal with climate change. The government controls the total
amount of carbon emission quotas, so that enterprises participating
in the market are constrained by carbon emission quotas, and
achieves the goal of emission reduction through trading carbon
emission quotas (Qi et al., 2021; Wang P. et al., 2022).

2.2.1 Carbon trading model
In the construction of MG, wind and solar energy can promote the

development of a local low-carbon economy, but the construction of PV
andWT has changed the original form of land and affected the ability of
the land itself to absorb CO2. Hence, in addition to the carbon emissions
resulting from the acquisition of electricity from the uppermain network
andDEpower generation, it is imperative to take into account the impact
of landform change when assessing the sources of carbon emissions
within the system. In this paper, when considering the power purchase of
the upper main network, the default power generation is coal-fired units.
Land changes can cause carbon emissions in twoways. One type is called
direct land-use carbon emissions, which are caused by changes in how
land is used. The other type is called indirect land-use carbon emissions.
The other is carbon emissions from construction land generated by
industrial activities (Huang et al., 2023). The actual total carbon
emissions of the system can be obtained through Eq. 1.

CE � Cn + Cm, (1)
where CE is the total amount of actual carbon emissions from the
system; Cn is the carbon emissions of construction land, which can
be obtained indirectly from the energy carbon emissions generated

by production activities; Cm is the carbon emissions caused by
changes in the structure of land use, which can be derived from
Eq. 2.

Cm � ∑J
j

τjTj, (2)

where Tj is the area of the land-use type j and τj is the type j of land
absorption coefficient; the carbon absorptions per hectare (hm2) for
different land-use types are shown in Table 2 (Yang et al., 2022).

Carbon quota allocation includes free allocation, auction
allocation, and free allocation and auction mixed allocation, and at
this stage, China mainly allocates carbon quotas for free. The carbon
emissions of participating in carbon trading in this paper are the
difference between actual carbon emissions and free carbon emission
quotas, which are shown in the following equation for calculating the
actual carbon emissions and free carbon emission quotas of the system.

(1) Free carbon emission model:

TFce � μde∑T
t

Pde,t + μgrid∑T
t

PG,t, (3)

where TFce is the free carbon emission quota which can be calculated
from Eq. 3; Pde,t and PG,t are the actual power generation power of
the DE and the output power of the main net at time t, respectively;
and μde and μgrid are carbon emission allowances per unit of DE and
main net output power, respectively.

(2) Actual carbon emission model:

TAce � CE + μde∑T
t

Pde,t + ρgrid∑T
t

PG,t, (4)

where TAce is actual carbon emissions of the system which can be
calculated from Eq. 4; μde and ρgrid are the actual carbon emissions
of diesel engine unit power generation and the actual carbon
emissions of power purchase per main net unit.

2.2.2 Stepped carbon trading
Compared with traditional carbon trading, stepped carbon

trading is divided into different grades according to carbon
emissions, and the price of carbon trading increases with the rise
in the grade; the higher the carbon emission amount, the higher the
carbon trading cost. The stepped carbon trading costing model is
shown in the following equation:

TTce � TAce − TFce, (5)

Fc �

λTTce, TTce ≤L,
λL + λ 1 + α( ) TTce − L( ), L≤TTce ≤ 2L,
λ 2 + α( )L + λ 1 + 2α( ) TTce − 2L( ), 2L≤TTce ≤ 3L,
λ 3 + 3α( )L + λ 1 + 3α( ) TTce − 3L( ), 3L≤TTce ≤ 4L,
λ 4 + 6α( )L + λ 1 + 4α( ) TTce − 4L( ), TTce ≥ 4L,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(6)

where TTce is the emissions trading amounts which can be calculated
from Eq. 5; Fc is the carbon trading costs which can be calculated
from Eq. 6; λ is the base price of carbon trading; α is the magnitude
of the price increase, here taken as 0.2; and L is the carbon emission
range, here taken as 200 t.
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3 Demand response model

Demand response improves energy utilization and reduces
energy waste by adjusting the timing and amount of energy
demand. In this paper, the price-based demand response is
adopted to guide the transfer of user load through changes in
electricity prices and promote the consumption of renewable energy.

3.1 Dynamic time-of-use tariffs

First, the load demand is divided into peak, valley, and flat
periods, and different electricity prices are implemented for different
periods. Then, the interactive price of the main network is adjusted
on the basis of the basic electricity price. After the electricity price
adjustment, the electricity price of each period will fluctuate on the
original basis. The adjusted electricity price can be obtained from
Eqs 7–9.

ρP � ρp· 1 + α( ), t ∈ Tp, (7)
ρF � ρf· 1 + β( ), t ∈ Tf, (8)
ρV � ρv· 1 + δ( ), t ∈ Tv, (9)

where ρp, ρf, and ρv are the electricity prices during peak, flat, and valley
periods before change, respectively; ρP, ρF, and ρV are the electricity
prices during peak, flat, and valley periods after change, respectively; and
Tp, Tf, and Tv are the peak, flat, and valley periods, respectively.

The correlation between changes in consumer demand and
changes in electricity prices can be reflected by the electricity
price elasticity indicator (Zhang et al., 2018), which is expressed
as follows:

μ � △E/E

△p/p, (10)

where μ is the indicator of the elasticity between electricity and
electricity prices; △E and E are the amount of power change and
demand, respectively; and △p and p are the amount of change in
electricity price and the initial value of electricity, respectively.

Changing electricity prices will have an impact on electricity
demand in this and other periods, so the price elasticity index is
divided into self-elasticity and cross-elasticity. In the time-of-use
price model, the user load is divided into peak, valley, and flat hours;
then, the demand price elasticity matrix K of the electricity price is
expressed as follows:

K �
μpp μpf μpv
μfp μff μfv
μvp μvf μvv

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (11)

where μpp, μff, and μvv are the coefficients of elasticity during peak,
flat, and valley periods, respectively. They indicate the extent to
which changes in electricity prices affect changes in load demand
during the current period; μpf and μpv are cross-elastic coefficients,

which are the effects of peak electricity price changes on load
demand changes during peak hours, respectively; μfp and μfv are
the effects of flat electricity price changes on load demand changes
during peak and valley periods, respectively; and μvp and μvf are the
effects of valley electricity price changes on load demand changes
during peak and flat periods, respectively.

From Eqs 10, 11, after the implementation of dynamic time-of-
use electricity prices, the change in peak, flat, and valley load
demand during peak and valley hours is expressed as:

△Ep/Ep

△Ef/Ef

△Ev/Ev

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ � K
△pp/pp

△pf/pf

△pv/pv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

According to the transformation of Eq. 10, the column vector
after the change in load demand is obtained as Eq. 13.

EP

EF

EV

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � △Ep

△Ef

△Ev

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + Ep 0 0
0 Ef 0
0 0 Ev

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦K △pp/pp

△pf/pf

△pv/pv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

3.2 Objective function

After the introduction of demand response, the dynamic
electricity price is used to guide users to change the electricity
consumption strategy. The demand response optimization goal
used in this paper is to minimize the net load fluctuation during
the scheduling cycle, as shown in Eq. 14.

minf �
∑N
n�1

∑24
t�1

������������������������������
ΔPLoad,after t( ) − ΔPLoad,after t − 1( )( )2√

N

ΔPLoad,after t( ) � PLoad,after t( ) − Pre t( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (14)

where ΔPLoad,after(t) is the payload after demand response at time t,
PLoad,after(t) is the load after demand response at time t, Pre(t) is the
renewable energy contribution at time t,N is the typical day number,
and n is nth typical day.

3.3 Constraints

After the introduction of demand response, in order to ensure
that the total load remains unchanged during the scheduling week,
the load transfer should be carried out in the same scheduling cycle,
as shown in Eq. 15.

∑24
t�1
PLoad t( ) � ∑24

t�1
PLoad,after t( ). (15)

After the implementation of demand response, in order to ensure
the reduction of net load fluctuation and ensure the comfort of users,

TABLE 2 Carbon absorption rate of all types of land use.

Type of land Field Woodland Grassland Water area Unused land

Carbon uptake rate 0.644 0.581 0.021 0.218 0.005
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the constraints of electricity comfort are established in Eqs 16 and 17.
User comfort is reflected in the ratio of the load transferred by the user
to the initial load; the higher the ratio, the higher the comfort, and
conversely, the lower the comfort.

Tcomfort � 1 − Ptran

∑N
n�1

∑24
t�1
PLoad t( )

,

Ptran � ∑N
n�1

∑24
t�1
ΔPLoad t( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(16)

Tcomfor,min <Tcomfort, (17)

whereTcomfort is the user comfort, Ptran is the sum of changes in user
electricity consumption after demand response, Tcomfor,min is user
comfort, and ΔPload(t) is the amount of load transfer at time t.

The amount of load transfer when implementing demand
response should not exceed the maximum flexible load.

−ΔPload,max t( )≤ΔPload t( )≤ΔPload,max t( ), (18)
where ΔPload,max(t) is the maximum load transfer capacity at time t
in Eq. 18.

4 Bi-level optimization configuration
model and solution algorithm

In order to integrate the planning and operation of the MG, a bi-
level optimal configuration model is constructed in this paper. The
upper level is the MG capacity optimization, and the optimization goal
is to take the lowest annual equivalent comprehensive cost as the
optimization goal. The lower level is the optimization of the microgrid
operation, and the goal is tominimize the sumof theMGoperation cost
and carbon emission cost. The upper level obtains the initialized
configuration and load information through demand response to
obtain the corresponding load and transmits the configuration and
load information to the lower level. The lower level optimizes the
operation based on the existing configuration capacity of the upper level
and transmits the result of the minimum operating cost to the upper
level. The upper level solves the objective function based on the optimal
operating strategy transmitted by the lower level, and the upper and
lower levels iterate sequentially to obtain the optimal configuration
result by combining planning and operation.

4.1 Upper optimization model

The upper-level decision variables are the WT, PV, DE,
electrolyzer, fuel cell, and hydrogen storage tank capacity.

4.1.1 Objective function
The upper-level optimization model takes the lowest annual

equivalent cost as the objective function, and its calculation formula
is shown in Eq. 19.

Fall � min Fainc + Fmain + Fc + Fom( ), (19)
where Fall is the combined cost of annual equivalence; Fainc is the
annual average initial investment cost, which is the sum of the

acquisition and installation costs; Fmain is the sum of annual average
operating and maintenance costs; and Fom is the annual
operating cost.

The annual average initial investment cost of the system is
shown in Eq. 20.

Fainc � Fall
i 1 + i( )l
1 + i( )l − 1

,

Fann � Fin + Frep,

Fin � ∑m
j�1
cjNj,

Frep � ∑m
j

njp
rep
j ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where Fainc is the investment cost during the planning period; i is the
depreciation rate; l is the life of the device; Fin is the acquisition cost;
Nj and cj are the jth power purchase quantity and unit price,
respectively; and nj and prep

j are the jth power replacement times
and unit price, respectively.

The annual average operating and maintenance cost of the
system is shown in Eq. 21.

Fmain � ∑m
i�1
Com,iNiPi,t, (21)

where Com,i is the unit operating and maintenance cost of the ith
power supply and Pi,t is the ith power supply output power at time t.

4.1.2 Upper-level model constraints
The number of distributed power sources in the upper-level

model is influenced by energy demand, economic factors, and
geographical factors, and the constraints are given in Eq. 22.

NPVmin <NPV <NPVmax,
NWTmin <NWT <NWTmax,
NDEmin <NDE <NDEmax,
NHSTmin <NHST <NHSTmax ,

NFCmin <NFC <NFCmax,
NECmin <NEC <NECmax,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(22)

whereNPV,NWT,NDE,NHST,NFC, andNEC represent the number
of PV, WT, DE, hydrogen storage tanks, fuel cells, and electrolyzers,
respectively.

4.2 Lower optimization model

The lower-level optimization formulates reasonable operating
strategies based on the number of power sources transmitted from
the upper level to calculate operating costs. The lower-level decision
variables are the output of each power source and the interaction
power of the main network.

4.2.1 Lower objective function
The lower-level optimization objective function is the sum of the

annual operating and carbon transaction costs. The calculation
method is shown in Eqs 23, 24.

FLow � min Fc + Fom( ), (23)
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Fom � Ffuel + Fen + Fgrid + Fcop,

Ffuel � ∑T
t�1

αP2
de t( ) + βPde t( ) + γ( ),

Fen � ∑T
t�1

∑M
m�1

Ck ξgrid,mPbuy t( ) + ξde,mPde t( )( ),
Fgrid � ∑T

t�1
cbuy t( )Pbuy t( ) − csell t( )Psell t( )( ),

Fcop � ∑T
t�1
cload,tranPtran t( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

where Fom is the annual operating cost; Ffuel, Fen, Fgrid, and Fcop are
the annual average fuel cost, average environmental governance
cost, main net interaction cost, and load transfer compensation cost,
respectively; α, β, and γ are the diesel generator coefficients; ξgrid,m
and ξde,m are the emissions of Class m pollutants generated by the
main network electricity purchase and diesel engine operation; Ck is
the cost factor for dealing with Class m pollutants; cbuy(t) and
csell(t) are purchased and sold electricity, respectively; cload,tran is the
load transfer compensation for electricity price; and Ptran(t) is the
amount of load transferred.

4.2.2 Lower-level model constraints
During the operation of the MG, it is necessary to consider

compliance with the system’s electricity supply demand balance and
the limitations of the power output of the various power sources.

(1) Power balance constraints

During the operation of the system, the output of each power
source of the MG should satisfy the following constraints in Eq. 25.

Ppv + Pwt + Pde + Pfc + Pgrid,buy

� PLoad + Pec + Pgrid,sell.
(25)

(2) PV, WT, DE output constraints, and DE climbing satisfy the
following constraints in Eq. 26.

Ppv
min t( )≤Ppv t( )≤Ppv

max t( ),
Pwt

min t( )≤Pwt t( )≤Pwt
max t( ),

PDE
min t( )≤PDE t( )≤PDE

max t( ),
PDE t( ) − PDE t − 1( )|≤ rDE,|

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (26)

where rDE is the upper limit of climbing power for DE.

(3) Main network interactive power constraints

The MG will trade with the main network when the power is
unbalanced, but the excessive power of the main network interaction
will affect the stable operation of the main network. Therefore, the
interaction power of the main network should meet the constraint of
Eq. 27.

Pbuy ≤Pbuymax,
Psell ≤Psellmax.

{ (27)

(4) Hydrogen energy storage constraints

0≤Pec ≤Pecmax,
0≤Pfc ≤Pfcmax,
Shst,min ≤ Shst ≤ Shst,max,

⎧⎪⎨⎪⎩ (28)

where Pecmax and Pfcmax are the maximum output power of electric
tank and fuel cell in Eq. 28, respectively, and Shst,max and Shst,min are
the upper and lower limits of the state of charge of the hydrogen
storage tank, respectively.

4.3 Model solving

In this paper, the lower-level model is the operation
optimization problem, and the decision variable is the output of
each power supply. Since the lower level solves a multi-constrained
linear problem, the CPLEX solver is used to solve it. The upper-level
model is capacity optimization, and the decision variable is the
capacity of DG and hydrogen energy storage-related equipment.
The upper layer selects the optimal capacity configuration based on
the operating cost transmitted by the lower layer, while considering
factors such as energy type, equipment capacity, and load demand,
and selects these characteristics to find the best MG configuration
scheme. In view of the superiority of the augmented whale algorithm
in the multi-dimensional feature selection problem, the upper level
uses E-WOA to solve the problem.

4.3.1 Enhanced whale optimization algorithm
Mohammad et al. (2023) proposed an enhanced whale

optimization algorithm based on the low population diversity
and poor search strategy of the standard whale algorithm, which
uses a pooling mechanism and three effective search strategies,
namely, migration, prioritization, and dense circumference of prey.

Pooling mechanism: Given the matrix Pool � (P1, P2,/Pk) with
size κ, in which its members Pi � (Pi,1, Pi,2,/Pi,D) are generated at the
end of each iteration using Eq. 29. The poolingmechanism is a crossover
operator to mix the worst solution with a promising solution and
increase the diversity. Whenever the size of the pool is completed, a
new solution is replaced with the current member of the pool.

Pt
i � Bt

i pX
t
brnd + �B

t
i pX

t
worst, (29)

whereXt
brnd is computed using Eq. 30 to generate a random position

in the neighborhood of the best humpback whale Xt
best; X

t
worst is the

worst solution obtained in the current iteration t. Bt
i is a binary

random vector, and �Bt
i is its reverse vector, such that the

corresponding values of non-zero elements in Bt
i are zero in �Bt

i ,
while the corresponding values of zero elements are ones.

Migrating search strategy: This search strategy randomly
separates a portion of the humpback whale population to cover
unvisited regions and improve the exploration.

Xt+1
i � Xt

rnd −Xt
brnd,

Xt
rnd � Rand p δmax − δmin( ) + δmin,

Xt
brnd � Rand p δbest max − δbest min( ) + δbest min,

⎧⎪⎨⎪⎩ (30)

where Rand is a random position in the range of search space, where
rand is a uniformly distributed random number between 0 and 1; δmin

and δmax are the lower and upper bounds of the problem, respectively;
and δbest min and δbest max are the lower and upper bounds of Xt

best.
Preferential selecting search strategy: The preferential selecting

strategy boosts the exploration ability of the search for prey method
in the canonical WOA. Since the preferential selecting search
strategy is proposed to improve the WOA exploration ability, it
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needs a large step size to discover a diverse assortment of solutions
by spreading the whales within different regions of the search space.
Therefore, this strategy uses the heavy-tailed Cauchy distribution
through which the probability of producing larger values is
very high.

Xt+1
i � Xt

i + At
i p Ct

i p P
t
rnd1 − Pt

rnd2( ), (31)
where Xt

i is the current position of the ith whale in Eq. 31 and
Pt
rnd1 and Pt

rnd2 are randomly selected from the matrix Pool in the
iteration t.

Enriched encircling prey search strategy:

Xt+1
i � Xt

best − At
i pD′t,

D′t � Ct
i pX

t
best − Pt

brnd3

∣∣∣∣ ∣∣∣∣,{ (32)

where Pt
brnd3 is randomly selected from the matrix Pool in Eq. 32.

4.3.2 Model solution based on E-WOA
The optimal configuration problem of MG belongs to the multi-

dimensional feature selection problem. Considering the advantages
of E-WOA in the multi-dimensional feature selection problem,
E-WOA and CPLEX solver are combined to solve it for the first
time in this paper. The solution flowchart is shown in Figure 2.

FIGURE 2
Flowchart of solving the bi-level optimization configuration model.
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The steps involved in solving the bi-level optimization model are
as follows:

(1) The annual meteorological data and load information are
input, and the K-means clustering algorithm is used to
generate typical daily operation scenarios in spring,
summer, autumn, and winter.

(2) E-WOA is used to solve the upper model, and the initial
population size N, the maximum number of iterations, and
the upper and lower limits of decision variables are set.

(3) According to the upper-level transmits’DG capacity, weather,
and load information, the load after demand response is
calculated and transmitted to the lower layer.

(4) The lower level simulates the operation of MG according to
the load and capacity configuration information transmitted
by the upper level and obtains the operation strategy with a
minimum operation cost. Finally, the result is passed to the
upper level.

(5) According to the data transmitted by the lower-level model,
the upper-level model solves the annual equivalent cost, takes
it as the fitness value of individual whales, and then updates
the whale position. The updated individual whale is
transferred to the lower-level optimization model again
and solved. When the number of iterations reaches the
maximum, the global optimal result is output.

5 Example analysis

5.1 Basic data

In recent years, with the improvement of living standards, the
user load is increasing each year, and the power supply pressure of
the main network is also increasing. At the same time, there is a risk
of power failure in suburban and remote areas. In order to solve the
above problems, this paper takes the MG in a suburb of China as an
example to optimize its configuration, so as to achieve the purpose of
energy self-sufficiency and clean energy in remote areas. The typical
daylight intensity, wind speed, and load curve obtained by clustering
are shown in Figure 3, and the system parameters of different

equipment and electricity price information data are shown in
Tables 3, 4, respectively. In terms of carbon trading price, the
basic price of carbon trading is 8.19 $/t. The carbon emission of
the MG generated by purchasing unit electricity from the main
network is 0.92 kg/kWh, and the free carbon emission quota
obtained is 0.781 kg/kWh. The carbon emission generated by DE
per unit power generation is 0.649 kg/kWh, and the free carbon
emission quota obtained is 0.5 kg/kWh. The user participation in
demand response load transfer compensation is 0.06 $/kWh.
Regarding the electrical elasticity matrix K, data from Chen et al.
(2014) are used to reflect the response of load to electricity prices.

5.2 Scheme comparison analysis

In this paper, the following six different options are compared to
verify the effectiveness of the proposed bi-level optimization method
considering carbon trading mechanism and price-based
demand response:

Option 1 considers the traditional carbon trading without
considering land factors and demand response.

Option 2 considers the stepped carbon trading without
considering land factors and demand response.

Option 3 considers the stepped carbon trading and land factors
without considering demand response.

Option 4 considers the traditional carbon trading and demand
response without considering land factors.

Option 5 considers the stepped carbon trading and demand
response without considering land factors.

Option 6 considers the stepped carbon trading, land factors, and
demand response;

Table 5 shows the capacity configuration results of MG under
the six options.

5.2.1 The impact of carbon trading methods on
configurations

By comparing Schemes 1 and 2 in Tables 5, 6, it can be observed
that Option 2 increases the WT and PV capacities by 110 kW and
235 kW, respectively, while reducing the capacity of DE by 360 kW.
In the hydrogen energy system, the capacities of the electrolytic cell

FIGURE 3
(A) Typical daily wind speed curve; (B) typical daylight intensity curve; and (C) typical daily load curve.
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and hydrogen storage tank increase by 48 kW and 1,015 kW,
respectively. From Figure 4, it can be seen that Option
2 significantly reduces fuel costs and main net interaction costs

compared to Option 1. In terms of total cost, Option 2 incurs an
additional expenditure of 20,100 USD (4.60%) compared to Option
1. Regarding carbon emissions, Option 2 achieves a reduction of

TABLE 3 System parameters of different devices.

Device type Size Initial investment cost $/unit Unit footprint/m2 Life span/a

PV 1 kW 600 6 20

WT 10 kW 5,715 80 20

DE 30 kW 2,150 12 20

Electrolyzer 1 kWh 500 3 10

Hydrogen storage tank 1 kWh 170 4 20

Fuel cell 1 kW 715 4 10

TABLE 4 Main net interactive electricity prices.

Period type Purchase price/$•kWh Selling price/$•kWh

Valley 0.06 0.04

Flat 0.09 0.07

Peak 0.12 0.10

TABLE 5 Capacity configuration results of the six options.

Option WT/unit PV/unit DE/unit Fuel cell/kW Electrolyzer/kWh Hydrogen storage tank/kWh

1 117 1,226 15 345 364 3,410

2 126 1,461 3 340 412 4,425

3 133 1,395 3 325 428 4,465

4 117 1,225 15 223 195 2,270

5 126 1,461 3 297 238 2,785

6 133 1,395 3 282 257 2,810

TABLE 6 Cost calculation results of six options.

Option 1 2 3 4 5 6

Investment maintenance costs/104 $ 33.93 38.71 38.90 32.40 36.65 36.84

Fuel costs/103 $ 10.54 2.60 2.71 9.33 2.16 2.33

Main net interaction costs/103 $ 77.63 56.67 53.33 68.47 47.56 42.93

Demand response costs/103 $ 0 0 0 15.70 16.33 16.04

Carbon trading costs/103 $ 9.30 10.37 16.75 7.66 9.74 15.54

Purchased electricity/MWh 1,272.39 983.73 942.34 1,045.65 806.08 792.33

Electricity sales/MWh 328.05 433.61 401.45 304.38 357.72 355.54

Total cost/104 $ 43.68 45.69 46.18 42.52 44.23 44.53

System carbon emissions/t 1,178.9 906.6 884.7 969.4 743.3 709.2
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FIGURE 4
Cost comparison of six options.

FIGURE 5
Power generation under different options.
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272.3 tons (23.09%) compared to Option 1. Therefore, it can be
concluded that the stepped carbon trading approach exhibits
superior emission reduction capabilities compared to traditional
carbon trading. The introduction of stepped carbon trading allows
for an increase in the capacity of low-carbon emission units and a
decrease in the capacity of high-carbon emission units, thereby
reducing the overall carbon emissions of the system.

Under the premise of stepped carbon trading, the comparison of
Options 2 and 3, as shown in Tables 5, 6 and Figure 5, reveals that
the wind turbine capacity increases by 70 kW (5.56%), while the PV
capacity decreases by 66 kW (4.52%) when incorporating the effects
of land factors. The capacity of the hydrogen energy system remains
relatively stable. After accounting for land factors, the proportion of
wind power generation in the system increases by 6.05%, while the
proportion of PV power generation decreases by 2.54%. Option
3 incurs an additional cost of 4,900 USD (1.07%) compared to
Option 2, resulting in a reduction of 21.9 tons (2.41%) in the
system’s total carbon emissions. Moreover, compared to Option
5, Option 6 increases the wind turbine capacity by 5.56% and the
proportion of wind power generation by 6.87%. The PV capacity
decreases by 4.51%, while the proportion of PV power generation
decreases by 2.64%. Option 6 incurs an additional cost of 3,000 USD
and reduces carbon emissions by 34.28 tons. The analysis indicates
that considering the influence of land factors leads to a slight
increase in total cost. However, it allows for the expansion of
WT capacity with higher investment returns and the reduction in
PV capacity with lower investment returns, resulting in further
reductions in system carbon emissions while achieving carbon
emission benefits that outweigh the economic losses.

Hence, it can be concluded that stepped carbon trading has
higher decarbonization capabilities compared to traditional carbon
trading. It enables the increase in renewable energy unit capacities
while reducing the capacities of high-carbon emission units, thus
facilitating a shift toward a more renewable energy-oriented energy
utilization system and reducing overall carbon emissions. The
increase in wind and solar unit capacities may exacerbate
curtailment issues. To enhance the utilization of renewable
energy, the capacity of hydrogen energy storage will consequently
increase. Considering changes in land characteristics allows for the
optimal utilization of land resources by reducing the capacities of
less efficient power generation units such as PV and increasing the
capacities of more efficient units such as wind turbines. This
approach effectively lowers the system’s carbon emissions while
maximizing the utilization of land resources. Therefore, the rational
utilization of the carbon trading mechanism can effectively increase
the capacity of low-carbon emission and high-investment renewable
energy units and reduce the usage of high-carbon emission and low-
investment units, and considering land factors can further promote
the utilization of land resources by increasing the usage of high-
efficiency power generation units while reducing the usage of low-
efficiency units.

5.2.2 The impact of demand response on
configuration

With the introduction of demand response, the capacity of fuel
cells, electrolytic cells, and hydrogen storage tanks in Option
4 decreased by 122 kW, 169 kWh, and 1,140 kWh, respectively,
resulting in a reduction of 226.74 MWh in purchased electricity

FIGURE 6
Total cost and carbon emissions under six options.
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from the main net. Additionally, the interaction cost with the main
net decreased by 9,160 USD, fuel cost decreased by 1,210 USD, and
carbon emissions decreased by 209.5 tons. Although the cost of
demand response increased by 15,700 USD, the total cost decreased
by 11,600 USD. Thus, it can be concluded that demand response can
improve the utilization of renewable energy, fully utilize energy
storage devices, and reduce excess capacity, thereby lowering the
investment and maintenance costs of microgrid systems. The
increased utilization of renewable energy can effectively reduce

the amount of electricity purchased from the main net and
decrease the usage of diesel generators, further reducing the
carbon emissions of the microgrid system.

Considering the case of stepped carbon trading, Options 5 and
2 both show an increase in the capacity of renewable energy units
and energy storage devices. In Option 5, when demand response is
introduced, the wind and solar capacities remain the same, while the
capacity of hydrogen storage systems decreases, resulting in a
reduction of 20,600 USD in investment and maintenance costs

FIGURE 7
Demand response before and after load and renewable energy output. (A) Typical day in spring; (B) typical day in summer; (C) typical day in autumn;
and (D) typical day in winter.

TABLE 7 Typical daily electricity price fluctuations.

Typical day period Spring Summer Autumn Winter

Peak α = 0.267 α = 0.261 α = 0.273 α = 0.293

Flat β = −0.278 β = −0.232 β = −0.223 β = 0.106

Valley δ = 0.173 δ = −0.130 δ = −0.161 δ = −0.252
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compared to Option 2. Option 5 also exhibits a decrease of 17.03%
and 16.08% in fuel costs and interaction costs with the main net,
respectively. Moreover, the purchased electricity from the main net
decreases by 177.65 MWh, and the sold electricity decreases by
75.89 MWh. The total cost decreases by 14,600 USD, and carbon
emissions decrease by 163.3 tons (18.01%). Option 6, when
considering land factors, exhibits a reduced capacity of hydrogen
storage devices and a decrease of 175.5 tons (19.83%) in carbon
emissions compared to Option 3. Therefore, considering the impact
of land factors can, to some extent, enhance emission reduction
efforts and contribute to the decarbonization of the system. In
addition, the reduction in energy storage capacity can mitigate
the carbon emissions resulting from land use, thereby
simultaneously improving economic viability and reducing
carbon emissions.

Based on the above analysis, the introduction of demand
response reduces the capacity of hydrogen storage devices,
decreases electricity purchased from the main net and diesel-
generated power, and consequently lowers the overall carbon
emissions of the system. This not only improves the economic
viability of the microgrid but also enhances its low-carbon benefits.
Furthermore, reducing net negative fluctuations optimizes the
storage of renewable energy in the microgrid and optimizes
energy usage, resulting in decreased energy storage capacity, fuel
costs, and total carbon emissions.

Considering the six configuration options in Figure 6, Option
4 exhibits the lowest total cost, amounting to 425,200 USD, from
an economic perspective. Option 6 has the lowest carbon
emissions, totaling 709.2 tons. Although Option 6 incurs an
additional cost of 20,100 USD (4.73%) compared to Option 4,
it reduces carbon emissions by 226.1 tons (26.84%). Taking into
account both the economic and low-carbon aspects of the
microgrid, Option 6 outperforms Option 4 with a 4.73% cost
increase but a 26.84% reduction in carbon emissions. The carbon
emission benefits outweigh the economic losses, making Option
6 the optimal configuration under the context of low-carbon
development.

5.3 Demand response load analysis

Figure 7 shows the load and renewable energy generation curves
before and after implementing Option 6 for demand response.
Table 7 lists the typical daily electricity price fluctuations. Based
on Figure 7, it can be observed that the introduction of demand
response reduces net load fluctuations by transferring flexible loads.

In Figure 7, the post-response load curve tends to align with the
renewable energy generation curve, resulting in reduced net load
fluctuations. Taking a typical spring day as an example, due to the
significant difference between peak and off-peak loads and the
renewable energy generation from 11:00 to 22:00, the electricity
demand during 11:00–17:00 is increased while the demand during
18:00–22:00 is decreased to mitigate net load fluctuations and
achieve load shifting. In summer and autumn nights, an increase
in net load fluctuations is observed. While ensuring user comfort,
the peak period loads are shifted to the flat and off-peak periods. The
lower electricity prices during these periods reduce the purchasing
cost and alleviate the power supply pressure during peak hours,
thereby improving the economic and operational stability of the
microgrid system.

Regarding electricity price fluctuations, taking a typical summer
day as an example and considering Table 6 and Figure 7, it can be
observed that the peak period electricity price increases by 26.1%,
resulting in a load reduction of 1,143.29 kWh. Meanwhile, the off-
peak period electricity price decreases by 13.0%, leading to a load
increase of 425.35 kWh. Before implementing demand response, the
peak-to-off-peak load difference was 648.2 kW, with a net load
fluctuation of 5.58 MW. After implementing demand response, the
peak-to-off-peak load difference decreased to 442.7 kW,
representing a reduction of 31.7%, and the net load fluctuation
decreased to 3.32 MW, indicating a reduction of 40.5%. Therefore, it
can be concluded that the introduction of price-based demand
response effectively reduces the peak-to-off-peak load difference
and net load fluctuations, optimizes the power supply mode, reduces
operational costs, and improves the economic feasibility of the
microgrid system.

5.4 Comparative analysis of algorithms

To validate the superiority of the E-WOA employed in this study
for the dual-level optimization configuration problem in microgrids,
a comparison was made with the improved whale optimization
algorithm (IWOA) (Sun et al., 2022) and genetic algorithm (GA)
(Zhao et al., 2022). The population size for all three algorithms was
set to 60, and the iteration count was set to 100. Figure 8 depicts the
convergence curves of the three algorithms based on Option 6.

From the convergence curves in Figure 8, it can be observed that
GA and IWOA only found local optima, while E-WOA
demonstrated a superior performance in finding the global
optimum. In terms of convergence speed, E-WOA attained the
optimal solution after 18 iterations, which is faster compared to
23 iterations for IWOA and 29 iterations for GA. The E-WOA
exhibited a faster convergence speed in the early iterations compared
to other algorithms. Although IWOA enhanced population diversity
through randomly selected individuals for crossover and mutation,
its fixed mutation strategy may lead to local optima in

FIGURE 8
Convergence curves for different algorithms.
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multidimensional feature selection problems. Additionally, the
single-prey searching strategy in IWOA has lower efficiency for
prey searching after enhancing population diversity. In contrast,
E-WOA increased population diversity through a pool mechanism
and migration search strategy to expand the search space. It also
employed a preferential selecting search strategy to enhance prey
searching capability and introduced an enriched encircling prey
strategy to enrich the algorithm’s local search capability, thereby
reducing the probability of falling into local optima in the later
iterations and improving the convergence speed and solution
accuracy of the algorithm.

MG optimization configuration problems, as a form of
multidimensional feature selection, require comprehensive
consideration of factors such as energy sources, energy storage,
and load demands. Compared to common intelligent algorithms,
which often suffer from issues like local optima and poor
convergence, E-WOA demonstrates superiority in solving
microgrid optimization configuration problems and provides
valuable insights for further research in this field.

6 Conclusion

Under the context of low-carbon development, this study
proposes a bi-level optimization approach for the optimal
configuration of MG, considering carbon trading and demand
response. For the first time, E-WOA and CPLEX solver are
combined to solve the optimization problem. Through a
comparative analysis of different configuration scenarios, the
following conclusions can be drawn:

(1) The MG optimization configuration model introduced in this
study incorporates a stepped carbon trading mechanism and
considers the influence of land factors. It effectively improves
the capacity of low-carbon, high-efficiency units while
reducing the capacity of high-carbon, low-efficiency units.
Additionally, it optimally utilizes land resources, leading to a
tendency for low-carbon and cost-effective energy utilization.
Moreover, the carbon emission benefits obtained outweigh
the economic losses.

(2) By considering stepped carbon trading and introducing price-
based demand response in the microgrid optimization
configuration, the capacity of hydrogen storage units can
be effectively reduced. This approach also mitigates system
net load fluctuations, increases the utilization of renewable
energy, and reduces electricity purchases from the main net.
As a result, it contributes to a significant reduction in carbon
emissions while achieving a trade-off between system
economics and low-carbon characteristics.

(3) This study uniquely combines E-WOA and CPLEX solver to
solve the bi-level optimization model. A comparative analysis

confirms the advantages of the improvement strategies
adopted by E-WOA in terms of convergence speed and
solution accuracy.

The carbon emission quota allocation method used in the
carbon emission trading cost proposed in this paper is free
allocation. In future research, it is possible to consider adding
carbon emission rights that need to be purchased through
auctions to explore the impact of different carbon emission rights
allocation methods on the optimization configuration of MG.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors without undue reservation.

Author contributions

WL: writing–original draft and writing–review and editing. ZJ:
writing–review and editing. JW: investigation and writing–review
and editing. XY: formal analysis and writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This study
was funded by the National Natural Science Foundation of China
(61873159) and the Shanghai Green Energy Grid-Connected
Engineering Technology Research Center (No. 13DZ2251900).

Conflict of interest

Author JW was employed by Jiaxing Power Supply Company of
State Grid Zhejiang Electric Power Co., Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahmad, A., Rauf, H. T., Khan, M. A., Kadry, S., and Nam, Y. (2021). A hybrid
algorithm (BAPSO) for capacity configuration optimization in a distributed solar PV
based microgrid. Energy Rep. 7 (7), 7906–7912. doi:10.1016/j.egyr.2021.01.034

Ali, M., Abdulgalil, M. A., Habiballah, I., and Khalid, M. (2023). Optimal scheduling
of isolated microgrids with hybrid renewables and energy storage systems considering
demand response. IEEE Access 11 (11), 80266–80273. doi:10.1109/access.2023.3296540

Frontiers in Energy Research frontiersin.org16

Lei et al. 10.3389/fenrg.2023.1334889

https://doi.org/10.1016/j.egyr.2021.01.034
https://doi.org/10.1109/access.2023.3296540
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1334889


Boqtob, O., El Moussaoui, H., El Markhi, H., and Lamhamdi, T. (2023a). Optimal
energy management of microgrid based wind/PV/diesel with integration of incentive-
based demand response program. Wind Eng. 47 (2), 266–282. doi:10.1177/
0309524x221124335

Boqtob, O., El Moussaoui, H., El Markhi, H., and Lamhamdi, T. (2023b). Optimal
energy management of microgrid based wind/PV/diesel with integration of incentive-
based demand response program. Wind Eng. 47 (2), 266–282. doi:10.1177/
0309524x221124335

Chen, C., Hu, Bo, Xie, K., Wan, L., and Xiang, B. (2014). Peak-valley time-of-use price
model including power system reliability and power purchase risk. Power Syst. Technol.
38 (8), 2141–2148. doi:10.13335/j.1000-3673.pst.2014.08.019

Chen, C., Wu, X., Ma, J., Chen, Y., Liu, S., Wu, X., et al. (2022). Optimal low-carbon
scheduling of integrated local energy system considering oxygen-enriched combustion
plant and generalized energy storages. IET Renew. Power Gener. 16 (4), 671–687. doi:10.
1049/rpg2.12342

Chen, J., Hu, Z., Chen, J., Chen, Y., Gao, M., and Lin, M. (2021). Optimal dispatch of
integrated energy system considering ladder-type carbon trading and flexible double
response of. Supply Demand High Volt. Eng. 47 (09), 3094–3106. doi:10.13336/j.1003-
6520.hve.20211094

Cheng, Y., Zhang, N., Zhang, B., Kang, C., Xi, W., and Feng, M. (2020). Low-carbon
operation of multiple energy systems based on energy-carbon integrated prices. IEEE
Trans. Smart Grid 11 (2), 1307–1318. doi:10.1109/tsg.2019.2935736

Dorahaki, S., Rashidinejad, M., Farshad, S., Ardestani, F., Abdollahi, A., and Reza
Salehizadeh, M. (2023). An integrated model for citizen energy communities and
renewable energy communities based on clean energy package: a two-stage risk-based
approach. Energy 2023 (277), 1–24. doi:10.1016/j.energy.2023.127727

Dou, C., Zhou, X., Zhang, T., and Xu, S. (2020). Economic optimization dispatching
strategy of microgrid for promoting photoelectric consumption considering
cogeneration and demand response. Mod. Power Syst. Clean Energy 8 (03), 557–563.
doi:10.35833/mpce.2019.000214

Fan, W., Liu, Q., and Wang, M. (2021). Bi-level multi-objective optimization
scheduling for regional integrated energy systems based on quantum evolutionary
algorithm. Energies 14 (16), 4740. doi:10.3390/en14164740

He, L., Lu, Z., Geng, L., Zhang, J., Li, X., and Guo, X. (2020). Environmental economic
dispatch of integrated regional energy system considering integrated demand response.
Int. J. Electr. Power & Energy Syst. (116), 0142–0615. doi:10.1016/j.ijepes.2019.105525

Huang, H., Jia, J., and Zhang, Z. (2023). Spatial-temporal evolution and influencing
factors of carbon emissions from land use change in Jiangxi County. Acta Ecol. Sin. 9
(20), 1–14. doi:10.20103/j.stxb.202211293454

Huynh, D. C., Pham, H. M., Ho, L. D., Dunnigan, M. W., and Barbalata, C. (2022).
“An improved artificial bee colony algorithm-based configuration optimization of a
remote microgrid considering renewable energy systems,” in Proceedings of 2022 6th
International Conference on Green Technology and Sustainable Development, Nha
Trang City, Vietnam, July, 2022, 976–981. doi:10.1109/GTSD54989.2022.9989062

Jin, X., Sun, L., Ding, M., Wen, F., and Sun, W. (2023). Distributionally robust low-
carbon dispatch of park-level integrated energy system considering uncertainty of
customer response. Automation Electr. Power Syst. 47 (16), 10–21. doi:10.7500/
AEPS20221024010

Kang, C., Zhou, T., Chen, Q., Wang, J., Sun, Y., Xia, Q., et al. (2015). Carbon emission
flow from generation to demand: a network-based model. IEEE Trans. Smart Grid 6 (5),
2386–2394. doi:10.1109/tsg.2015.2388695

Le, J., Qi, G., Zhao, L., and Liao, X. (2022). Time-delay stability analysis of an active
distribution network adoptinga distributed economic dispatch strategy. Power Syst.
Prot. Control 50 (21), 75–87. doi:10.19783/j.cnki.pspc.220010

Li, J., Yang, Bo, and Hu, Y. (2023). Site selection and capacity setting of electro-
hydrogen hybrid energy storage system considering demand side response. Power Syst.
Technol. 47 (09), 3698–3714. doi:10.13335/j.1000-3673.pst.2022.2285

Li, T., Xiao, Q., Jia, H., Mu, Y., Wang, X., Lu, W., et al. (2022). Multi-agent schedule
optimization method for regional energy internet considering the improved tiered
reward and punishment carbon trading model. Front. Energy Res. 10 (10), 1–12. doi:10.
3389/fenrg.2022.916996

Liu, X. (2022). Research on optimal placement of low-carbon equipment capacity in
integrated energy system considering carbon emission and carbon trading. Int. J. Energy
Res. 46 (14), 20535–20555. doi:10.1002/er.7826

Ma, L., Sui, K., Liang, Y., Qiu, J., Cheng, X., Shang, L., et al. (2021). “A bi-level optimal
configuration model of isolated microgrid considering energy storage lifetime,” in
2021 International Conference on Power System Technology (POWERCON), Haikou,
China, December, 2021, 1084–1088. doi:10.1109/POWERCON53785.2021.9697602

Mohammad, H., Shahraki, N., Zamani, H., and Mirjalili, S. (2023). Enhanced whale
optimization algorithm for medical feature selection: a COVID-19 case study. Comput.
Biol. Med. 2022 (148), 0010–4825. doi:10.1016/j.compbiomed.2022.105858

Pal, S., Kumar, M., and Kumar, R. (2017). “Price aware residential demand response
with renewable sources and electric vehicle,” in IEEE International WIE Conference on
Electrical and Computer Engineering (WIECON-ECE), Dehradun, India, December,
2017, 211–214. doi:10.1109/WIECON-ECE.2017.8468915

Qi, Yu, Ding, T., Sun, Y., He, Y., Wang, C., Wang, Y., et al. (2021). Review and
thinking on the development of electricity spot market to promote renewable energy
consumption at home and abroad. Proc. CSEE 41 (5), 1729–1751. doi:10.13334/j.0258-
8013.pcsee.201408

Sobhan, D., Dashti, R., and Shaker, H. R. (2020). Optimal outage management model
considering emergency demand response programs for a smart distribution system.
Appl. Sci. 10 (21), 7406. doi:10.3390/app10217406

Sobhan, D., Rashidinejad, M., Ardestani, S. F. F., Abdollahi, A., and Salehizadeh, M. R.
(2023). Probabilistic/information gap decision theory-based bilevel optimal
management for multi-carrier network by aggregating energy communities. IET
Renew. Power Gener. 17 (6), 1436–1465. doi:10.1049/rpg2.12685

Sun, G., Shang, Y., and Zhang, R. (2022). An efficient and robust improved whale
optimization algorithm for large scale global optimization problems. Electronics 11 (9),
1475. doi:10.3390/electronics11091475

Tan, Q., Mei, S., Qi, Ye, Ding, Y., and Zhang, Y. (2019). Optimization model of a
combined Wind–PV–thermal dispatching system under carbon emissions trading in
China. J. Clean. Prod. 225 (225), 391–404. doi:10.1016/j.jclepro.2019.03.349

Wang, J., Xue, K., Guo, Y., Ma, J., Zhou, X., Liu, M., et al. (2022a). Multi-objective
capacity programming and operation optimization of an integrated energy system
considering hydrogen energy storage for collective energy communities. Energy
Convers. Manag. 7 (268), 0196–8904. doi:10.1016/j.enconman.2022.116057

Wang, P., Tang, J. J., Zhang, Z., Li, Y., Wu, H., Ji, C., et al. (2022b). Bidding strategy
optimization for power generation company in carbon emission rights and electricity
market. Energy Rep. 8 (5), 325–331. doi:10.1016/j.egyr.2022.02.174

Wang, Y., Qiu, J., Tao, Y., and Zhao, J. (2020). Carbon-oriented operational planning
in coupled electricity and emission trading markets. IEEE Trans. 35 (4), 3145–3157.
doi:10.1109/tpwrs.2020.2966663

Xiaohui, Z., Xiaoyan, L., Jiaqing, Z., and Wenbo, G. (2019). Electricity–gas-
integrated energy planning based on reward and penalty ladder-type carbon
trading cost. IET Gener. Transm. Distrib. 13 (23), 5263–5270. doi:10.1049/iet-
gtd.2019.0666

Yang, J., Zhang, M., Dou, L., Xiao, S., and Zhao, Y. (2022). Spatial pattern and carbon
balance zoning of land use carbon emissions in Jiangxi Province. Environ. Sci. Res. 35
(10), 2312–2321. doi:10.13198/j.issn.1001-6929.2022.05.04

Ying, Y., Tian, Z., Wu, M., Liu, Q., and Tricoli, P. (2023). Capacity configuration
method of flexible smart traction power supply system based on double-layer
optimization. IEEE Trans. Transp. Electrification 9 (3), 4571–4582. doi:10.1109/tte.
2023.3244551

Zhang, X., Jin, X., Zhang, Z., Zheng, M., Han, Y., Xue, J., et al. (2019). Research on
power planning under the green card and carbon trading process. AIP Conf. 2185 (1),
020–052. doi:10.1063/1.5137896

Zhang, X., Liu, X., Yang, W., Wen, F., Meng, K., Liu, H., et al. (2018). Hierarchical
scheduling strategy of electric vehicles under dynamic time-of-use electricity price
mechanism. Electr. Power Constr. 39 (12), 73–80.

Zhang, Z., and Kang, C. (2022). Challenges and prospects of building a new power
system under the goal of carbon neutrality. Proc. CSEE 42 (08), 2806–2819.
doi:10.13334/j.0258-8013.pcsee.220467

Zhao, C., Wang, B., Sun, Z., andWang, X. (2022). Optimal configuration optimization
of islanded microgrid using improved grey wolf optimizer algorithm. Acta Energiae
Solaris Sin. 43 (1), 256–262. doi:10.19912/j.0254-0096.tynxb.2020-0042

Zheng, S., Sun, Y., Qi, B., and Li, B. (2022). Incentive-based integrated demand
response considering S&C effect in demand side with incomplete information. IEEE
Trans. Smart Grid 13 (6), 4465–4482. doi:10.1109/tsg.2022.3149959

Frontiers in Energy Research frontiersin.org17

Lei et al. 10.3389/fenrg.2023.1334889

https://doi.org/10.1177/0309524x221124335
https://doi.org/10.1177/0309524x221124335
https://doi.org/10.1177/0309524x221124335
https://doi.org/10.1177/0309524x221124335
https://doi.org/10.13335/j.1000-3673.pst.2014.08.019
https://doi.org/10.1049/rpg2.12342
https://doi.org/10.1049/rpg2.12342
https://doi.org/10.13336/j.1003-6520.hve.20211094
https://doi.org/10.13336/j.1003-6520.hve.20211094
https://doi.org/10.1109/tsg.2019.2935736
https://doi.org/10.1016/j.energy.2023.127727
https://doi.org/10.35833/mpce.2019.000214
https://doi.org/10.3390/en14164740
https://doi.org/10.1016/j.ijepes.2019.105525
https://doi.org/10.20103/j.stxb.202211293454
https://doi.org/10.1109/GTSD54989.2022.9989062
https://doi.org/10.7500/AEPS20221024010
https://doi.org/10.7500/AEPS20221024010
https://doi.org/10.1109/tsg.2015.2388695
https://doi.org/10.19783/j.cnki.pspc.220010
https://doi.org/10.13335/j.1000-3673.pst.2022.2285
https://doi.org/10.3389/fenrg.2022.916996
https://doi.org/10.3389/fenrg.2022.916996
https://doi.org/10.1002/er.7826
https://doi.org/10.1109/POWERCON53785.2021.9697602
https://doi.org/10.1016/j.compbiomed.2022.105858
https://doi.org/10.1109/WIECON-ECE.2017.8468915
https://doi.org/10.13334/j.0258-8013.pcsee.201408
https://doi.org/10.13334/j.0258-8013.pcsee.201408
https://doi.org/10.3390/app10217406
https://doi.org/10.1049/rpg2.12685
https://doi.org/10.3390/electronics11091475
https://doi.org/10.1016/j.jclepro.2019.03.349
https://doi.org/10.1016/j.enconman.2022.116057
https://doi.org/10.1016/j.egyr.2022.02.174
https://doi.org/10.1109/tpwrs.2020.2966663
https://doi.org/10.1049/iet-gtd.2019.0666
https://doi.org/10.1049/iet-gtd.2019.0666
https://doi.org/10.13198/j.issn.1001-6929.2022.05.04
https://doi.org/10.1109/tte.2023.3244551
https://doi.org/10.1109/tte.2023.3244551
https://doi.org/10.1063/1.5137896
https://doi.org/10.13334/j.0258-8013.pcsee.220467
https://doi.org/10.19912/j.0254-0096.tynxb.2020-0042
https://doi.org/10.1109/tsg.2022.3149959
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1334889

	Bi-level optimization configuration method for microgrids considering carbon trading and demand response
	1 Introduction
	2 Microgrid structures and carbon trading models
	2.1 Microgrid structures
	2.2 Carbon trading mechanism
	2.2.1 Carbon trading model
	2.2.2 Stepped carbon trading


	3 Demand response model
	3.1 Dynamic time-of-use tariffs
	3.2 Objective function
	3.3 Constraints

	4 Bi-level optimization configuration model and solution algorithm
	4.1 Upper optimization model
	4.1.1 Objective function
	4.1.2 Upper-level model constraints

	4.2 Lower optimization model
	4.2.1 Lower objective function
	4.2.2 Lower-level model constraints

	4.3 Model solving
	4.3.1 Enhanced whale optimization algorithm
	4.3.2 Model solution based on E-WOA


	5 Example analysis
	5.1 Basic data
	5.2 Scheme comparison analysis
	5.2.1 The impact of carbon trading methods on configurations
	5.2.2 The impact of demand response on configuration

	5.3 Demand response load analysis
	5.4 Comparative analysis of algorithms

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


