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Microgrid has been extensively applied in the modern power system as a
supplementary mode for the distributed energy resources. The microgrid with
wind energy is usually vulnerable to the intermittence and uncertainty of the
wind energy. To increase the robustness of the microgrid, the energy storage
system (ESS) is necessary to compensate the power imbalance between the
power supply and the load. To further maximize the economic efficiency of the
system, the system level control for the microgrid is desired to be optimized
when it is integrated with the utility grid. Aiming at the aforementioned problem,
this paper comprehensively analyzes the power flow of a typical loop microgrid.
A transformer-based wind power prediction (WPP) algorithm is proposed and
compared with recurrent neural networks algorithm. With the historical weather
data, it can accurately predict the 24 h average wind energy. Based on the
predicted wind energy and the time-of-use (TOU) electricity price, a day-ahead
daily cycling profile of the ESS with particle swarm optimization algorithm
is introduced. It comprehensively considers the system capacity constraints
and the battery degree of health. The functionality of the proposed energy
management strategy is validated from three levels. First, WPP is conducted with
the proposed algorithm and the true historical weather data. It has validated
the accuracy of the transformer algorithm in prediction of the hourly level wind
energy. Second, with the predicted wind energy, a case study is given to validate
the day-ahead daily cycling profile. A typical 1 MVA microgrid is utilized as
the simulation model to validate performance of the daily cycling optimization
algorithm. The case study results show that the ESS daily cycling can effectively
reduce the daily energy expense and help to shave the peak power demand
in the grid.
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wind power prediction, optimization, microgrid, energy storage system, time-of-use
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1 Introduction

The renewable energy such as photovoltaic and wind energy has
multiple superiorities including zero carbon emission and reduced
generation cost over conventional power Byers and Botterud (2020).
However, they also pose challenges to the modern power system
due to their distributed characteristics. The modern power system
is based on concentrated load and generationCady et al. (2015).
The increasing proportion of the distributed generations (DGs)
is challenging for the power dispatching and operating efficiency
improvement.Thus,microgrid is an emerging supplementary power
generation mode to address the challenge posed by the increasing
penetration of distributed energy resources in the modern power
system Zhao et al. (2017).

Among all renewable energy resources, wind energy has the
advantage of cost-effectiveness which makes it appropriate for
areas with rich wind energy resources such as off shore areas
Tessarolo et al. (2017). However, its intrinsic intermittence features
make it undesired for power grid operation. This problem is
particularly serious inweak grid conditions such asmicrogridwhich
has lower capacity than the large power grid.Themismatch between
the power generation and load can lead to wind curtailment which is
detrimental to increasing the operating efficiency Zhao et al. (2016).
In the worst case, it raises multiple power quality concerns such
as frequency deviation or voltage flickering and finally operating
failures.

To address the problems posed by wind energy in themicrogrid,
considerable research effort has gone into the power industry which
includes the following steps.The development of battery technology
enables energy storage systems (ESS) in the microgrid to reach
higher capacity with reduced cost. There are various types of ESS
such as the lithium-ion (Li-ion) battery, flywheel, lead-acid batter,
etc. Prakash et al. (2022). Li-ion battery has been extensively applied
in the EVs for the sake of its large energy density and relatively
mature manufacturing technology Deng (2015). Therefore, some
microgrids also utilize recycled Li-ion batteries as the ESS unit.
A large ESS with a fast dynamic response speed can greatly shave
the peak generating power and fill the load demand. The energy
storage system for microgrid generally includes battery packs and
power conversion systems. Via adjusting the output power of the
PCS, the power in the grid can be changed and the bus voltage is
maintained. However, the application of ESS introduces extra cost
for the microgrid and its cycling can lead to aging of the battery.
Using ESS daily cycling to minimize the power expense is emerging
recently Zhao et al. (2019). The Time-of-Use (TOU) price of the
electricity varies hour by hour because of the load changes hourly.
Accordingly, when the microgrid is tied to the utility grid, the ESS
charges when the TOU price is low and discharges when TOU price
is high. For the microgrid, due to the capacity limitation, the daily
optimization algorithm of the ESS can be different.

Another effort is developing more accurate wind power
prediction (WPP) algorithms. The application of emerging artificial
intelligence algorithms enables wind energy models to be more
complex and accurate with data-driven methods Zhao et al. (2017).
An accurate wind energy prediction strategy is essential for the
day-ahead optimization of the microgrid operation plan. Based on
the optimization operation plan, the energy management system of
the microgrid can effectively adjust the output power of the ESS

and DG to minimize the generated power curtailmentYang et al.
(2014).The existingWPP algorithms are usually based on recurrent
neural networks (RNN) models or the improved RNN models
such as short-term memory and gated recurrent units. However,
RNN-based models process data sequentially instead of in parallel
which makes it struggle with long-range dependencies, and under-
perform with non-stationary time-series data. Transformers, which
is renowned in natural language processing and image tasks, are now
capturing the interest of time series researchers. They show great
performance at handling global information while predefined cutoff
lengths is not needed. It shows great promise in capturing long-
range dependencies, particularly in recent time series prediction
tasks Sun et al. (2021). As an emerging algorithm, the industry
application of transformer-based model still has large space for
further development.

Aiming at addressing the aforementioned problems, this paper
introduces a kind of daily optimization method of the microgrid
with wind energy generation and ESS. Considering the TOU
price, the ESS operates in daily cycling mode to maximize the
saving for the users. A machine-learning-based WPP algorithm
is introduced. It employs the local historical wind energy data
to train the algorithm. Compared with the widely used time-
series WPP methods, the proposed energy management strategy
utilizes transformer-based algorithm to process the weather data.
Compared with the conventional RNN-based methods, its parallel
data processing feature makes it more appropriate for the day-ahead
hourly-level WPP since the operating efficiency is increased. Also,
With the prediction results, a day-ahead operation plan of the ESS
cycling which considers the battery aging is introduced with Particle
SwarmOptimization (PSO). Simulation results experimental results
have validated the functionality of the proposed forecast algorithm
and the energy management strategy.

The other sections of this paper are organized in the following
way: Section 1 summarizes the state-of-the-art WPP algorithm
and the energy management strategy for the microgrid. Section 2
analyzes the microgrid power flow, introduces the proposed WPP
method, and the TOU price profile. Based on the predicted wind
energy profile and local TOU price profile, Section 4 introduces the
day-ahead optimization algorithmof themicrogrid and the ESSwith
PSO. Section 5 introduces a case study to validate the functionality of
the proposed energy management strategy. Conclusions are drawn
in Section 6.

2 Related work

Microgrid is proposed for various applications to connect the
distributed generation resources, loads and ESSs. Since it was
first introduced in Hatziargyriou et al. (2007), both industry and
academia have dedicated much effort to improving the control
and structure of the microgrid to increase its robustness under
various operating conditions. The structure of the microgrid,
such as the terminal can be different based on the application
scenarios. Generally, the energy management of the microgrid can
be categorized into three types: hierarchical control Zhao et al.
(2016), autonomous control Pogaku et al. (2007), and master-slave
control Xie et al. (2021). The power flow control of the microgrid
is conducted via changing the operating modes of the power
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converters. Tayab et al. (2017) introduces the droop control for the
microgrid. Rosso et al. (2021) introduce the grid-forming converter
for the DGs inside the microgrid. The targets of microgrid energy
management can be concluded into two aspects: maximize the
economic efficiency and improve the system operating stability.
Improving the economic efficiency can be implemented via shaving
the peak power demand and filling the valley demand.Therefore, the
TOUprice is employed by the utility companies to assist in the power
dispatching. Yang et al. (2012) employ game-theory to optimize the
TOU pricing and maximize the benefit for the utility grid.

Compared with the conventional large grid, microgrid is usually
more vulnerable to the uncertainties of the DGs due to the limited
system capacity Shuai et al. (2016). Among all distributed energy
resources, wind and solar energy occupy the dominant penetration
in the current renewable energy structure. Compared with solar
energy, wind energy is more efficient. However, wind energy has the
intrinsic characteristics of uncertainties and intermittence which are
detrimental to the robust operation of the microgrid Wood (2020).
As summarized in Xue et al. (2014), there are two major reasons for
wind energy uncertainties: average wind speed in the long term and
fluctuating wind speed in the short term.

The integration of wind energy brings about multiple concerns
for the microgrid such as frequency fluctuation and voltage
flickering. To minimize its impact on the microgrid frequency
and the voltage, Gautam et al. (2010) propose a blade pitch angle
compensation control method and Qi and Tsuji (2023) introduce
a time-series coordinated frequency control strategy for the wind
farm. It can also result in low-frequency oscillation in the doubly fed
induction generators. Therefore, Yang et al. (2011) propose a model
to explain the mechanism and figures out the potential solutions.
Apart from the microgrid robustness, it can also affect the carbon
emission Yao et al. (2012), electricity market Ghadikolaei et al.
(2012) etc.

Tominimize the downsides brought by wind energy integration,
various methods are proposed to control and optimize the
system’s energy management. The extensively applied methods
include wind power prediction (WPP) Rodríguez et al. (2020),
wind farm system-level control Andersson et al. (2021), fault ride-
through Zhang et al. (2020), and energy storage. Among the
aforementioned four method, using ESS is the only hardware-
based method. The capacity of ESS is highly associated with
the robustness of the microgrid. Liu et al. (2018) utilize particle
swarm optimization (PSO) algorithm to determine the capacity of a
hybrid ESS.

Compared with the other methods, WPP can be assisted in
making power dispatching plan to optimize the system operation
in advance. With the increasing penetration of wind energy in
the current energy structure, WPP becomes more significant since
it provides theoretical basis to the comprehensive grid operating
optimization. Both academia and industry have dedicated numerical
effort into the research of WPP. As a critical part of the numerical
weather forecast (NWF), WPP utilizes the wind speed and wind
direction predicted withNWP as the input data. However, due to the
different locations of each wind turbine, the NWP results cannot be
directly employed to replaceWPP. Also, the mutual impact between
wind turbines can also lead to prediction errors. For instance, the
wind turbine at the front side can generate a wake flow which will
affect the operation of the following wind turbines []. Therefore, an

accurate WPP model should incorporate the physical model of the
wind turbines.

Due to the intermittency and uncertainty of wind, WPP is
always challenging particularly for a single wind turbine. Generally,
WPP can be categorized into two types: short-term prediction
which aims at the time-scale shorter than 24-h Sanchez (2006),
and long-term prediction which aims at the time-scale longer
than 24-h Ahmadi et al. (2020). For the short-term prediction, the
wind speed variance and disturbance increase as the prediction
period increases due to the inertial of wind power fluctuation. The
error of short-term prediction varies due to the intermittence and
inertia of the wind turbine which is highly associated with location,
environment, and the predicted time. Due to the prediction errors,
the post-processing of the prediction results is usually necessary
Zhao et al. (2022b). Various methodologies are employed for the
short-termWPP such as theMarkov chain,Kalmanfilter, etc.Li et al.
(2001) propose a first-order artificial neural network model to
estimate the very short-term wind turbine power curve. Blonbou
(2011) introduces an artificial neural network model with adaptive
Bayesian earning and Gaussian process approximation for short-
term prediction. Senjyu et al. (2006) introduce a recurrent neural
network algorithm to conduct the long-term-ahead wind power
generation profile.

According to the aforementioned literature review investigation,
this paper will introduce a comprehensive optimization algorithm
for the loop microgrid with wind energy and ESS. The WPP
is conducted with transformer which shows superiority over the
conventional algorithms such as long short-term memory (LSTM)
and recurrent neural networks (RNNs). Also, particle swarm
optimization algorithm is utilized to make the daily cycling plan for
the battery which comprehensively considers the constraints of the
system capacity.

3 Microgrid system topology
introduction

3.1 Three-terminal microgrid system
introduction

A typical three-terminal loop microgrid is given in Figure 1. It
includes a wind energy generation terminal, a battery ESS, a load
bank and utility grid. The battery ESS is usually located close to
the load to compensate for the load demand. The ESS consists of
a battery bank and a bidirectional power converter. An transformer
is employed to connect the microgrid and the utility grid. Different
terminals are connected via transmission line. The bus voltage
is set to be 220 V ac. The transmission cable is three-phase
four-line. Generally, the transmission cables have circuit breakers
on the line.

It can be operated under islanding mode and grid-connected
mode. Islanding mode occurs when the utility grid is no longer
accessible. The top-priority target of the islanding mode is to
minimize the power outage time and maximize the system’s
robustness. In contrast, when the utility grid is available, the
energy management system will aim at maximizing the operating
efficiency.
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FIGURE 1
The topology of a three-terminal loop microgrid.

FIGURE 2
The power flow of all terminals in the three-terminal loop microgrid.

Generally, due to the generation intermittence of DG and the
missing of a large grid, only a wind energy terminal as the power
source is not enough for amicrogrid in islandingmode. Tomaintain
the power balance, as many types of DGs as possible such as
photovoltaic energy, bioenergy, and tidal energy should be employed
for a microgrid. Also, the energy storage system can operate in
grid-forming mode to maintain the bus voltage.

In the grid-connected mode, the robustness of the microgrid
can be supported by the utility grid and it is no longer the major
concern. Thus, the operating efficiency is the top priority target
for the microgrid. It can be conducted by minimizing the wind
energy curtailment and daily cycling of the ESS to benefit from the
TOU price. This paper focuses on the grid-connected mode of the
microgrid.The control of themicrogrid in grid-connectedmode can
be found in Figure 2.

FIGURE 3
The structure of the energy management strategy.

The power flow analysis is essential for operation optimization.
Figure 2 shows the power flow of the microgrid. The wind energy
generation system and the load are all unidirectional while the
transformer and the battery are bidirectional. PB, PW, PL and PG
denote the output power of the battery, wind energy generation
terminal, load, and the grid.The reference direction of each variable
is marked in Figure 2.

The energymanagement strategy of themicrogrid is hierarchical
control which includes three layers as shown in Figure 3. The
hardware layer include all physical components such as the
transmission line, the converter, the connectors, etc. The local
control of the power converter is also in the hardware layer. The
information transferring layer plays a key role in the information
exchange between the system layer and the hardware layer. It delivers
the local information such as the power flow, voltage or current to the
energy management system while the control signals are sent to the
hardware layer. The energy management system controls the whole
microgrid and dispatches the power flow in the grid. It should be
noted that the day-ahead optimization is performed in the energy
management system.

3.2 Prediction of the wind power

In 2019, wind energy played a substantial role in advancing
renewable energy, contributing to one-third of the overall growth
Wood (2020). While the evolution of wind power technology brings
evident economic and environmental benefits, the integration of
large-scale wind power into the grid faces challenges due to its
intermittent nature. WPP emerges as a pivotal solution to tackle
this issue.

As demonstrated in Section 2, WPP can be categorized based
on the time frame of predictions: ultra-short-term (0–4 h) for
managing intraday operations, short-term (typically 1 day or a few
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FIGURE 4
The encoder-decoder structure.

days in advance) for day-ahead planning and unit commitment, and
medium/long-term forecasting (spanning weekly, seasonal, annual,
or more) for wind resource assessment and selection of wind
farm sites.

WPP methodologies can be broadly classified into four primary
categories: physical models, statistical approaches, intelligent
systems, and hybrid methods as shown in Figure 4. Predictions
can also be categorized based on the types of input features they use,
such as multi-variable predictions and historical predictions. This
research, in particular, focuses on intelligent, short-term historical
predictions. For the wind prediction task, the prediction process is
defined in Eq. 1.

x̂t+1 = f (xt,…,xt−d+1) + e (1)

where x̂t+1 is the predicted wind power, f(.) is the prediction model,
and e is the prediction error.

In this study, a transformer model is employed for the
prediction task. The encoder component takes the historical time
series as input, while the decoder predicts future values in an
auto-regressive manner. To establish a connection between the
encoder and the decoder, an attention mechanism is employed.
This allows the decoder to learn how to prioritize the most
pertinent historical values from the time series before making a
prediction. Furthermore, the decoder utilizes masked self-attention
to prevent the model from gaining an unfair advantage during
training by peeking ahead and using future data to predict past
values. Note that the prediction can inevitably introduce the
prediction errors. Therefore, it is recommended to incorporate
the prediction error correction algorithm in prior to performing
optimization for the system. Some post-processing algorithms for
wind energy prediction can be found by Jiang andHuang (2017) and
Zhao et al. (2022b).

FIGURE 5
A typical TOU price profile (Own representation of data from www.
epexspot.com).

3.3 Time-of-use price

The utility company employs the TOU price profile to assist
in shaving the peak demand the filling the valley. The price
of the energy changes hourly based on the demand. A typical
TOU pricing profile is given in Figure 5. Generally, the price
is higher at the peak demand time while it decreases at the
valley demand time. The customers will adjust their usage of
electricity accordingly to minimize their daily energy expense.
For instance, the charging of electric vehicles can be delayed to
midnight when the TOU price is low. In this case, the power
of midnight in the utility grid can be slightly increased and
the operation efficiency is improved. Also, the utility company
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does not need to invest more money into the construction of
backup capacity.

4 Day-ahead ESS cycling plan

4.1 Object function and optimization
constraint

The optimization object which is improved on the basis of the
proposed algorithm in Zhao et al. (2019) aims to minimize the total
energy expense of the microgrid which is usually a community
network.Asmentioned earlier, via charging the batterywhenTOU is
low and discharging the battery when TOU is high, it can maximize
the operation efficiency for the customers. Therefore, the object
function as shown in 2 is the part the changed expense caused by
the ESS daily cycling. It should be noted that in this paper, the power
loss on the transmission line can be ignored due to the small size of
microgrid.

M =min(
24

∑
t=1

PB (N) ⋅TOU (N)) (2)

Herein, PB(N) and TOU(N) denote the output power of the ESS and
the Time-of-Use price at the hour-N. Since the load is determined
by the users and it is independent of the system-level control, the
only considered variable is ESS output power. The optimization
should followmultiple constraints such as the SoC of the battery, the
maximum power limit of each terminal and the SoC daily cycling
constraints which can be expressed in 3 - 5.

PBch
≤ PB (t) ≤ PBdisch

(3)

SoClow ≤ SoC (t) ≤ SoChigh (4)

SoC (0) = SoC (24) = SoC (initial) (5)

In 3, the output power of the battery is limited to the maximum
power rating for charging and discharging. In 4, there is a limitation
for the battery SoC. When SoC is too high, the battery is over-
charged and it can damage the hardware. In contrast, SoC is also
not desired to be very low since deep discharging can lead to a
shortened lifetime of the battery. Therefore, it is desired to limit the
battery SoC to be within an appropriate range to prevent the over
charge/discharge damaging the battery. Usually, SoClow which is the
lower limit is between 20% and 40% and SoChigh which is the upper
limit should be lower than 95%.

SoC(N) denotes the SoC of the battery at the end of hour-
N. To finish a completed charging cycle, it is needed to make the
SoC same level after completing a daily cycle. In other words,
after the charging/discharging for a day, the SoC should return
to the initial point, i.e., SoC (initial) in the equation. The SoC of
the battery at the end of each 30 min can be calculated with 6.
Herein, the loss on the power converter is neglected since it is
usually very low. Currently, the efficiency of a power converter with
wide bandgap semiconductor devices can go to 98% Zhao et al.
(2022a). To make the SoC prediction more accurate, it is usually
necessary to consider the power loss of the power converter. In this

case, the output power of the converter should be multiplied by
the efficiency.

SoC (N) = SoC (0) +
t

∑
i=1

PB (N) ⋅
3.6

CB ⋅DoH ⋅VB
(6)

In 6, SoC(N) is the SoC at the end of hour-N in a day. SoC (0) is
the initial SoC of a day. The SoC (0) can be assumed to be 60% at
0:00 a.m. since 60% is the recommended SoC tomaintain the battery
lifetime. Note that, due to the battery aging in the daily cycling, the
capacity fading should be considered in this case. DoH denotes the
battery degree of health which should be measured daily to avoid
SoC estimation errors. It can be conducted using an offline method
with a coulombmeter as given inYang et al. (2018).CB is the nominal
battery capacity and VB denote the battery output voltage. Also, due
to the limitation of the transformer capacity, the wind power, load
and the battery output power should follow the constraint as given
in 7. It can avoid the curtailment of the wind energy caused by the
extra-large ESS output power.

PG_min < PB + PW + PL < PG_max (7)

4.2 The optimization algorithm process of
ESS output power

The optimization flow is shown in Figure 6. Usually, the
optimization process should be performed a day ahead.

All information including the predicted wind power, ESS
specs and status, TOU profile from the utility company, and the
microgrid parameters is input to the optimization process as the
original data. Based on the given data, the fitness function as
given in Eq. 2 and the constraints as given in Eqs 3–7 can be
determined.Then the optimization can be performed.The selection
of various optimization algorithms such genetic algorithm, PSO,
simulated annealing algorithm, etc., depends on the application
scanario. To avoid the calculation results being trapped into
the local optimal point, the initial conditions and maximum
iteration generation should be carefully selected. After iteration,
the optimized ESS output power can be generated and it will
be utilized as the reference value for the ESS converter P/Q
control scheme.

5 Experimental study

5.1 Wind power prediction results

In this segment, we utilize actual wind power data to assess
the efficacy of forecasting strategies based on transformer models.
The data, generated by the Weather Research and Forecasting
(WRF) model, consists of hourly samples, amassing a total of 8,640
data points. For our analysis, we consider a historical sequence of
10 samples to predict future wind power output. The dataset is
partitioned into a training set comprising 70% of the data, and a
testing set making up the remaining 30%. We employ LSTM, GRU,
and transformer models to conduct both single-step and multi-
step predictions. In single-step forecasting, the immediate next data
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FIGURE 6
The optimization flow chart of the proposed energy management
strategy.

point is predicted, while in multi-step forecasting, the prediction is
made for the third data point in the sequence.

The experiments are conducted on a Linux PC equipped with
an AMD Ryzen 5 3550H processor, clocked at 2.1 GHz, along with
16 GBofRAM.Thecomputational environment includes Python 3.9
and TensorFlow 2.8.0. Our aim is to validate the effectiveness of the
proposed forecasting approach. TensorFlow is employed due to its
ability to handle large datasets and perform complex computations
efficiently. It is very appropriate for the evaluation ofmodel accuracy
and its deployment for practical, real-time forecasting application.
The performance of each model is assessed using two metrics:
Mean Squared Error (MSE) and Mean Absolute Error (MAE). MSE
quantifies the average squared deviation between the predicted and
actual values, offering insight into themodel’s precision. Conversely,
MAE calculates the average absolute discrepancy between the
predicted and actual values, showcasing the extent of deviation in
the model’s predictions.

Upon conducting a thorough analysis of the experimental results
in Figures Figure 7, Figure 8, Figure 9, Figure 10, it is observed that
the transformermodel exhibits superior performance in comparison
to the LSTM and GRU models in both single-step and multi-step
forecasting tasks. The transformer model demonstrates comparable
proficiency to the LSTM model, and maintaining an advantage
over the GRU model. These empirical findings underscore the

TABLE 1 The specs of the microgrid for case study.

Terminal Parameter Value

Transmission line Voltage 380V3ϕ

Transformer Capacity 1000kVA

Wind turbine Capacity 500kVA

Battery Voltage 800V

Maximum discharging power 400kW

Maximum charging power 350kW

Capacity 600kWh

Original SoC 60%

SoC limitation 25%–95%

Load Capacity 800kVA

transformer model’s potential as an efficacious approach for time
series forecasting in wind power prediction endeavors.

5.2 Optimization results: a case study

A case study is given in this paper to validate the functionality
of the proposed algorithm. A 500 kVA microgrid system is utilized
for the case study. The specs of the microgrid are listed in Table 1.

The hour-level predicted wind power from the original data and
the load profile can be plotted in Figure 11. After all data such as the
wind energy generation, TOUprice, load profile, and the constraints
are determined, the optimization process can be performed. In this
paper, PSO is employed. The optimization results of the battery
output power are plotted in Figures 12, 13.

From Figures 12, 13, the battery output power matches the
TOU price. When the TOU price is high, the battery output
power increases. When the TOU price is low, the battery charges.
From Figure 7, the battery SoC is also within the set constraint
25% and 95%.

The daily expense of the microgrid is plotted in Figure 14. From
Figure 14, without the wind energy and the battery daily cycling, the
daily energy expense is 6,138 dollar.TheESS daily cycling can reduce
the energy expense by 188 dollar. If a larger battery bank is utilized,
the cost reduced by daily cycling can be larger. With wind energy
and the battery, the total daily cost of energy can be reduced to 3,200
dollar.Therefore, theDG terminal and ESS can effectively reduce the
user energy cost.

6 Discussion

To maximize the advantages of microgrid using wind power
and battery ESS, this paper proposes a kind of system-level control
strategy and the ESS daily cycling algorithm. UsingWPP results and
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FIGURE 7
Model performance evaluation for the single-step forecast task.

FIGURE 8
Model performance evaluation for the multi-step forecast task.

FIGURE 9
Single-step wind power forecasting.

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1334588
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Xu et al. 10.3389/fenrg.2023.1334588

FIGURE 10
Multi-step wind power forecasting.

FIGURE 11
The predicted results of the load power and generated wind power.

FIGURE 12
The TOU price, the predicted wind energy, and the ESS battery output
power.

the TOU price, it can effectively reduce the daily energy expense and
help the utility grid to dispatch energy by shaving the peak demand.
The experimental study is conducted in two levels and the results are
discussed as below.

6.1 WPP results

A transformer-basedWPP algorithm is proposed and compared
with the state-of-the-art machine learning algorithms. From the
comparison results as given in Figure 7 - 8, all machine learning
methods can predict the wind power at hourly level. However,
among the listed algorithms, the transformer algorithm shows
superiority over the LSTM and GRU model. The MSE error of

FIGURE 13
The ESS SoC and the output power.

FIGURE 14
The daily electricity expense.

the transformer algorithm in single-step prediction is much better
than LSTM and GRU model. For multi-step prediction, the GRU
model still have the largestMSE error.TheMSE error of transformer
algorithm is slightly lower than LSTM. Therefore, for 24 h WPP,
transformer can be a suitable algorithm.

6.2 ESS daily cycling optimization

From the simulation study in last section, the daily cycling of
the ESS can effectively reduce the electricity expense of the users.
The charging time focuses at 1:00-3:00 when the TOU is the lowest
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during a day. The discharging time is usually between 15:00-18:00
when the TOU is highest. It should be noted that it also charges at
23:00 since the battery SoC should return to 60% at the beginning
of a daily operating cycle. The simulation results also reveal that
the majority of saved expense is still from the wind energy which
has no cost. The daily cycling has lower benefit per day. However,
for 2 years, the daily cycling of ESS can cover the cost of the
battery lifetime aging. Also, it should be noted that in the simulation
study, PSO is employed. To achieve better optimization results,
other optimization algorithms such as GA, grey wolf optimizer, etc.,
can be tried.

7 Conclusion

In this paper, a system level control strategy is proposed for
the loop microgrid with wind energy generation terminal and the
ESS. As the theoretical basis for the system-level operation strategy
optimization, a transformer-based WPP algorithm is proposed
and compared with LSTM. The comparison results reveal that
transformer-based model has better prediction results over the
conventional time-series algorithm.With the predicted wind power
profile, the ESS daily cycling plan is made based on the optimization
algorithm with TOU price. PSO is utilized for the ESS optimization.
The case study shows that for a 1MVA microgrid with 800 kVA
regular load, the daily cycling of a 400 kVA 600 kWh ESS can
reduce the daily energy expense by 3%. Thus, the proposed energy
management strategy can effectively improve the system operating
efficiency.
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