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To improve automatic generation control (AGC) performance and reduce the
wastage of regulation resources in interconnected grids including high-
proportion renewable energy, a multi-area integrated AGC (MAI-AGC)
framework is proposed to solve the coordination problem of secondary
frequency regulation between different areas. In addition, a cocktail
exploration multi-agent deep deterministic policy gradient (CE-MADDPG)
algorithm is proposed as the framework algorithm. In this algorithm, the
controller and power distributor of an area are combined into a single agent
which can directly output the power generation command of different units.
Moreover, the cocktail exploration strategy as well as various other techniques are
introduced to improve the robustness of the framework. Through centralized
training and decentralized execution, the proposed method can nonlinearly and
adaptively derive the optimal coordinated control strategies for multiple agents
and is verified on the two-area LFC model of southwest China and the four-area
LFC model of the China Southern Grid (CSG).
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1 Introduction

The development of interconnected power systems (Li et al., 2021; Li et al., 2022) and the
increasing application of large-scale renewable energy and generating units with multiple
energy coupling characteristics have led to more frequent random disturbances in power
systems, which generate significant coordination problems with regard to frequency control
within such power systems (Qu et al., 2023). Nowadays, the two major coordination
problems affecting secondary frequency regulation in multi-area power systems
(hereinafter referred to as the “two coordination problems”) are as follows: (1) there is a
coordination problem between the automatic generation control (AGC) controller and
distributor, which reduces the frequency regulation efficiency of the system and reduces the
adjustment resources of the system; (2) the coordination problems of AGC in various areas
will affect each other, resulting in frequency oscillation and regulation waste and reduced
control performance. In this situation, conventional AGC (Qu et al., 2022) cannot meet the
network demand due to its failure to allow for the above problems (Huan et al., 2023).
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In the AGC controller and distributor, the existing AGC-related
algorithms can be divided into two categories. One is the control
algorithm of AGC, which consists of the PID-based algorithm (Li
et al., 2023a), neural network (Li et al., 2023b), slidingmode control, and
(Yu et al., 2011a) learning (Yu et al., 2011b). The purpose of these
control algorithms is to minimize deviations in the control frequency.

The other category is the optimization algorithm for the distributor,
which consists of the intelligent optimization algorithm (Yu et al., 2015),
the fixed pattern dispatch (Yu et al., 2012), group optimization
algorithm (Xi et al., 2020), and traditional optimization algorithm
(Mirjalili et al., 2014). The optimization algorithm is used to send
commands to each unit in order to minimize the regulation payment.

The payment calculated dynamically based on regulation
mileage has replaced the original fixed regulation payment in the
AGC, which aggravates the coordination problem between the
controller and the distributor. Thus, the combination of these
two categories of algorithms (hereafter termed “combinatorial
algorithm”) increases the frequency deviation and the regulation
payment, which will lead to poor AGC performance.

Regarding the coordination problem affecting secondary frequency
regulation between different areas, the independent supplier operator
(ISO) of each area has a certain interest independence, whereby the ISO
of each area wants to restore the frequency but has no intention to pay
too much frequency regulation payment during mutual support
(Bahrami et al., 2014; Mirjalili, 2016; Xi et al., 2016).

An increasing number of researchers have opined that a data-
driven control scheme based on multi-agent deep reinforcement
learning (MA-DRL) holds significant potential. For example, Yu
et al. have demonstrated a novel MA-DRL algorithm, which is
designed for solving the coordinated control problem (Yu et al.,
2016). However, an increase in the number of agents leads to a
lower convergence probability of the algorithm; this property limits
its application in real-world systems. Moreover, Xi et al. have developed
a “wolf climbing” MA-DRL algorithm (Xi et al., 2015) and solved the
problem ofmulti-area control. However, because the action space of the
algorithm is discrete, there arises the problem of the dimensionality
curse, which makes it difficult to realize continuous control. Xi et al.
have proposed a multi-agent coordination method for inter-area AGC
(Xi et al., 2020); however, continuous control of inter-area AGC cannot
be realized for the discrete action space (Li et al., 2023c; Li and Zhou,
2023). However, the current MA-DRL-based data-driven control
method still has the following problems: the comprehensive
coordination of multi-agent was not achieved; low robustness. In
order to solve the “two coordination problems” and further improve
the AGC performance and reduce wastage of regulation resources in a
multi-area power system, a multi-area integrated AGC (MAI-AGC)
framework is proposed. In this framework, a novel deep reinforcement
learning algorithm, known as cocktail exploration multi-agent deep
deterministic policy gradient (CE-MADDPG), has been proposed,
which uses the cocktail exploring strategy and other techniques to
improve the robustness of the MADDPG. Based on this algorithm, the
controller and distributor are combined into a single agent which can
output the commands of the various units. Due to the employment of
centralized training and decentralized execution, each agent only needs
local information in its control area for delivering optimal control
signals. The simulation of the LFC model shows that the method
achieves the comprehensive optimization of performance
and economy.

The innovations demonstrated in this paper are as follows:

(1) An MAI-AGC framework based on multi-area coordination is
proposed to achieve coordination between the controller and
distributor, which reduces the cost and fluctuation of frequency
regulation, and enables each agent tomake optimal decisions based
on local information without relying on the global status of the
whole power grid (Yu et al., 2011a; Yu et al., 2011b; Yu et al., 2012;
Bahrami et al., 2014; Mirjalili et al., 2014; Yu et al., 2015; Mirjalili,
2016; Xi et al., 2016; Yu et al., 2016; Xi et al., 2020).

(2) A CE-MADDPG algorithm is introduced to improve the
robustness of the MAI-AGC framework, which employs cocktail
exploration and other techniques to overcome the problem of
sparse rewards of conventional deep reinforcement learning
methods and to achieve multi-objective optimization of control
performance and regulation mileage payment (Xi et al., 2015; Xi
et al., 2020; Li et al., 2023c).

The MAI-AGC model is elaborated in in Section 2, CE-
MADDPG is introduced in Section 3; in Section 4, a new
approach was used throughout the event, and the conclusion is
given in Section 5.

2 MAI-AGC framework

2.1 Performance-based frequency
regulation market

Frequency regulation mileage is a novel technical indicator for
identifying the actual regulating variable of each unit (Li et al., 2021).
According to the calculation rules of China Southern Grid (CSG) in
China, the frequency regulation mileage payment of each unit is as
Eqs (1)–(10) (Li et al., 2021):

Di � ∑N
k�1

λ · kpi ·Mi k( ) � ∑N
k�1

λ · kpi · ΔPGi k + 1( ) − ΔPGi k( )| |, (1)

Sratei � ΔPrate
i

ΔPrate
a

Sdelayi � 1 − Td
i

5min

Sprei � 1 − 1
N

∑N
k�1

ΔPorder−i k( ) − ΔPGi k + 1( )
ΔPi,a

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Spi � ω1Sratei + ω2S
delay
i + ω3S

pre
i

ω1 + ω2 + ω3 � 1,ω1 ≥ 0,ω2 ≥ 0,ω3 ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (2)

where ∫t

0
ΔfAdt, eAACE, and ∫t

0
eAACEdt are 0.50, 0.25, and 0.25,

respectively.

2.2 Frequency operating standards

CPS1 can best represent the performance of AGC (Qu et al.,
2023). The calculation method of the area control error (eACE) is
as follows:

eACE � ΔPtie − 10BΔf. (3)
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The CPS1 indicator is as follows:

CCPS1 � 2 − CCF1( ) × 100%, (4)
where

CCF1 � ∑ eACEAVE·min*ΔfAVE−min( )
−10Bintimeε21

. (5)

2.3 Control framework of MAI-AGC

As shown in Figure 1, in the MAI-AGC framework, the AGC
controller and power distributor of each area are replaced by a
centralized agent, which can output the power generation
commands of multiple units in the area simultaneously and
obtain the optimal coordinated strategy via training so that
during online application, the coordination with agents in other
areas can be realized while reducing the frequency deviation and
payment in different areas.

2.4 Objective function

The aim was to achieve the optimum performance of AGC and
its economic efficiency. The objective of the agent in the ith area is
expressed as follows:

minfi � μ1∑N
k�1

Δfi k( )2 + μ2∑N
k�1

eACEi k( )∣∣∣∣ ∣∣∣∣ + μ3∑n
j�1
Dj

i . (6)

2.5 Constraint conditions

The constraint conditions for the coal-fired unit, LNG units, oil-
fired unit, hydro unit, and DERs in the SVPP are represented as Eq.
12. The constraint of DERs in the FVPP, which employs DC/DC
convert to control the energy, excludes the generation climbing
speed constraint.

∑n
j�1
ΔPin

j k( ) � ΔPorder−∑ k( )
ΔPorder−∑ k( )*ΔPin

j k( )≥ 0
ΔPj

min ≤ΔPin
j k( )≤ΔPj

max

ΔPout
j k + 1( ) − ΔPout

j k( )
∣∣∣∣∣ ∣∣∣∣∣≤ΔPrate

j

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
. (7)

3 Principle of the MAI-AGC-based CE-
MADDPG algorithm

3.1 Design of MAI-AGC based on the EE-
MAPDDG algorithm

There are n agents in this MA-DRL framework of one area, with
agenti corresponding to the agent of the ith area. The method
comprises offline centralized training and online application.

The global optimal coordinated control strategy can be obtained
by fully off-line training agents. In online applications, the policy
function πϕ

i (s) of agenti is responsible for outputting the actions
under that particular state, i.e., the generation factor for each unit in
the ith area. The control interval of agenti is set to 4 s. The control
objective is to eliminate the ACE and reduce the mileage payment of
each area. The control framework is shown in Figure 2.

3.1.1 Action space
For any time t, in the ith area, the AGC generation factor of n

units and VPP are selected as action, and there are a total of n
actions, as shown in the following equation:

ai1a
i
2 . . . a

i
j . . . a

i
n[ ], aij ≤ 1

ΔPi
order−j � aij*P

max−i
jG

{ . (8)

3.1.2 State space
A state refers to an ordered collection of the smallest number

of variables that can determine the state of the system in the
system, and the state space of the agent of area i is shown as
Figure 3:

FIGURE 1
MAI-AGC framework.

FIGURE 2
MAI-AGC system based on the CE-MADDPG algorithm.
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Δfi∫t

0
Δfidte

ACE
i ∫t

0
eACEi dtΔPout−i

1 . . .ΔPout−i
j . . .ΔPout−i

n[ ]. (9)

3.1.3 State space of the EIE-MATD3 algorithm
By referring to Eq. 11, the reward of the agent in the ith area is

expressed as follows:

ri t( ) � − μ1Δfi k( )2 + μ2 e
i
ACE k( )∣∣∣∣ ∣∣∣∣ + μ3∑n

j�1
di
j k( )⎡⎢⎢⎣ ⎤⎥⎥⎦ + A, (10)

di
j k( ) � λ*Spj* ΔPout−i

j k( ) − ΔPout−i
j k + 1( )

∣∣∣∣∣ ∣∣∣∣∣, (11)

Ai � 0 Δfi k( )∣∣∣∣ ∣∣∣∣< 0.05Hz
−10 Δfi k( )∣∣∣∣ ∣∣∣∣≥ 0.05Hz.

{ (12)

3.2 Deep reinforcement learning

3.2.1 MA-DDPG
TheMADDPG algorithm (Lowe et al., 2017) is an algorithm that

extends the DDPG algorithm into a multi-agent environment. In
training, each agent can obtain the state and actions of all agents.
The loss of agents is calculated as Eq. (13) and Eq. (14):

L θQ( ) � 1
K
∑K
j�1

yj − Q sj, a1, a2,/aN, θ
Q( )( )2. (13)

The policy gradient is as follows:

∇ϕπJ � 1
K
∑K
j�1
∇ϕπ π o,ϕπ( )∇aQ s, a1, a2,/aN, θ

Q( ). (14)

3.3 Training framework of CE-MADDPG

CE-MADDPG is an MA-DRL algorithm, which is a
modification of MA-DDPG. CE-MADDPG adopts the cocktail
exploration distributed MA-DRL training framework, and this
algorithm improves the efficiency of MADDPG. The training
framework adopts centralized training and decentralized
execution for parallel optimization. According to Figure 4, taking
the four-area LFC model as an example, the framework includes
several explorers, integrators, and four leaders.

The purpose of this novel scheme is to improve the detection
capability and robust performance of the proposed method, in which
there are 10 parallel systems, and each of them is associated with a
different power disturbance. In the case of an LFC model having four
areas, each of the parallel systems 1–6 is provided with four explorers,
which serve as an AGC integration agent for four areas, to output a
command for the respective unit in the area. These four explorers
adopt the same exploration principle. Each of the parallel systems
7–12 has four integrators, and each integrator contains a combination
of different control algorithms and optimization algorithms. During
training, the explorers in different areas simultaneously explore the
environment in parallel, and each explorer generates a sample. Each
integrator generates an integration sample. Different parallel spaces
are shown in Eq. 15.

FIGURE 3
Training flow of CE-MADDPG.

FIGURE 4
Training framework of the CE-MADDPG algorithm.
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3.3.1 Explorer
The explorer in different systems employs different exploration

actions. The action of the explorer in parallel systems 1–2 is shown
as Eq. (15):

alε � { πl
ϕ s( ) With ε probability
alrand With 1 − ε probability

, (15)

where l refers to the lth agent.

FIGURE 5
Case 1 results.
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The action of the explorer in parallel systems 3–4 is as
Eq. (16):

ajOU � πj
ϕ s( ) +Nj

OU, (16)

where j refers to the jth agent.
The action of the explorer in two parallel systems is as

Eq. (17):

ajGaussian � πj
ϕ s( ) +Nj

Gaussian. (17)

An SAC explorer is set in parallel systems 9–12 to create the
samples in collaboration with three demonstrators.

In this paper, the demonstrator adopts various controllers on
different principles. PSO-fuzzy-PI is used in parallel systems
5 and 9; GA-fuzzy-PI is used in parallel systems 6 and 10; TS-
fuzzy-PI is used in parallel systems 7 and 11; type-II fuzzy-PI is
used in parallel systems 8 and 12. The target function of the
controllers is as Eq. (18):

F t( ) � ∫∞

0
t eji t( )( )2dt. (18)

3.3.2 Integrators
The design of the CE-MADDPG incorporates imitation

learning. The integrator includes a controller and a distributor.
The controllers and power distributors among different integrators
employ different principles. During training, every integrator gives a
reasonable result according to its own controller and power
distributor, converts it into a sample, and puts it into the
experience pool, which makes the public experience pool to make
valuable samples.

In the integrators, PI, PSO-PI, FOPI, PSO-tuned fuzzy-PI,
and fuzzy-PI algorithm are adopted in the controller. Due to the

frequent occurrence of big amplitude disturbances in area A,
when PSO-PI and PSO-fuzzy-PI factors in area A are optimized,
the other control parameters are adjusted manually. The
objective of the integrators for the controller is shown as Eq. (19):

minFC t( ) � ∫∞

0
t eACEi t( )( )2dt. (19)

The principles of the power distributor for generation power
command dispatch corresponding to each integrator are as follows:
PROP, GA, and PSO. Various learning samples are provided for the
public experience pool through the integrator interacting with the
environment.

In the integrator, only ACE is taken into account in the
control algorithm, and the regulation payment is considered in
the dispatch algorithm for the distributor. In optimization, the
fitness function for the distributor is shown in Eq. 20. The fitness
function is as Eq. (20):

minFD t( ) � ∑T
t�1

μ1∑N
i�1
ΔP2

error−i t( ) + μ2∑N
i�1
dj
i t( )⎛⎝ ⎞⎠. (20)

3.3.3 Classified prioritized replay
Classified prioritized replay is adopted in the experience replay

mechanism. In CE-MADDPG, two experience pools are employed.
The samples obtained by the explorers are put into pool 1, and those
collected by the integrators are put into pool 2.

The probability ξ is shown in Eq. 21:

ξ �
0.8 Episodes≤ 1000
0.9 1000< Episodes≤ 2000.
1 Episodes> 2000

⎧⎪⎨⎪⎩ (21)

TABLE 1 Result of case 1.

Area Algorithm |Δf|avg/Hz |EACE| avg/MW CCPS1/% Payment/$

Area A CE-MADDPG 0.0178 5.6989 199.199 1210

Ape-x-MADDPG 0.0249 6.6120 199.197 1431

MATD3 0.0255 6.8245 199.163 1423

MADDPG 0.0249 6.7474 199.179 1303

PI + PSO 0.0227 6.9281 199.210 1495

PI + GA 0.0225 6.8718 199.220 1501

PI + PROP 0.0231 7.1580 199.199 1523

Area B CE-MADDPG 0.0195 2.8156 200.075 389

Ape-x-MADDPG 0.0255 3.1224 200.064 549

MATD3 0.0263 3.1985 200.067 558

MADDPG 0.0258 3.2446 200.062 538

PI + PSO 0.0267 3.5875 200.062 463

PI + GA 0.0266 3.6248 200.008 458

PI + PROP 0.0279 3.9294 199.997 457

Bold indicates that this metric of the algorithm is the most outstanding compared to other algorithms.
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3.3.4 Training flow
The training flow of the CE-MADDPG algorithm is shown

as follows:

3.4 Case studies

In case studies, the performance of the CE-MADDPG algorithm
is compared with that of other MA-DRL algorithms (Ape-x-
MADDPG, MATD3, and MADDPG) and combinatorial

algorithms, which include controllers with power distributors (PI
+ PROP, PI + PSO, PI + GA) in the two cases.

3.4.1 Case 1: stochastic step disturbance
In case 1, three random step perturbations were introduced to

test the effectiveness of the method.
1) Performance of MA-DRL algorithms. From Table 2, it can be

known that the CPS1 indexes of CE-MADDPG in areas A and B
are 199.199 and 200.075, respectively, which are the largest
among these algorithms. In addition, |Δf |avg and |EACE| avg of

FIGURE 6
Results of case 2.
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CE-MADDPG are the smallest in MA-DRL algorithms. In
addition, the payments of CE-MADDPG in the two areas are
$1,210 and $389, respectively, which are much lower than those
of other MA-DRL algorithms.

Based on the above results, it can be argued that CE-
MADDPG uses more techniques for improving its exploration
capability and training efficiency, and thus a better coordinated
control strategy can be obtained. Therefore, when confronted
with different disturbances, the CE-MADDPG algorithm exhibits
better performance; conversely, due to the lack of corresponding
techniques, in each case, a suboptimal coordinated control
strategy is obtained by other MA-DRL algorithms, thereby
leading to suboptimal coordinated control performance.

According to Figures 5A, B and Figure 5G, the coordinated
control strategy adopted by the CE-MADDPG algorithm calls
more rapid-regulating units for frequency regulation. In
addition, other MA-DRL algorithms are subjected to larger
overshoot, which leads to serious frequency regulation
resource wastage and increases the payment. As shown in
Figures 5C, E, the CE-MADDPG achieves more stable
frequency deviation and ACE.

2) Performance of combinatorial algorithms. According to
Table 1, in area A, for combinatorial algorithms, the CE-
MADDPG algorithm can reduce |Δf |avg by 26.4%–29.5%, |EACE|

avg by 20.58%–25.6%, and the regulationmileage payment by 22.8%–
24.82%; it also has the largest CPS1 index value. In area B, the CE-

TABLE 2 Statistical results of case 2.

Area Algorithm |Δf|avg/Hz |EACE| avg/MW CCPS1/% Payment/$

Area A CE-MADDPG 0.00199 5.6413 199.881 9,950

Ape-x-MADDPG 0.00233 7.9635 199.057 24,498

MATD3 0.00278 7.2853 198.914 17,935

MADDPG 0.00255 7.4202 198.818 16,195

PI + PSO 0.00253 8.3808 198.691 16,195

PI + GA 0.00264 8.3673 198.547 12,947

PI + PROP 0.00269 8.4222 198.534 11,078

Area B CE-MADDPG 0.00346 6.7533 194.020 17,931

Ape-x-MADDPG 0.00726 10.2614 186.250 57,875

MATD3 0.00532 7.2476 191.586 36,206

MADDPG 0.00475 6.3865 192.638 30,859

PI + PSO 0.00478 5.9463 193.179 30,859

PI + GA 0.00450 5.5413 193.708 27,846

PI + PROP 0.00437 5.3884 193.882 25,005

Area C CE-MADDPG 0.00365 5.5323 194.800 10,931

Ape-x-MADDPG 0.00484 6.3594 193.462 16,478

MATD3 0.00425 5.8505 194.209 12,708

MADDPG 0.00435 5.4815 193.374 13,638

PI + PSO 0.00440 5.9513 194.392 13,638

PI + GA 0.00428 5.8644 194.406 13,447

PI + PROP 0.00425 5.8624 194.376 12,212

Area D CE-MADDPG 0.00319 3.6097 197.211 7,553

Ape-x-MADDPG 0.00424 4.8727 196.476 12,178

MATD3 0.00378 4.1069 196.763 9,130

MADDPG 0.00390 4.1245 195.981 9,077

PI + PSO 0.00387 4.0885 196.793 9,076

PI + GA 0.00381 3.9727 196.859 7,834

PI + PROP 0.00381 3.9633 196.832 7,908

Bold indicates that this metric of the algorithm is the most outstanding compared to other algorithms.
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MADDPG algorithm can reduce |Δf |avg by 36.03%–42.6%,| EACE |

avg by 27.4%–39.6%, and the regulation mileage payment by
17.46%–29.05%.

Based on the above results, it can be argued that as shown in
Figure 6B, the other combinatorial algorithms are also subjected to
larger overshoot due to the PI controller being contained in these
combinatorial algorithms. When the parameters are not set
properly, there will arise instability in terms of total generation
power command and overshoot, which will lead to degradation of
performance and increased payment (Figures 5D, F, G, H). By
contrast, the CE-MADDPG algorithm can significantly improve
the response capability of AGC, which, in turn, reduces the
occurrence of “overshoot,” thereby reducing its payment.

3.4.2 Case 2: four-area LFC model under
disturbance with large-scale DERs

In case 2, WT disturbance, PV disturbance, and stochastic
disturbance occur across the four areas.

As shown in Table 2, in area A, CE-MADDPG reduces |Δf |avg
by 16.79%–39.69%, |EACE| avg by 29.14%–48.56%, and the
payment by 11.33%–146.21%; it also attains the largest
CPS1 index value. In addition, CE-MADDPG exhibits the
minimum |Δf |avg and payment in other areas. However, since
other areas will give emergency support when a disturbance
occurs in one of the areas, the |EACE| avg of the CE-MADDPG
algorithm is not the lowest in areas B and C (which provide more
support). However, the CPS1 index of the CE-MADDPG
algorithm across the different areas is the largest.

According to Figures 6A, B, for the CE-MADDPG algorithm,
when a disturbance occurs in an area, the AGC of that area can
respond rapidly, and the influence of coordination among
controllers in multiple areas is considered while at the same
time avoiding the degradation of performance caused by the
combinatorial algorithm. Therefore, the CPS1 of AGC in all the
areas is better; also, the peak value of its frequency is smaller,
which reduces unnecessary load shedding caused by the
operation of the emergency control device due to frequency
fluctuation.

It can, therefore, be argued that in the event of a disturbance, and
with large-scale DERs, compared with the MA-DRL algorithms and
combinatorial algorithms, the CE-MADDPG algorithm is
advantageously characterized by better performance and can
realize multi-area secondary frequency regulation coordination.

4 Conclusion

Based on the study, we can draw the following conclusions:

1) In this paper, an MAI-AGC framework is designed in the
performance-based frequency regulation market. The
controller and the distributor are integrated into a single
agent, which can resolve the cooperative problem of the
controller and distributor.

2) A CE-MADDPG algorithm is proposed as the framework
algorithm from the perspective of AGC. This algorithm uses
multiple groups of explorers with different exploration strategies

combined with integrators to improve training efficiency. It
introduces a variety of techniques to guide the strategy
objectives in striking a balance between exploration and
utilization and then realizing the optimal coordinated control
of AGC with greater robustness. Moreover, the utilization
framework of decentralized execution is adopted to realize the
coordination control of different areas.

3) The results of two cases show that, compared with the three MA-
DRL and three combinatorial algorithms, the proposed
algorithm exhibits enhanced performance and
economic efficiency.

4) Future work: We will conduct research based on practical
examples in the future.
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Nomenclature

Ai Control penalties

CCF1 CF1 indicator

CCPS1 CPS1 indicator

eACEi ACE of the ith area

eei The sample created by the explorer

Fd(t) Objective function of the distributor

Fc(t) Objective function of the controller in the integrator

fi Objective function of the agent in the ith area

gij Generation factor of the jth unit in the ith area

Q*(s′, a′) Target Q function

n Number of AGC units

Sprei
Regulation accuracy of the ith unit

Greek symbols

μ1 Weight coefficient

μ2 Weight coefficient

μ3 Weight coefficient

∇ϕπ J Policy gradient

ε1 The root-mean-square control target

π Policy of the agent

Δf i Frequency deviation of the ith area
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