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Accurate prediction of wind power generation in regions characterised by
complex terrain is a critical gap in renewable energy research. To address this
challenge, the present study articulates a novel methodological framework using
Convolutional Neural Networks (CNNs) to improve wind power forecasting in
such geographically diverse areas. The core research question is to investigate
the extent to which terrain complexity affects forecast accuracy. To this end,
DeepSHAP—an advanced interpretability technique—is used to dissect the CNN
model and identify the most significant features of the weather forecast grid
that have the greatest impact on forecast accuracy. Our results show a clear
correlation between certain topographical features and forecast accuracy,
demonstrating that complex terrain features are an important part of the
forecasting process. The study’s findings support the hypothesis that a detailed
understanding of terrain features, facilitated by model interpretability, is essential
for improving wind energy forecasts. Consequently, this research addresses an
important gap by clarifying the influence of complex terrain on wind energy
forecasting and provides a strategic pathway for more efficient use of wind
resources, thereby supporting thewider adoption of wind energy as a sustainable
energy source, even in regions with complex terrain.
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1 Introduction

Wind energy is one of the most promising sources of renewable energy in the
modern world. Its sustainability and low carbon footprint make it an attractive solution
in the global effort to reduce greenhouse gas emissions and combat climate change
(International Energy Agency IEA, 2022). As the penetration of wind energy increases, the
ability to predict wind power generation becomes increasingly important for the operation
of the electricity system. Accurate forecasting is essential not only to optimise energy
production, but also to ensure grid stability and the successful integration of this variable
energy source into power grids (Ahmed et al., 2020).

Forecasting wind power is a challenging task. The variability and unpredictability of
wind, determined by many factors ranging from large-scale atmospheric dynamics to
local geographical features, make it a complex phenomenon to predict. This challenge
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is even greater in regions with complex terrain. Mountains, valleys,
coastlines and other topographic features add layers of complexity
that can significantly affect wind patterns. For example, wind speeds
can be amplified inmountain passes or become turbulent and erratic
around steep cliffs and ridges. Predicting wind behaviour in such
scenarios is critical, as these areas are often used to site wind farms
due to their highwind potential. Traditional predictionmodels often
fail to capture the nuanced interactions between wind and terrain
(Bird et al., 2013; Hanifi et al., 2020).

As the demands on wind energy forecasting continue to
grow, there is an urgent need for more advanced and accurate
methods.While historical data and physicalmodelling have been the
traditional basis for wind power prediction, the intricacies of wind
behaviour in complex terrain require sophisticated computational
techniques. In addition, to improve techniques, it is crucial to
identify and understand the key factors that affect wind power
forecasts. By identifying influential meteorological or geographical
features, we can develop fine-tuned models that offer superior
accuracy. This study uses a convolutional neural network (CNN)
to predict wind power in areas with complex terrain. The aim is to
address the unique challenges posed by these conditions and also to
understand the factors that influence these predictions, in particular
the relationship between terrain and wind dynamics.

2 Literature review

The study of wind power forecasting encompasses a wide
range of methods, from classic time series analysis to cutting-edge
machine learning strategies. Traditional techniques, in particular
ARIMA, Exponential Smoothing and Vector Autoregression, have
proven to be adept at adapting to the intricacies of complex terrain
through their ability to capture the nuanced interplay between
topography and wind flow. However, these methods have their
limitations, particularly when it comes to accommodating a wide
range of input variables and complex interdependencies between
them (Chen et al., 2009).

Machine learning techniques have emerged in the field of wind
energy forecasting and have been recognised for their ability to
successfully deal with the complexity and non-linearities inherent
in wind data (Wang et al., 2011; Giebel and Kariniotakis, 2017;
Sideratos and Hatziargyriou, 2020; Tawn and Browell, 2022). From
artificial neural networks to decision trees, support vector machines
and advanced deep learning frameworks, these methods are
redefining the benchmarks of forecast accuracy, especially in short-
term forecast models. The advent of big data and cloud computing
has further accelerated the adoption of advanced models, including
convolutional and recurrent neural networks, leading to significant
advances in regional wind power forecasting methodologies.

Several innovative techniques aimed at refining wind power
forecasts have been presented in the literature. In (Ozkan and
Karagoz, 2019), a data mining based strategy, known as the Regional
Statistical Hybrid Wind Power Forecast Technique, is detailed
for providing regional forecasts (Pinson et al., 2003). Presents
a dynamic fuzzy neural network designed to improve forecast
accuracy. In (Basu et al., 2020), a hybrid neural network model
is developed that combines the capabilities of convolutional and
multilayer perceptron networks for day-ahead forecasting.The study

in (Dong et al., 2021) addresses the challenges of sparse data with a
comprehensive approach, incorporating data correction and error
analysis into a hybrid neural network to improve forecast accuracy.
Furthermore, (Wood, 2022), presents amethodology that uses trend
decomposition along with machine and deep learning for short-
term wind capacity factor forecasting. Finally, (Yu et al., 2021),
demonstrates the use of deep quantile regression for probabilistic
forecasting, providing a robust method for dealing with forecast
uncertainty. Deep learning has also been applied to wind speed
forecasting, where the ability to predict and understand wind
patterns is critical to the efficient operation of wind farms. In
their seminal work, Wu et al. (2022a) presented an interpretable
model for wind speed prediction using multivariate time series and
temporal fusion transformers. This model is notable for its ability
to process complex time-dependent data and provide insight into
the temporal dynamics of wind speed, offering a significant advance
over traditional methods. Similarly, Neshat et al. (2021) introduced
a deep learning-based evolutionary model tailored for short-term
wind speed forecasting at the Lillgrund offshore wind farm. Their
approach combined the predictive power of deep neural networks
with evolutionary algorithms to optimise the model’s performance,
demonstrating a case studywhere deep learningmodels significantly
improved the accuracy of wind speed predictions. These studies are
part of a growing body of literature confirming the superiority of
deep learning methods in predicting wind speed, especially when
compared to classical statistical models. For example, a study by
Zhang et al. (2019) used a deep learning framework to analyse wind
turbine data and achieved remarkable success in predicting wind
speed, thereby optimising turbine performance. Furthermore, a
study by Lei et al. (2009) explored the application of convolutional
neural networks to predict wind speeds, which not only improved
prediction accuracy but also provided a better understanding of the
spatial features relevant to wind speed variations.

Despite their effectiveness, simple ANN-based forecasting
methods can struggle in complex terrain (Castellani et al., 2016;
Clifton et al., 2022). Recent studies have highlighted the potential
of deep learning to address these challenges. Toumelin et al. (2023)
presented “DEVINE,” which uses CNNs to downscale weather
forecasts with high-resolution topographic data, and demonstrated
significant improvements in wind speed bias in complex terrain.
Shin et al. (2023) emphasised the importance of spatio-temporal
data for improving CNN forecasts, while Maldonado-Correa et al.
(2021) and Eikeland et al. (2022) validated the effectiveness of
hybrid models and the inclusion of historical weather data for
probabilistic forecasting in difficult terrain. However, the use
of ANNs has presented a paradoxical challenge. Although their
performance exceeds that of traditional algorithms, the “black box”
nature of their decision-making processes has attracted criticism
(Montavon et al., 2017). The opacity of neural networks makes it
difficult to discern the logic behind their accurate classifications and
predictions, a significant problem in critical applications. To counter
this, interpretive techniques such as DeepSHAP have emerged to
provide a window into neural computation (Lundberg and Lee,
2017). DeepSHAP elucidates the influence of input features on
model outputs, providing a level of transparency that enhances
the interpretability of deep learning models (Doshi-Velez and
Kim, 2017; Chen et al., 2018), thereby fostering confidence in their
predictive capabilities.
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3 Methodology

In this study, a methodology that evaluates terrain complexity
metrics is developed for the region where wind power generation
is expected. In conjunction with this, the DeepSHAP technique is
applied to a CNN model to derive normalised importance values
for the input features. These values are then compared to the terrain
complexity matrices of the designated area. The primary goal is to
integrate these methods to identify essential input features for wind
power prediction and to discard redundant data from the input
domain.

3.1 Convolutional neural networks

CNNs have reshaped the field of machine learning, particularly
in tasks related to image and spatial data processing. Originally
developed as a computational model for vision, CNNs are
specifically designed to recognise and extract hierarchical patterns
from structured, grid-like data (Alzubaidi et al., 2021). This makes
them an ideal candidate for processing spatial data, such as
images, where pixel relationships are essential, or, more relevant,
weather grids, where spatial correlations between meteorological
factors play a key role in forecasting. The cornerstone of CNNs
lies in their ability to use convolutional layers to scan the
input data with filters that detect local patterns. These patterns,
initially simple in the early layers (such as edges or textures
in images), become increasingly abstract and complex as the
data progresses through deeper layers. This hierarchical pattern
recognition is particularly useful for weather grids, where local
interactions between variables such as temperature, pressure,
and wind speed can lead to larger regional phenomena. In
essence, CNNs can automatically and adaptively learn spatial
hierarchies from the data, eliminating the need for manual feature
engineering.

For the task of forecastingwind power generation, a simpleCNN
architecture is used that is suitable for handling the complexities
of numerical weather predictions (Wang et al., 2022). The model
consists of the following layers:

• Input layer: Accepts numerical weather predictions grids
with dimensions representing spatial coordinates (latitude,
longitude) and depth indicating various meteorological
variables (e.g., wind speed, wind direction).
• Convolutional layers: Multiple layers are used, each with a set

of filters to extract relevant features from the input data. The
ReLU (Rectified Linear Unit) is used as the activation function
to introduce nonlinearity.
• Pooling layers: Interspersed with the convolutional layers, these

layers downsample the spatial dimensions, preserving essential
information while reducing the computational burden. In this
work,max-poolingwas used, which retains themaximumvalue
from each local region.
• Fully connected layers: Following the convolutional and

pooling layers, one or more fully connected layers interpret the
extracted features and drive the prediction mechanism.
• Output layer: Provides the wind power generation prediction

for the region of interest.

Based on these characteristics, CNNs fundamentally revolve around
a sequence of mathematical operations for processing spatial data,
as presented in Eqs (1–9).

1. Convolution operation: Given an input matrix I (representing
a small section of our spatial data) and a filter matrix F, the
convolution operation is defined as follows:

(I⋆ F) (r,z) =
∞

∑
i=−∞

∞

∑
j=−∞

I (i, j) ⋅ F (r− i,z− j) (1)

For most applications, I and F are 2D matrices, and the convolution
operates throughout the spatial extent of I.

2. Activation function: Post-convolution, an activation function is
applied element-wise to introduce nonlinearity. One of the most
popular is the Rectified Linear Unit (ReLU):

ReLU (x) =max (0,x) (2)

3. Pooling operation: Pooling layers reduce the spatial dimensions
of the feature maps. For example, the max-pooling operation is
defined as:

MaxPool (I) (r,z) =max (I {i, j}∀i, j ∈ [r, r+W] ,

j ∈ [z,z+H]) (3)

where W and H are the width and height of the pooling window,
respectively.

4. Fully Connected Layers: In these layers, neurons are densely
connected. Given an input vector X, weights A, and biases b, the
output Y for a fully connected layer is:

Y = A ⋅X+ b (4)

Integrating these mathematical formulations, a CNN processes
spatial data through convolution and pooling operations, introduces
non-linearity through activation functions, and uses fully connected
layers for final predictions, all while minimising a specified
regression loss function. Batch normalisation and dropout
techniques have also been incorporated into the architecture
to ensure model stability and prevent overfitting. The general
architecture of the proposed CNN model is shown in Figure 1. The
convolution and pooling layers contained 16 filters with a kernel
size of 3 in all dimensions, and the fully connected layers contained
100 nodes each. The model was trained using the Adam optimiser
(learning rate = 0.01) with amean squared error loss function, which
is particularly suitable for regression tasks.

3.2 DeepSHAP

3.2.1 Explainable AI in general
As deep learning models become increasingly sophisticated,

their predictions can often be hard to interpret, earning
them the moniker “black-box” models. In critical applications,
such as medical imaging, power system operation or finance,
understanding the reasoning behind these predictions is crucial.
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FIGURE 1
Architecture of the proposed CNN model.

This need for interpretability has led to Explainable AI (XAI),
an interdisciplinary field that aims to make AI decision making
transparent, interpretable and trustworthy (Arrieta et al., 2020).
One prominent method in XAI is the concept of Shapley values,
which originated from cooperative game theory. Imagine a group
of workers working on a project. The Shapley value determines how
much each worker contributed to the project success, considering
all possible collaborations. In the context of machine learning, each
“worker” is a feature and the “project’s success” is the prediction.
The Shapley value for a feature is then computed on the basis
of its marginal contribution across all possible combinations
of features. Mathematically, the Shapley value for a feature i is
defined as

ϕi ( f) = ∑
S⊆N\i

|S|! (|N| − |S| − 1)!
|N|!

[ f (S∪ i) − f (S)] (5)

where f is the prediction function, N is the set of all features, and
S is a subset of N without feature i. However, computing Shapley
values can be computationally demanding, especially for DNN
with numerous input features (Castro et al., 2009). Here DeepSHAP
offers an efficient approximation by using a process analogous to
backpropagation (Goodfellow et al., 2016).

3.2.2 DeepSHAP propagation in neural networks
DeepSHAP aims to approximate Shapley values for DNN,

particularly feedforward neural networks. It does so by
redistributing the Shapley values from the output through the
network to the inputs (Lundberg and Lee, 2017). This backward
pass redistributes the importance or contributions of the output
rather than gradients. When attributing the contribution of neuron
activations to their respective inputs, the activation of one neuron
and the weight of the connection to the next must be accounted for.
Mathematically:

ϕi→j =∑
k
ϕj→k ×

ai ×wi,k

∑
l
al ×wl,k

(6)

where ϕi→j is the Shapley value of neuron i contributing to neuron j,
ϕj→k is the Shapley value of neuron j contributing to neuron k, ai is the
activation of neuron i,wi,k is the synaptic weight connecting neurons
i and j, k an index referring to neurons that neuron j contributes to
and l an index for summation, referring to all neurons that are inputs
to neuron k.

Convolutional layers, prevalent in deep learning models for
image processing, introduce an additional layer of complexity due
to shared weights across spatial dimensions. Therefore, DeepSHAP
must account for spatial relationships when redistributing
contributions. For a specific convolutional filter applied across an
input feature map, the contribution of a particular input pixel to an
output pixel depends on the filter’s weights and the relative position
of the pixels. This relationship is described by:

ϕinputr,z =∑
i,j
ϕoutputi,j ×

Ir,z × Fi−r,j−z
∑

p,q
Ip,q × Fi−p,j−q

(7)

where ϕinputr,z is the Shapley value for the pixel at position (r,z) in the
input featuremap, ϕoutputi,j is the Shapley value for the pixel at position
(i, j) in the output feature map, Ir,z is the pixel value at position (r,z)
in the input feature map, Fi−r,j−z is the weight of the convolutional
filter at the relative position to the input pixel, i and j are indices
referring to positions in the output feature map, p and q are indices
for summation, referring to all positions in the input feature map
that contribute to a specific output position.

DeepSHAP’s treatment of convolutional layers provides a
detailed perspective into which patterns or regions in input feature
maps are pivotal for the model’s decision, considering not just the
importance of a feature but its spatial context in the decision-making
process.

3.3 Terrain complexity metrics

The complexity of a terrain can significantly influence the
environmental and atmospheric dynamics, especially wind patterns.
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Several metrics have been developed to quantify different aspects
of this complexity. Understanding these metrics is crucial when
integrating them with advanced machine learning techniques, such
asDeepSHAP, to decipher the intricate interplay between terrain and
wind dynamics. The importance of these terrain metrics in various
environmental processes has been highlighted by several studies
(Stock and Dietrich, 2006; Wu et al., 2022b).

• Topographic Ruggedness Index (TRI): This index measures
roughness based on elevation variances between a cell and
its neighboring cells (Riley et al., 1999). Mathematically, it’s
expressed as:

TRI = √
n

∑
i=1
(ai − amean)

2 (8)

where ai denotes the elevation of cell i, and amean represents the
mean elevation of all adjacent cells. The value of n corresponds to
the number of cells considered.

• Standard Deviation of Elevation (SDE): A rudimentary metric,
it calculates the standard deviation of elevation values within a
specified area (Jenny and Hurni, 2011), symbolised as:

SDE = √ 1
N

N

∑
i=1
(ai − μ)

2 (9)

where ai is each elevation value, N is the total number of values and
μ is the mean elevation.

In the context of wind power prediction using CNN and
DeepSHAP, these terrain complexity metrics play a key role.
DeepSHAPdetermines the importance of each feature by calculating
the Shapley values from the output to the input layer. For spatial
datasets, such as numerical weather predictions, this reveals which
regions or patterns are critical to the model’s decision. Comparing
DeepSHAP’s feature importance values with terrain complexity
indices can be revealing. For example, areas identified as high
importance by DeepSHAP, when overlaid with regions with high
TRI or SDE values, could indicate the importance of rugged

terrain in influencing wind power predictions. In essence, if a
complex terrain metric closely matches DeepSHAP importance
values in a region, it suggests that terrain complexity is a dominant
factor in model decisions in that area. Such an investigation
provides an empirical way to understand how terrain undulations
and complexity affect wind predictability and variability. As a
result, prediction models can be refined to ensure that they
are better suited to the unique challenges posed by different
terrains.

4 Case studies

Exploring the complexities of predicting wind power generation
requires an in-depth understanding of the complex interaction
between atmospheric conditions and different terrain features. In
this context, the selection of Greece, Bulgaria and Romania as
our case studies provides a unique opportunity. These countries,
each with their own topographical characteristics, provide a diverse
landscape for our investigation. Greece’s landscape is a mixture of
ruggedmainland terrain, numerous islands and extensive coastlines.
Bulgaria, on the other hand, offers a mix of mountainous regions
and flat plains, while Romania’s topography is characterised by the
Carpathian Mountains, rolling hills and vast plains. This diversity in
the geography of these countries allows for a more comprehensive
analysis and helps us to understand regional differences in wind
power generation.

Recognising that topographic complexity is shaped by a range
of factors beyond simply elevation, a comprehensive set of metrics is
employed.These include elevationmaps, which capture the variation
in elevation from coastlines tomountain peaks in all three countries.
In addition, metrics such as the TRI and SDE are used to quantify
the ruggedness and heterogeneity of each terrain. Shifting focus,
the second analysis evaluates the capabilities of a CNN trained on
numerical weather predictions and regional wind power generation
measurements for Greece, Bulgaria and Romania, as shown in
Table 1.The primary objective of this training is to accurately predict
regional wind power generation. The input features for each case
study consist of wind speed and direction forecasts at a height
of 10 m, obtained from the Global Forecast System (GFS). These
forecasts are structured in a 3D grid format, where the first two

TABLE 1 Case study information.

Case Greece Bulgaria Romania

Input features Wind speed (10 m), Wind direction (10 m) Wind speed (10 m), Wind direction (10 m) Wind speed (10 m), Wind direction (10 m)

Forecasting horizon (hours) 24 24 24

Time step (hours) 1 1 1

Dataset ENTSO-e/GFS ENTSO-e/GFS ENTSO-e/GFS

Training period 01/01/2019–31/12/2019 01/01/2019–31/12/2019 01/01/2019–31/12/2019

Testing period 01/01/2020–31/12/2020 01/01/2020–31/12/2020 01/01/2020–31/12/2020
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dimensions represent the geographical coordinates (latitude and
longitude) covering the respective region, and the third dimension
contains the wind speed and direction forecasts. This 3D grid
is essentially an image-like array that the CNN interprets in a
similar way to a visual image. During the training phase, this
3D grid is fed into the CNN, allowing the model to learn the
spatial and temporal patterns of wind behaviour in the different
terrains of the three countries. The model is trained to recognise
how these patterns correlate with actual wind power generation,
a crucial step in making accurate predictions. The output data for
the model comes from the ENTSO-e platform, which provides
actual measurements of the wind power generated in each region.
This output is normalised by the installed capacity in each area to
standardise the data and ensure that the model’s predictions are
proportionate and comparable across different regionswith different
capacities.

However, achieving high prediction accuracy is only one aspect
of the objective; it is equally important to understand which
input features the model considers critical for its predictions.
To this end, we use DeepSHAP to generate Feature Importance
Factors (FIV). This technique provides insight into which aspects
of numerical weather prediction have the most influence on
the model’s prediction process. The third analysis attempts to
combine the results of the previous two analyses. The feature
importance matrices produced by DeepSHAP are compared with
the terrain complexity matrices for each country. This comparison
will highlight the extent to which terrain complexity affects
the importance of different input variables in the prediction
model. Such an integrative approach allows us to draw more
holistic conclusions about the interaction between terrain
complexity and wind energy production in different geographical
landscapes.

5 Results

5.1 Terrain complexity

The analysis of terrain complexity in Greece, Bulgaria and
Romania is visually summarised in Figure 2 (Greece), 3 (Bulgaria)
and 4 (Romania). The left sub-figures display the elevations
map of each country. The middle sub-figures display the TRI,
highlighting areas of significant topographic variability. Finally,
the right sub-figures display the SDE of each country, which
provides a quantitative perspective on elevation variability within
each region shown. These visual representations serve as a
foundation for understanding the complicated relationship between
terrain complexity and wind energy prediction in these different
geographical areas.

In Greece (Figure 2), the elevation map shows a high contrast
between high mountain peaks and sea level, indicative of the
mountainous regions of the country and the extensive coastline.The
TRI highlights the regions of Greece that are particularly variable
in topography, which is likely to have a significant impact on wind
flow patterns. The SDE further quantifies these variations, painting
a picture of the ruggedness of the terrain. Moving to Bulgaria
(Figure 3), the elevation map shows a mixture of flat plains and
mountain areas, the TRI highlighting the variability of the Balkan
Mountains. The SDE for Bulgaria reflects a more uniform landscape
in the plains, with pockets of complexity in the mountainous areas,
which could indicate localised areas of more unpredictable wind
behaviour. Finally, Romania’s landscape (Figure 4) is captured by
an elevation map that outlines the extensive Carpathian mountain
range as well as the lower elevation regions. The TRI highlights the
complexity of the Carpathians, which may correlate with areas of
complex wind patterns.The SDEmap confirms this complexity, with

FIGURE 2
Elevation and terrain complexity metrics over the extended area of Greece.

FIGURE 3
Elevation and terrain complexity metrics over the extended area of Bulgaria.
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FIGURE 4
Elevation and terrain complexity metrics over the extended area of Romania.

variability in elevation that can affect both micro- and macro-scale
wind flows.

5.2 Feature importance analysis

In this analysis, we examine the influence of terrain complexity
on wind power prediction by analysing the normalised FIV for
Greece, Bulgaria and Romania. Figures 5, 6 show a comparison
of these values for wind speed and wind direction predictions in
relation to the topographic metrics of each country. In the case
of Greece (Figure 5, left), the FIV of the elevation map shows
a higher importance in coastal areas and a lower importance in
the mountainous regions. This suggests that while the highlands
contribute to wind variability, it is the coastal areas where
consistent wind patterns dominate the model’s focus, possibly
due to the unobstructed flow of sea breezes that are crucial for
wind power generation. The TRI visualisation further supports
this by showing less importance in regions with high topographic
variability, suggesting that CNN may find it difficult to predict
wind patterns where the terrain is most rugged. For wind direction
(Figure 6, left), the FIV is particularly significant along the sea
coast, highlighting the importance of offshore influences on the
wind pattern for both the mainland and the islands. In the case
of Bulgaria (Figure 5, middle), the FIV for wind speed suggests
that the model assigns different degrees of importance across
the country, reflecting Bulgaria’s combination of flat terrain and
mountainous areas. Areas of significant FIV align with regions of
lower topographic complexity, suggesting that in Bulgaria, unlike
Greece, the simpler terrain of the interior may provide more reliable
wind conditions for power generation. The values of the importance
of the wind direction (Figure 6, middle) show a scattered pattern,
suggesting that the impact of wind direction on power forecasting
is influenced by the combination of the Balkan Mountains and
the surrounding plains. The Romanian analysis (Figure 5, right)
shows a clear distribution of FIV across the Carpathians and
the vast plains. The model places less emphasis on wind speed
predictions in the highly complex Carpathian region, possibly due
to the unpredictability of wind behaviour in such terrain. On the
contrary, the plains, with their more predictable wind patterns,
receive higher FIV scores. For wind direction (Figure 6, right),
the FIV is noticeably concentrated in areas that serve as natural
wind corridors, suggesting that certain flat and valley regions
are key to the prediction process of the prediction model. It is
clear that while complex terrain can introduce forecast variability,

consistent and predictable wind patterns, particularly in maritime
regions, are critical in shaping the focus of the forecast model.
This underscores the importance of considering both land- and
sea-based influences in the development of accurate wind power
forecasts.

5.3 Forecasting performance

Using the knowledge from the feature importance and terrain
complexity analysis, the proposed work is focussing on the
refinement of the input data by emphasising areas of significance
while filtering out potential noise can significantly enhance amodel’s
performance. In our efforts to optimise the input for a CNN model,
we systematically investigated three approaches. Each method
contains its own unique philosophy, based on computational
insights derived from the model or observations of the landscape.
The basic goal remained the same: to mask out inputs that help the
model deliver accurate wind power forecasts. The following sections
clarify these three correspondences and the rationale behind their
design.

5.3.1 Approach 1: feature selection based on FIV
using DeepSHAP

To improve the predictive accuracy of our CNN model for wind
power forecasting, our first approach exploits the strategic use of
FIV as determined by DeepSHAP. This method is based on the
premise that not all regions within the input data contribute equally
to the model’s predictions. In particular, regions with low FIVs,
as identified by DeepSHAP, are considered to have a minimal or
even detrimental effect on prediction accuracy. These regions could
represent noise or irrelevant information that could potentially
bias the model performance (Lundberg and Lee, 2017; Molnar,
2020). To implement this approach, we applied a selective filtering
process to the training data on the key weather variables: wind
speed and wind direction. For each of these variables, we examined
the normalised FIV values across the input grid. Areas where the
FIV was below a threshold of 0.2 were considered to be of low
importance. To mitigate their influence, we set the values in these
areas to a placeholder or dummy value of −1. This value acts as a
signal to the model, effectively “masking” these regions during the
training process. The motivation for this decision is twofold. Firstly,
by reducing the influence of less important regions, we reduce the
likelihood of the model being misled by noise or irrelevant data
points. Secondly, and more importantly, this approach sharpens
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FIGURE 5
Display of Normalised feature importance values of wind speed predictions over the ruggedness metrics’ maps of all case studies (Left: Greece, Middle:
Bulgaria, Right: Romania).

FIGURE 6
Display of Normalised feature importance values of wind direction predictions over the ruggedness metrics’ maps of all case studies (Left: Greece,
Middle: Bulgaria, Right: Romania).

the model’s focus on higher FIV regions, which are theoretically
more important in determining accurate wind power forecasts.
This method is consistent with the strategies adopted in recent
studies where researchers have successfully used feature selection
techniques based on importance values to streamlinemodel training
and improve overall accuracy.

5.3.2 Approach 2: data filtering based on terrain
complexity

The second approach focuses on the dynamic relationship
between terrain complexity and wind behaviour, an aspect less
emphasised in traditional models. Instead of relying exclusively on

FIV, this method integrates SDE as a key metric to assess terrain
complexity. This approach is based on the hypothesis that regions
with less rugged terrain, as indicated by a lower SDE, are likely to
havemore predictable and consistentwindprofiles. In contrast, areas
with a higher SDE, indicating greater ruggedness, may contribute to
the unpredictability of wind patterns. To incorporate this terrain-
based information into our CNN model, we manipulated the input
training data for both wind speed and wind direction. Specifically,
regions with an SDE value greater than 400 m were assigned a
dummy value of −1. This threshold of 400 m, determined based on
the average SDE in each region under study as shown in Figure 2,
serves as an arbitrary yet strategic boundary to differentiate between
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areas of low and high terrain complexity. By applying this filter,
we aim to sharpen the focus of the model, allowing it to focus
on regions where terrain complexity is less likely to distort wind
patterns. By selectively masking regions with high SDE values, we
potentially enhance the ability of the model to recognise and adapt
to the varying effects of terrain complexity on wind dynamics.

5.3.3 Approach 3: integrating FIV and terrain
complexity for improved data filtering

Approach 3 represents a synergistic integration of the first two
methods, merging the model-driven insights derived from FIV with
the empirical understanding of terrain complexity as indicated by
SDE. This approach is based on the premise that a more robust
and accurate forecast model can be achieved through a more
sophisticated data filtering process that takes into account both the
learned patterns of the model and the physical characteristics of
the terrain. In practice, this integrated approach involves a two-
step filtering mechanism applied to the input training data. First,
for each weather variable—wind speed and wind direction—the
regions where the normalised FIV falls below the threshold of
0.2 are identified. The values in these regions are then set to −1,
effectively “masking” them in the training data set. This step is
based on the principle that regions with low FIV contribute less
to the model’s predictive accuracy and may even act as noise,
affecting the model’s performance. Following the initial FIV-based
filtering, the approach further incorporates considerations of terrain
complexity. Areas where the SDE exceeds a predefined threshold of
400 m are also assigned a value of −1. This threshold was chosen
to distinguish regions with significant terrain variation from those
with more uniform topographic features. The choice of 400 m
as a threshold is strategic, as it aims to filter out regions where
complex terrain could introduce unpredictability in wind patterns,
potentially complicating the forecasting task. By combining these
two filtering criteria, Approach 3 creates a training dataset that is
both selective and strategic. It emphasises regions that are not only
considered important by the model (as per high FIV), but also those
with less complex terrain (as per low SDE), and thus potentially
more predictable in terms of wind behaviour. This refined dataset
is expected to guide the CNN model to focus on the most relevant
and reliable features for wind power prediction, thereby improving
its overall prediction accuracy.

5.3.4 Evaluation results
To objectively assess the efficacy of the three data preprocessing

approaches, a set of reliable evaluationmetrics was used.Normalised
mean absolute error (NMAE) and normalised mean squared error
(NMSE) were used to gain an understanding of the average
magnitude of errors and the model prediction accuracy (Willmott
and Matsuura, 2005; Chai and Draxler, 2014). The NMAE indicates
the average absolute discrepancy, while the NMSE magnifies the
effect of larger errors, thus providing an indication of the model’s
forecast reliability (Hyndman and Koehler, 2006). Additionally, the
standard deviation was calculated to measure the variability or
spread of prediction errors and to assess the consistency of the
model’s forecasting ability. The bias was also calculated to identify
any systematic overprediction or underprediction tendencies in
the model. To compare the performance of the three approaches,
metrics were calculated and compared to a baseline scenario, where

the input training data was not masked. Through this comparative
analysis, our objective is to determine the added value, if any, of the
data preprocessing steps.

6 Discussion

The comparative analysis of data processing approaches in
Greece, Bulgaria and Romania, as shown in Tables 2–4, provides
a detailed evaluation of their impact on CNN-based wind power
forecasting.

In Greece (Table 2), the baseline approach sets the standard
for comparison, with an NMAE of 4.26% and an NMSE of
0.18%. The bias and standard deviation provide information on
the average prediction error of the model and its variability.
After implementing Approach 1, which incorporates FIV-based
data filtering, a reduction in all metrics is observed, indicating
improved accuracy and model stability. Approach 2, which focusses
on terrain complexity, yields improvements but falls short of the
gains made by Approach 1, suggesting the dominance of FIV-
driven regions in influencing wind pattern predictions. However,
Approach 3, which combines both FIV and terrain complexity
considerations, outperforms the individual approaches, achieving
the lowest NMAE, NMSE, bias and standard deviation, thereby
demonstrating superior forecast performance and reliability. For
Bulgaria (Table 3), the baseline metrics are higher compared to
Greece, indicating a greater initial error in the predictions. The
adaptation of Approach 1 again proves to be beneficial, as evidenced
by the lower NMAE and NMSE. Interestingly, Approach 2 leads
to an increase in NMSE despite a reduction in other metrics,
suggesting a complex interaction between the features and the
terrain. However, Approach 3 emerges as the most effective,
significantly reducing all metrics, highlighting the value of a hybrid
approach that uses both model-driven and empirical data insights.
The results for Romania (Table 4) show the highest baseline NMAE
and NMSE of the three countries, highlighting initial challenges in
the forecasting model due to possibly more complex wind patterns
or varied terrain. Approach 1 and Approach 2 show improvements,
but Approach 2 shows a negative NMSE value that may require
further investigation to understand anomalous model behaviour.
Approach 3 demonstrates its robustness by significantly improving
the accuracy and consistency of the forecast, as indicated by
significant reductions in all metrics.

The results of the analysis from Greece, Bulgaria and Romania
clearly indicate that a hybrid approach combining both FIV and
terrain complexity metrics consistently improves CNN-based wind
power prediction. This combined strategy, as shown by the data
in Tables 2–4, consistently outperforms the individual use of either
FIV or terrain complexity metrics alone. The singular use of FIV-
based data filtering (Approach 1) while beneficial in reducing error
metrics such as NMAE andNMSE,may not fully capture the diverse
influence of complex terrain onwind patterns. Similarly, Approach 2
by focusing exclusively on terrain complexity provides a limited view
and occasionally leads to inconsistent results, such as the unexpected
increase in NMSE for Bulgaria. It is the fusion of both approaches
that provides a comprehensive understanding, integrating the data-
driven insights of FIV with the empirical knowledge of terrain
effects. This dual strategy exploits the strengths of both approaches:
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TABLE 2 Case study: Greece—evaluation results for the three approaches.

Approach NMAE (%) NMSE (%) Bias (%) Standard deviation (%)

Baseline (No Masking) 4.26 0.18 0.38 2.16

Approach 1 (FIV-based) 3.86 0.15 0.32 1.91

Approach 2 (Terrain Complexity) 3.94 0.16 0.35 1.84

Approach 3 (Combined) 3.65 0.14 0.28 1.63

TABLE 3 Case study: Bulgaria—evaluation results for the three approaches.

Approach NMAE (%) NMSE (%) Bias (%) Standard deviation (%)

Baseline (No Masking) 5.31 0.23 −0.15 2.46

Approach 1 (FIV-based) 4.67 0.18 0.23 2.20

Approach 2 (Terrain Complexity) 4.74 0.30 0.35 2.24

Approach 3 (Combined) 4.02 0.16 0.16 1.85

TABLE 4 Case study: Romania—evaluation results for the three approaches.

Approach NMAE (%) NMSE (%) Bias (%) Standard deviation (%)

Baseline (No Masking) 7.65 0.34 0.34 2.83

Approach 1 (FIV-based) 6.89 0.28 0.31 2.67

Approach 2 (Terrain Complexity) 6.56 −0.25 0.35 2.54

Approach 3 (Combined) 5.74 0.20 −0.16 2.12

FIV’s ability to identify predictive regions within the data, and the
complexity of the terrain, which reflects the geographical influence
on wind behaviour. The superior performance of Approach 3 in
all three countries underlines the synergy achieved by combining
these methods. It fine-tunes the forecast model to account for
the unique geographical characteristics of each region, resulting
in more accurate, reliable and interpretable wind power forecasts.
The consistent improvement across all metrics with this combined
approach confirms its effectiveness and demonstrates the value of
integrating different data processingmethods to improve forecasting
capability in complex, real-world applications.

7 Conclusion

This research conducted a comprehensive study of the
interaction between terrain complexity and feature importance
values derived from deep learning models, with a particular focus
on their collective impact onwind power predictions. Convolutional
Neural Networks using numerical weather prediction were used to
extract the intricate correlations influencing wind power generation
in Greece, Bulgaria and Romania. The research used metrics such
as Standard Deviation of Elevation and Terrain Ruggedness Index,

which showed a discernible effect on wind behaviour across the
diverse landscapes of these countries. The feature importance
analysis, facilitated by the DeepSHAP methodology, identified
critical areas within each country that had a significant impact
on the forecasting process. A consistent pattern emerged from
the analysis; regions with pronounced rugged terrain, particularly
inland, generally showed reduced importance. In contrast, maritime
regions emerged as a significant contributor to wind dynamics,
underlying the importance of coastal and marine areas in the
forecast models. The study tested three data filtering approaches
to improve forecast accuracy: one based on FIV, another based
on terrain complexity, and a third that combined both sets of
approaches. Across all case studies, the combined method proved
superior, consistently outperforming the others by providing the
most accurate forecasts, minimising errors and reducing variability
of results. This method effectively combines the data-driven focus
of FIV with the empirical knowledge of the field, providing a robust
framework for forecasting. In general, this research highlights the
value of integrating terrain characteristics with deep learning-
derived algorithmic predictions. By adopting such an integrated
approach, the potential for optimising wind energy forecasting is
greatly enhanced, offering a way to improve the sustainability of
energy resources in regions characterised by complex terrain.
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