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With the integration of large-scale nonlinear loads and distributed power sources
into the grid, composite power quality disturbances (PQDs) events are becoming
increasingly common, which significantly degrade the quality of power supply.
Therefore, this paper focuses on studying the accurate classification of composite
PQDs to mitigate the risk of power quality deterioration. However, traditional
classification methods perform barely satisfactory in terms of accuracy and
robustness in the classification of PQDs. To address these issues, this paper
proposes a method for recognizing composite PQDs based on relative
position matrix (RPM). Initially, utilizing the RPM method, the initial one-
dimensional PQD time series data is transformed into two-dimensional image
data while preserving its high-frequency characteristics. This process results in the
creation of an informative and feature-rich image training set. Subsequently, an
end-to-end framework for PQDs classification was developed. The framework
utilizes convolutional neural networks to automatically extract multi-scale spatial
and temporal features from image data. This design aims to automate the
classification of composite PQDs, eliminating the need for labor-intensive
manual signal processing and feature extraction. This integration ensures a
more accurate and robust classification. Finally, the proposed method is tested
on a case involving 30 types of PQDs at varying noise levels and compared with
existing power quality disturbance classification methods, and results show that
the proposed method has better performance than the previously established
methods.
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1 Introduction

Power quality issues encompass voltage and current waveform distortions, instability,
and other anomalies in the electrical system, all of which have adverse effects on the normal
operation of the power system and the performance of electrical equipment (Xu et al., 2019;
Sahu et al., 2020). In the context of the evolving energy landscape, the widespread integration
of distributed resources, and the extensive utilization of power electronic devices, power
quality issues have gained increasing prominence. These issues may lead to power equipment
damage, increased energy consumption, electromagnetic interference, and even power
outages. The impact of power quality issues is particularly significant in sensitive
equipment and critical areas, such as specialized equipment and precision manufacturing
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(Li et al., 2016; Zhang, 2023). As a result, the swift and precise
identification and classification of power quality disturbances
(PQDs) have become essential prerequisites to ensure the safe
and stable operation of modern power systems and to drive the
transition towards low-carbon energy sources (Huang et al., 2021;
Cao et al., 2023).

Traditional signal detection for PQDs typically involves two
independent fundamental steps: the extraction of features from the
disturbance signal and the classification of the disturbance signal
(Wang and Chen, 2019).

The feature extraction of disturbance signals aims to process and
analyze the original PQDs signals to obtain low-dimensional feature
vectors that reflect signal characteristics. Common feature
extraction methods include Short-time Fourier transform (STFT),
Wavelet transform (WT), s-transform, Hilbert-Huang transform
(HHT), and others. These methods decompose and reconstruct
continuous PQDS signals to obtain corresponding discrete time-
domain or frequency-domain features. STFT is one of the most
classical linear time-frequency analysis methods, known for its
advantages of high spectral resolution and fast computation
speed. However, it lacks local specificity in both the time and
frequency domains, is sensitive to signal length and window
selection, and can easily lead to issues such as spectral leakage
and inadequate accuracy (Shukla et al., 2009). In contrast, WT
overcomes the drawbacks of STFT, offering multi-time-scale
analysis capabilities, simultaneous extraction of time and
frequency domain features, and excellent time-frequency
resolution, making it suitable for the analysis of steady-state
disturbance signals (Shukla et al., 2009). Nevertheless, WT has its
challenges, as it is sensitive to signal length and window selection,
which can result in higher computational complexity (Thirumala
et al., 2015; Thirumala et al., 2018). Another approach, the
S-transform, extends and improves upon both WT and STFT. It
employs movable and scalable Gaussian windows for localized signal
analysis and exhibits strong noise resistance. However, it is less
effective in detecting transient disturbances, such as oscillatory
transients and pulse transients (Wang et al., 2021). HHT, on the
other hand, is an adaptive time-frequency analysis method suitable
for non-stationary and transient signal analysis (Wang et al., 2021),
but it suffers from endpoint effects, leading to artifacts or distortion
at the boundaries of signal analysis (Khetarpal and Tripathi, 2020).
Moreover, the traditional feature extraction methods mentioned
above require manual feature set selection, heavily relying on expert
experience, and cannot meet the increasingly complex classification
requirements for PQDs in modern power systems.

The classification of disturbance signals aims to categorize
PQDS signals using the extracted feature vectors. Classification
methods include traditional machine learning algorithms and
deep learning algorithms, such as K-nearest neighbors (Gou
et al., 2019), decision trees (Kotsiantis, 2013), support vector
machines (Tang et al., 2020), neural networks (Cai et al., 2019),
and more. These methods establish mapping relationships between
feature vectors and corresponding classification labels to achieve the
classification of disturbance signals. For example, reference (Zhu
et al., 2019) proposes a hybrid algorithm that combines K-nearest
neighbors with a fully convolutional Siamese network for classifying
power quality disturbances by learning from small samples. In
another approach, reference (Zhong et al., 2018) introduces a

novel PQDs recognition algorithm based on time-frequency (TF)
analysis and a decision tree classifier. In this method, feature
statistics extracted by TF analysis are trained by the decision tree
classifier to enable automatic PQDs classification. However, these
methods require the manual selection of an appropriate classifier
based on the chosen set of disturbance features to achieve the desired
classification accuracy.

To address the challenges mentioned above, this paper proposes
an advanced method that combines the Relative Position Matrix
(RPM) and Convolutional Neural Network (CNN) for the effective
classification of composite Power Quality Disturbances (PQDs). By
integrating RPM and CNN, this method overcomes the limitations
of feature observation and the complexity of operations in
traditional classification methods. The main work of this paper is
summarized as follows.

• Proposing a method based on RPM to transform the original
one-dimensional PQD time series data into two-dimensional
image data. This approach, while preserving the original high-
frequency information, generates an information-rich and
feature-rich image training set. Facilitating the automatic
capture of inherent multi-scale spatial and temporal
features in disturbances, this departure from traditional
signal processing methods represents a crucial step in
achieving the automation of the classification process.

• Propose a comprehensive end-to-end framework for PQD
classification. Utilize a convolutional neural network to
automatically extract multi-scale spatial and temporal
features from image data, eliminating the need for tedious
manual signal processing and feature extraction.

• Extensive simulation results verify the effectiveness of this
method in identifying composite Power Quality Disturbances.
Its performance was systematically evaluated in various noise
environments. By rigorously comparing it with existing
methods, we can conclude that this approach exhibits
superior accuracy and robustness.

The remaining sections of this paper are organized as follows. In
Section 2, the data sources and model framework are discussed. Section
3 provides a detailed presentation of the methodology, followed by the
presentation of experimental results on the dataset in Section 4. Finally,
Section 5 concludes the paper and outlines future work.

2 PQDs identification framework

2.1 Steps for recognizing compound PQDs
classification based on RPM-CNN

The fundamental framework of the composite PQDs
classification and recognition system based on RPM-CNN, as
proposed in this paper, is depicted in Figure 1. It primarily
comprises three steps, which are introduced in the following.

Step 1) Data Preprocessing. In this initial phase, diverse PQDs
are systematically generated through numerical simulations in
batches. Subsequently, the data undergoes RPM-based processing
and is assigned appropriate labels. This approach transforms the raw
time-series data of composite PQDs into two-dimensional image
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data while preserving crucial high-level features, thereby facilitating
deep learning networks in uncovering potential correlated
information within the dataset.

Step 2) Feature Extraction. Given the intricate nature and
stochasticity of PQDs, multiple layers of convolutional kernels
within neural networks are employed to analyze the nuances of
periodic and subtle features present in the data. Subsequently,
these features are mapped to a hidden feature space, thereby
furnishing a more comprehensive depiction of the
spatiotemporal characteristics inherent in the original time-
series data of composite PQDs.

Step 3) Training the Classification Model. In this stage, careful
consideration is given to a range of noise and disturbance
combinations. Utilizing the first two fully connected layers, the
extracted features are merged and abstracted, progressively elevating
low-level features to high-level semantic features. The ultimate fully
connected layer, post-application of the softmax function,
transforms these features into a probability distribution for
classifying distinct categories of PQDs. Furthermore, a validation
set is employed to conduct specialized model validation, ensuring
both its generalization capacity and high-precision recognition
performance.

2.2 Mathematical model of PQDs

To address the challenge of acquiring a substantial amount of data for
the model training process, this study generated training and testing
datasets in accordancewith the IEEE Std 1,159–2019 (Std, 2019) electrical
power quality disturbance standard. These datasets encompass eight
distinct types of single disturbances, comprising voltage sags, voltage
swells, voltage interruptions, voltage fluctuations, harmonics, notches,
oscillations, and pulses, alongside twenty-two types of compound
disturbances. The mathematical model for electrical power quality
disturbances and their corresponding signals are generated using the
aforementionedmethod. Table 1 presents themathematical model, while

Figure 2 displays the waveforms of single electrical power quality
disturbances.

3 Classification method based on
RPM-CNN

3.1 RPM implementation: Process & results

RPM is a technique for transforming raw one-dimensional
time series data into two-dimensional image data (Chen and Shi,
2019). Consider a set of original voltage data V � [v1, v2, . . . ,vn]
with a length of n, where vi represents the voltage amplitude at
timestamp ti. Initially, the original data is normalized using
Z-Score to obtain a standard normal distributionZ � [z1, z2, . . . ,zn].

zi � vi − μ

σ
(1)

Here, μ represents the mean value of the time series data T, and
σ represents its standard deviation.

Next, the piecewise aggregate approximation (PAA) method is
employed to reduce the dimensionality of Z to m. An appropriate
reduction factor k is thoughtfully selected to produce the new
smoothed time series, denoted as X � [x1, x2, . . . ,xm].

xi �

1
k
∑k *i

j�k* i−1( )+1zj, i� 1, 2, . . .m, ⌈n
k
⌉ − ⌊n

k
⌋� 0

1
k
∑k *i

j�k* i−1( )+1zj, i� 1, 2, . . .m−1

1
n − k* m−1( )∑

n

j�k* m−1( )+1zj, i � m

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, ⌈n
k
⌉ − ⌊n

k
⌋> 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, m � ⌈n

k
⌉ (2)

Here, m represents the length of X. In simpler terms, by
computing the average of piecewise constants, the normalized
time series data is reduced from n dimensions to m dimensions.
This achieves dimensionality reduction while preserving the
approximate trends of the original sequence.

FIGURE 1
Framework comparison between the proposed method and traditional methods.
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Next, an m × m matrix, denoted as M, is constructed using
RPM.Within this matrix, relative positions between two timestamps
are computed, and the preprocessed time series X is transformed
into a two-dimensional matrix. Consequently, for each value at
timestamp II, its corresponding position in the two-dimensional
matrix can be determined, thus achieving a two-dimensional spatial
representation of the original time series data. Each value at
timestamp i serves as a reference point for each row in M, with
the transformation equation as follows:

M �
x1 − x1 x2 − x1 / xm − x1

x1 − x2 x2 − x2 / xm − x2

..

.
1 1 ..

.

x1 − xm x2 − xm / xm − xm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

Clearly, M connects each pair of timestamps in the time series,
allowing us to determine their relative positions. Each row and
column of M contains information about the entire time series,
using a specific timestamp as a reference point. One notable
advantage of our approach is that RPM can be seen as a data
augmentation technique, enhancing generalization by introducing
redundant features of the time series. Each row ofM represents the
time series with different reference points, while each column

presents its mirrored counterpart, providing an alternative
perspective for analyzing the time series.

Finally, min-max normalization is applied to transformM into a
grayscale value matrix. The ultimate matrix, denoted as F, is
obtained using the following equations:

F � M −min M( )
max M( ) −min M( )× 255 (4)

Figure 1 illustrates the original time-series data of voltage sag
alongside the image generated by RPM. For further related data,
please consult Figure A1. These images convey valuable information
about the original time series data. For instance, dark areas in the
images represent lower values in the original time series, while light
areas indicate higher values. Solid regions suggest little or slow
changes in the original time series values. The frequency of color
transitions, from dark to bright or vice versa, represents the
waveform of the original time series. Simultaneously, the RPM
offers a reverse perspective for analyzing original time series data
by constructing a matrix in which elements on either side of the
diagonal oppose each other. Therefore, the patterns and features
embedded in the original time series data are better preserved in
these transformed images. This characteristic streamlines

TABLE 1 Classification of power quality disturbances and their mathematical models.

Type Mathematical model Constraint condition

voltage swell y(t) � 1 + α[u(t − t1) − u(t − t2)]{ } sin(2πft) 0.1≤ α≤ 0.8 T≤ t2 − t1 ≤ 10T

voltage sag y(t) � 1 − α[u(t − t1) − u(t − t2)]{ } sin(2πft) 0.1≤ α< 0.9 T≤ t2 − t1 ≤ 10T

voltage interruption y(t) � 1 − α[u(t − t1) − u(t − t2)]{ } sin(2πft) 0.9≤ α≤ 1 T≤ t2 − t1 ≤ 10T

voltage fluctuation y(t) � [1 + α sin(2πβt)] sin(2πft) 0.1≤ α≤ 0.2 5Hz≤ β≤ 20Hz

harmonic y t( ) � sin 2πft( ) + α3 sin 6πft( )+
α5 sin 10πft( ) + α7 sin 14πft( ) 0.05≤ α3 , α5 , α7 ≤ 0.15

voltage notch
y(t) � sin(2πft) − sign[sin(2πft)] × ∑9

n�1
α[u(t − (t1−0.02n)] − α[u(t − (t2−0.02n))]

⎧⎨⎩ ⎫⎬⎭ 0.01T≤ t2 − t1 ≤ 0.05T
0.1≤ α≤ 0.4

voltage oscillation y(t) � sin(2πft) + [u(t − t1) − u(t − t2)] × α−c(t−t1 )/t × sin(2πfnt) 0.1≤ α≤ 0.8 0.5T≤ t2 − t1 ≤ 3T
8ms≤ τ ≤ 40ms 300Hz≤fn ≤ 900Hz

voltage pulse y(t) � 1 + α[u(t − t1) − u(t − t2)]{ } sin(2πft) 1≤ α≤ 3 0.05T≤ t2 − t1 ≤ 0.1T

FIGURE 2
Waveform diagram of a single power quality disturbance.
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subsequent feature extraction tasks. As demonstrated in Figure 3,
the images produced by RPM facilitate easy visual observation and
interpretation of both intra-class and inter-class similarities.
Furthermore, it successfully circumvents the issue of insufficient
feature extraction that arises from directly applying raw time series
data in deep learning.

3.2 Deep learning stages in RPM-CNN

3.2.1 Specific architecture of the CNN
CNN typically consists of several key components, including the

input layer, convolutional layers, pooling layers, activation function
layers, fully connected layers, and output layers. Using convolution
operations, CNN efficiently extracts features from images,
facilitating the stepwise extraction and combination of features.
This approach enables advanced feature extraction and image
classification with high robustness and accuracy.

This paper establishes a neural network for classifying composite
PQDs (Fawaz et al., 2020). The network trains an end-to-end
convolutional neural network for image feature extraction and
classification. The network architecture comprises a total of
7 layers, which include 5 convolutional layers, 1 global average
pooling (GAP) layer, and 1 fully connected (FC) layer. To prevent
the blurring effect associated with average pooling, the network
exclusively utilizes max-pooling. Furthermore, the stride is set
smaller than the size of the pooling kernel, leading to overlap
and coverage between the outputs of pooling layers, thus
enhancing feature richness. Additionally, to mitigate potential
challenges faced by traditional ReLU activation functions, we
employ the LeakyReLU function. This choice effectively addresses
issues like neuron inactivity, gradient explosion, and gradient
vanishing, which might compromise the neural network’s
performance. This activation function exhibits superior

generalization capabilities, more stable gradient propagation, and
faster computational speed.

In the design of the deep CNN network for PQDs, three critical
factors are considered.

(1) The occurrence and duration of PQDs are random, requiring
the DNN to monitor the entire input cycle effectively. This
means the network must analyze the complete time range of the
input signal to promptly detect and handle PQDs events.

(2) PQDs exhibit complex characteristics, and even disturbances of
the same type have significant differences. Thus, the post-
trained network must possess strong generalization
capabilities and robust noise resistance to adapt to real-world
scenarios with various noise levels and PQDs types.

(3) Some disturbances display global periodic characteristics, while
others contain detailed features within local sampling intervals.
Therefore, the network design should effectively capture both
global information and local details to improve PQDs event
identification and differentiation

3.2.2 Strategies for overcoming overfitting
In the deep CNN proposed in this paper, renowned for its robust

feature extraction and classification capabilities, the challenge of
overfitting the training data is frequently encountered. To mitigate
this issue, advanced techniques have been employed in both the
network architecture and training process.

(1) Batch Normalization (BN): BN is an effective technique for
optimizing neural networks. It normalizes the input data for
each layer, mitigating gradient issues andmaking deep networks
more trainable (Ioffe and Szegedy, 2015). This approach reduces
inter-layer coupling, speeds up model training, allows for larger
learning rates, accelerates convergence, and reduces sensitivity
to hyperparameters. It also enhances the model’s generalization

FIGURE 3
RPM transformation process.
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capability, making it more robust to input variations and
improving performance on the test set. Additionally, BN has
a regularizing effect, reducing the reliance on Dropout and
aiding in overfitting prevention. By enabling the use of deeper
networks, Batch Normalization further increases the model’s
representational capacity, enhancing overall performance.

(2) Dynamic Learning Rate and Early Stopping Strategy: The use of
adaptive learning rate adjustment techniques can expedite
convergence, prevent getting stuck in local optima, and
enhance the model’s generalization capability. The early
stopping strategy is applied to monitor the performance of
the validation set, preventing overfitting, improving training
efficiency, and simplifying the model selection process.
Combining these two strategies leads to more efficient
training. Specifically, if the loss value does not decrease for
five consecutive epochs, the learning rate is halved. If the loss
value remains unchanged for ten consecutive epochs, early
termination of training is employed to prevent overfitting.

(3) Global Average Pooling (GAP), as a technique that replaces
Fully Connected layers, notably reduces the number of
parameters and complexity within deep neural networks,
thereby enhancing the model’s generalization capacity (B.
et al., 2016). By applying average pooling across the entire
feature map, GAP adeptly captures the global information of
the image, effectively mitigating the risk of overfitting and

enhancing the model’s spatial invariance to input. This
alternative approach not only reduces computational
expenses but also alleviates potential overfitting concerns,
delivering a more universally applicable solution for deep
learning tasks.

Figure 4 provides a visual representation of the process of feature
extraction and transformation from disturbance samples using the
proposed units.

4 Results and discussion

4.1 Generation of PQDs image data

In this study, utilizing the IEEE Std 1,159–2019 power quality
disturbance model as the foundation, a total of 30 types of
disturbance signals are generated using MATLAB software. These
signals encompass 8 categories of single disturbances and
22 categories of double disturbances. Detailed parameters can be
found in Table 1, with 1,000 sets of signal data generated for each
disturbance category. The fundamental frequency of composite
PQDs is set at 50Hz, with a sampling frequency of 3200 Hz. The
sampling duration covers 10 cycles, resulting in a total of
640 sampling points. During the training process, cross-

FIGURE 4
The neural network model architecture in this paper.
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TABLE 2 Hardware models and software versions.

Hardware/Software Model/Version Hardware/Software Model/Version

OS Win11 64bit Python 3.10

CPU i5-13500Hx Keras 2.3.1

GPU RTX4060 TensorFlow 2.10.0

RAM DDR5 16GB CUDA 11.8

HDD SSD 512GB cuDNN 8.9.0

FIGURE 5
Training and validation accuracy of PQDS classification under various noise environments.

FIGURE 6
The training process of CNN models using different improvement strategies.
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validation is employed, with the dataset split into a training set and a
validation set in a 4:1 ratio. The best model is determined based on
the classification accuracy on the validation set and saved
accordingly.

In this study, the model is constructed using the Keras
framework in Python for deep learning training and
classification. Table 2 provides a list of hardware models along
with their corresponding software versions.

4.2 Training results analysis

The network was trained using the data generated in Section 3.1.
Figure 5 illustrates the loss and performance curves during model
training. Initially, the noiseless model displayed relatively low
accuracy and some oscillations. However, after approximately
20 training epochs, both training accuracy and validation
accuracy began to stabilize and steadily increase, signifying
network convergence and eventually reaching 99.3%. The loss
and accuracy curves for both the training and validation sets
followed a similar trajectory, indicating that the network
operated smoothly without any indications of underfitting or
overfitting. These results suggest that the network’s complexity in
this paper is moderate and appropriately captures the training data,
allowing it to generalize well to both the training and unseen
test data.

4.3 Optimization strategy testing

This section evaluates the impact of incorporating Batch
Normalization (BN) and Global Average Pooling (GAP) layers
on the training performance of the model. For the comparative
analysis, the “model without BN layers” refers to the direct removal
of BN layers from the original network, whereas the “model without
GAP layers” replaces the GAP layer with a fully connected layer. The
initial network structure used is derived from Figure 4. Figure 6
displays the training accuracy and loss of the three neural networks

throughout the entire training process, while Figure 7 showcases the
final training results of these three networks.

Figures 6, 7 illustrate that the network presented in this
paper, equipped with BN layers, outperforms the model without
BN concerning both training time and accuracy. This
underscores that the inclusion of BN layers effectively
enhances the model’s generalization capabilities, rendering it
more robust and expediting convergence. Simultaneously, the
model without GAP, despite delivering commendable accuracy,
demands significantly more training time when compared to the
model featuring GAP. This unambiguously underscores the
substantial reduction in computational cost achieved through
the incorporation of the GAP layer. Consequently, for the
design of networks targeting PQDs classification tasks, it is
advisable to incorporate both BN and GAP layers to augment
performance.

4.4 Noise robustness testing

To assess the effectiveness of our proposed method in terms of
its ability to withstand noise, we introduced Gaussian white noise
with signal-to-noise ratios of 50dB, 40dB, and 30dB to the dataset
and conducted classification training. In high-noise environments,
PQDS signals are subject to distortion due to the superimposition of
multiple noise components. The presence of nonlinear responses
and feature interactions presents significant challenges for our
model when dealing with composite disturbances, exacerbating
their combined effects.

To illustrate this point, we have provided Figure 5 which
showcases the training and validation accuracy of our model
under various noise environments. We have also presented
Table 3 which provides a comprehensive overview of the model’s
performance on a new test set. The table shows that certain
composite disturbances, such as those involving oscillations and
gaps, exhibit reduced accuracy compared to their single
counterparts. Notably, the recognition accuracy for the
“Oscillation + Notch” composite disturbance reaches its lowest

FIGURE 7
PQDs classification results of CNN using different improvement strategies.
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point at 88.94%. This reduction in accuracy can be attributed to the
simultaneous presence of oscillations and gaps, which leads to
feature blurring in the gap region and consequently affects the
model’s recognition accuracy.

However, overall, the model proposed in this paper achieved
average classification accuracies of 99.17%, 98.80%, and 97.26% for
PQDs in high-noise environments with signal-to-noise ratios of
50dB, 40dB, and 30dB, respectively. This demonstrates that the
model maintains a high PQDs classification accuracy in high-noise
environments and exhibits good noise robustness.

4.5 Comparison with existing methods

As demonstrated in Table 4, under noise-free, low-noise, and high-
noise conditions, the proposed algorithm outperforms other algorithms
in terms of recognition categories and classification accuracy.

Particularly in high-noise conditions (30 dB), the algorithm exhibits
significantly improved noise resistance, attributed to the training set
augmented with artificially added noise signals. Furthermore, the
closed-loop feedback structure of the network and its automatic
feature selection capability accurately extract the most crucial
features associated with various disturbances, consequently
enhancing PQDS recognition accuracy significantly.

5 Conclusion

This paper first introduces a method for classifying composite
PQDs based on RPM and CNN. It maps the initial one-dimensional
PQDs time-series data into two-dimensional image data using the RPM
method while preserving their high-frequency characteristics. Then, the
image data are employed as input for the specially designed
convolutional neural network. Leveraging the CNN’s closed-loop

TABLE 3 Network test results in different noise environments.

Type 0dB 50dB 40dB 30dB Type 0dB 50dB 40dB 30dB

voltage swell 1.0000 1.0000 0.9975 0.9848 sag + notch 0.9598 0.9563 0.9850 0.9188

voltage sag 1.0000 1.0000 1.0000 0.9898 sag + oscillation 0.9747 0.9945 0.9621 0.9196

voltage interruption 0.9849 0.9781 0.9975 0.9444 sag + pulse 1.0000 1.0000 0.9637 0.9899

voltage fluctuation 1.0000 1.0000 0.9975 0.9949 interruption + fluctuation 0.9949 0.9941 1.0000 1.0000

harmonic 1.0000 1.0000 1.0000 0.9949 interruption + harmonic 0.9899 0.9672 1.0000 1.0000

voltage notch 1.0000 1.0000 0.9949 0.9898 interruption + notch 0.9694 0.9943 0.9698 0.9296

voltage oscillation 0.9949 1.0000 0.9926 1.0000 interruption + pulse 1.0000 1.0000 0.9719 0.9388

voltage pulse 1.0000 0.9943 1.0000 0.9949 fluctuation + harmonic 1.0000 1.0000 1.0000 1.0000

swell + fluctuation 1.0000 0.9944 1.0000 0.9948 fluctuation + notch 0.9495 0.9833 1.0000 0.9444

swell + harmonic 0.9949 0.9828 0.9975 1.0000 fluctuation + oscillation 1.0000 1.0000 0.9715 0.9747

swell + notch 0.9850 0.9891 0.9926 0.9646 fluctuation + pulse 0.9899 0.9435 1.0000 1.0000

swell + oscillation 1.0000 1.0000 0.9481 0.9800 harmonic + oscillation 1.0000 1.0000 0.9356 0.9343

swell + pulse 1.0000 1.0000 0.9950 1.0000 harmonic + pulse 1.0000 1.0000 1.0000 1.0000

sag + fluctuation 0.9949 1.0000 0.9975 0.9949 notch + oscillation 0.9950 0.9944 0.9689 0.8894

sag + harmonic 0.9949 0.9839 1.0000 1.0000 notch + pulse 1.0000 1.0000 1.0000 0.9100

average value 0.9924 0.9917 0.9880 0.9726

TABLE 4 Comparison with existing methods.

The number of features selected Types of PQDs Accuracy (%)

0dB 50dB 40dB 30dB

Reference (Khokhar et al., 2017) 9 16 99.875 - 98.6 95.2

Reference (Borges et al., 2015) - 8 - - 93.95 95.9

Reference (Qu et al., 2018) Automatic 7 - 98.75 98.3 97.8

Reference (Qu et al., 2023) Automatic 25 98.34 97.54 - 94.24

This paper Automatic 30 99.24 99.12 98.8 97.8
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structure and automatic feature selection capabilities, it achieves high-
precision classification of composite PQDs without the tedious manual
signal processing and feature extraction work. Finally, the proposed
method is compared with the existing methodologies through testing
30 distinct composite power quality disturbance events, the results
indicate that it performs better than other methods in terms of
classification accuracy, noise resilience, and generalization
capability. As for future work, it is suggested to focus on the
research of more intricate composite PQDs classification and
improvement of computation efficiency.
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Appendix A

FIGURE A1
The two-dimensional mapping results obtained using RPM correspond to each type of PQDs.
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