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Focusing on frequency problems caused by wind power integration in ultra-high-
voltage DC systems, an accurate assessment of themaximum generation capacity
of large-scale new energy sources can help determine the available frequency
regulation capacity of new energy sources and improve the frequency stability
control of power systems. First, a random forest model is constructed to analyze
the key features and select the indexes significantly related to the generation
capacity to form the input feature set. Second, by establishing an iterative
construction model of the polynomial fitting surface, data are maximized by
the upper envelope surface, and an effective sample set is constructed.
Furthermore, a new energy maximum generation capacity assessment model
adopts the support vector machine regression algorithm under the whale
optimization algorithm to derive the correspondence between the input
features and maximum generation capacity of new energy sources. Finally, we
validate the applicability and effectiveness of the new maximum energy
generation capacity evaluation model based on the results of an actual wind farm.
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1 Introduction

The impact of power system uncertainty can be effectively curtailed by accurately
predicting the generation capacity of new energy sources. However, previous studies focused
on predicting the immediate power rather than the maximum possible generation power of a
certain operation mode under prevailing meteorological conditions, that is, the generation
capacity boundary. Accurate knowledge of the new energy generation capacity boundary is
essential to calculate the available frequency regulation capacity of new energy, which is
crucial in the frequency stability control of ultra-high-voltage DC power systems (Lin et al.,
2019). Accurate prediction of the maximum power generation capacity of new energy
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sources is crucial to logically determine the dispatching plan and
ensure the safe and economic operation of the power grid (ZHAO
et al., 2023).

New energy generation mainly refers to new forms of energy
generation, such as wind power and photovoltaics, which exhibit
fluctuations and uncertainties in power output (Ozkan and Karagoz,
2019; Zhang et al., 2023). In this study, wind power is introduced as
an example, and its research ideas and model construction methods
apply to other new energy generation forms. The maximum capacity
of new energy generation can be primarily assessed by utilizing a
data-driven artificial intelligence (AI) method that can improve the
effectiveness of models and avoid complex mechanism analysis as
well as physical modeling processes. The development of deep
learning technology has highlighted the advantages of AI
algorithms in terms of rapidity, accuracy, and adaptability (SUN
et al., 2018; Jiang and Liu, 2023).

At present, there are few research studies on the maximum
power generation capacity of wind farms, and the existing wind
power prediction methods have certain reference significance for the
selection of research strategies and learning algorithms. Existing
wind power prediction methods are mainly classified into physical,
statistical, and combined prediction methods (PENG et al., 2016).
The physical wind power prediction method calculates the output
power of wind farms based on data related to numerical weather
forecasts and topography (Yan et al., 2015). NIU and JI (2020)
proposed an error source analysis method oriented toward a
physical model of wind power to reduce the prediction error by
deriving the key aspects of physical prediction for the sources of
wind speed, physical model, ground rotation drag law, and wind
speed–power conversion errors. Considering atmospheric stability,
QI and WANG (2021) constructed a power wind model based on
wind direction and power loss to effectively smooth the predicted
power fluctuations. Wang et al. (2014) proposed a wind power
prediction model considering the delayed smoothing effect of wind
field motion and the wake effect to design a wind farm power output
curve by superimposing the power of wind turbines at different
spatial locations. This assists in logically assessing the impact of wind
farms on grid operational safety. However, suppose the maximum
output power is calculated directly by utilizing a physical simulation.
In that case, the calculation complexity increases because of the
numerous parameters of each wind turbine in the wind farm, and
the accuracy of the wind turbine parameters cannot be guaranteed.
The wind power statistical prediction method is based on the
relationship between numerical weather forecasts and wind farm
power output as well as data measured online (Zeng et al., 2013).
Wang et al. (2021) introduced an improved second-order oscillatory
particle swarm algorithm to optimize the initial weights and
thresholds of a back propagation (BP) neural network to
construct a composite neural network wind power prediction
model that overcame the disadvantage of unstable accuracy.
Random forest (RF)-revised numerical weather forecast was
utilized for wind speed prediction and fed with a gated recurrent
unit neural network to predict wind power output, thus improving
wind farm output power forecast (SHANG et al., 2020). The
K-means algorithm was utilized to cluster the power curve shape
features and combined with meteorological factors to filter the
optimal set of similar periods. The power curve and
meteorological information were utilized as inputs to build an

Elman neural network model to iteratively predict wind power in
the future (Wen et al., 2019). Rao et al. (2022) proved that the
Levenberg–Marquardt optimization algorithm-based ANN model
gives the optimal result by comparing the evaluation indexes of
various machine learning algorithms and optimization algorithms.
The statistical prediction method and our proposed model utilize
intelligent machine learning algorithms; however, the model and
output variables constructed in this study differ from those
described in the statistical prediction method. The combined
wind power prediction method integrates the computational
results of different statistical prediction methods with a certain
combination strategy to obtain a better prediction value (Kumar
et al., 2019). Amir and Zaheeruddin (2022) showed that the adaptive
neuro-fuzzy inference system (ANFIS) model can effectively utilize
mixed renewable energy and achieve prediction accuracy.
Meanwhile, the adaptive model for a stochastic power system can
be further modified using a fuzzy Q-learning approach with a
support vector regression-based hybrid algorithm. Xiang et al.
(2012) utilized the time series method to predict wind speed and
wind direction series, which were subsequently transformed into a
combined prediction model of wind power by utilizing BP neural
network modeling. Wang et al. (2022a) proposed an ultrashort-term
wind power prediction method based on CNN–LSTM–LightGBM,
considering massive multidimensional and significantly fluctuating
wind power data. Although a combined prediction method can
overcome the limitations of a single algorithm, the construction of a
combined optimization method is challenging.

Based on the aforementioned methods for new energy
generation capacity, this study adopts the modeling idea of a
data-driven statistical prediction method to calculate and evaluate
the maximum generation capacity of wind farms under different
meteorological conditions. The evaluation model comprises RF-
based feature selection, polynomial fitting surface-based data pre-
processing, and whale-optimized support vector regression (SVR)
machine-based generation capacity evaluation models. The overall
frame diagram is shown in Figure 1.

The innovation of this paper lies in the envelope analysis method
based on polynomial surface iterative fitting, which constitutes the
data pre-processing model based on polynomial fitting. In addition,
this paper mainly uses the RF algorithm for data correlation analysis
and the whale optimization support vector regression algorithm for
sample prediction training. The specific analysis contents of each
model are as follows:

(1) The feature selection model utilizes the RF algorithm to analyze
the correlation of key variables that influence wind power
generation capacity, such as meteorological equipment, and
selects the two most significant correlation variables.
Chuanjun et al. (2021) did not consider the wind power
time-varying characteristics and complex nonlinear
relationships as well as the utilization of a gradient boosting
decision tree and artificial neural network supervised learning
algorithms in the original correlation analysis to train the wind
power model. A correlation analysis based on the importance of
the influencing factors and the amount of bias dependence was
proposed. The correlation characteristics of the temperature
and power system load characteristics were obtained through
physical relationships and Pearson’s correlation coefficient,
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aiming to determine the dynamic relationship between
multifactorial variable quantities (Rui et al., 2015). Different
from the linear correlation analysis method, the feature selection
model in this paper uses the random forest algorithm to conduct
the correlation analysis of influencing factors, taking into
account both linear correlation and nonlinear correlation so
that the correlation analysis is more comprehensive.

(2) The data pre-processing model is based on polynomial surface
fitting to maximize and normalize the original dataset, aiming to
build a more accurate learning sample set. Currently, most
research on the maximum capacity of new energy power is
based on maximum power point tracking. Le et al. (2023)
implemented an overview of modern MPPT algorithms
applied to permanent magnet synchronous generators in
wind power conversion systems with MPPT methods based
on speed convergence, efficiency, self-training, and complexity.
Venkata et al. (2023) directly adopted solar panel technical
parameters and proposed a new method of MPPT for
photovoltaic (PV) panels based on an SVR machine. Unlike
Venkata et al. (2023), which focused on analyzing the unique
and complex operating mechanisms of PV panels, this study
commences from the perspective of data, which can
considerably avoid complex mechanism analysis. This model
focuses on the maximization method, and studies on upper-
envelope analysis are limited.

(3) The maximum generation capacity evaluation model utilizes the
whale optimization algorithm (WOA) to improve the SVR
machine and derive the correspondence between the input
features and maximum generation output to improve the
accuracy of the maximum generation capacity regression
learning of wind power plants. In order to improve the
evaluation effect of maximum power generation capacity
based on SVR, this paper selects the whale optimization
algorithm to optimize the parameters of SVR. In the field of
power forecasting, there are many studies on the optimization of
support vector machines that choose the whale optimization
algorithm. YUE et al. (2020) showed that compared with
particle swarm optimization (PSO) and genetic algorithm

(GA), the introduction of WOA to optimize the parameters
in SVR can greatly improve the prediction accuracy of the SVR
model. WANG et al. (2022b) analyzed genetic algorithm, whale
optimization algorithm, and improved whale optimization
algorithm (IWOA) to optimize the parameters of SVR.
Compared with GA, the optimization effect of WOA is
greatly improved, but that of IWOA is not obvious and the
operation time is greatly increased. Therefore, WOA is selected
to optimize the training parameters of SVR when the maximum
generation capacity is evaluated in this paper.

2 Key feature selection model based on
random forest

RF key feature selection refers to the selection of the most
effective features from multiple-source feature variables to reduce
the dimensionality of a dataset (Chuanjun et al., 2021). To build a
model to calculate the maximum new energy generation capacity,
the reliability of historical data and completeness of the key
parameters are crucial for the accuracy of the model, and the
accuracy of features and data determines the upper limit of the
prediction model performance (Rui et al., 2015). The validity of data
is fundamental in data mining-related studies. Therefore, to improve
the data quality of the model, a real dataset should be obtained and
pre-processed to construct a valid sample set.

For the correlation analysis of the maximum wind power
generation capacity, the required data type is part of the
meteorological dynamic information and historical operation
information. First, the historical equipment data of wind turbines
are obtained from the wind farm supervisory control and data
acquisition system (SCADA system) and sampled every 10 min.
Then, the data information of the region where the wind turbine is
located is obtained from the numerical weather forecast, and the
resolution is set at 10 min. Before the numbers of leaf nodes and
decision trees were determined, the multi-source dataset to be
selected had seven key features: wind speed, wind direction,
ambient temperature of the numerical weather forecast at the

FIGURE 1
Overall framework of the three models.
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time of prediction, actual nacelle temperature, blade angle, wind
angle, and power generation at the previous prediction moment. The
forecast key feature set is listed in Supplementary Table S1. Thus, the
RF key feature selection method is utilized to select the two features
with the highest contribution rate to power prediction to achieve
effective dimensionality reduction and facilitate the subsequent
improvement of the learning algorithm performance.

2.1 The random forest algorithm

RF is a novel machine learning (ML) algorithm. Feature selection
utilizing the RF method is a step in data pre-processing that involves
training the RF regression prediction model. This study utilizes the
CART decision tree as a weightless sampling method for weak learners.
TheCARTdecision tree is a classifier that utilizesmultiple decision trees
to train and integrate prediction of samples, update the weight sampling
technique to construct multiple samples by randomly sampling data
from the original samples, and use a random splitting technique of
nodes for each resampled sample to construct multiple decision trees.
Finally, it combines the multiple decision trees and obtains the final
prediction result by voting (Guo and Wen, 2016).

The RFmodel is an integrated algorithm based on decision trees.
The classical algorithms for decision tree learning are ID3, C4.5, and
CART. The CART algorithm was primarily utilized in this model.
The algorithm utilizes the Gini index to measure the uncertainty of
data and determines the optimal classification features to ensure that
all attributes of the sample dataset are utilized and completely
classified, which is a greedy algorithm. Suppose sample set A is
divided into X1, X2,. . . Xn according to feature X. In that case, the
Gini index of set A conditional on feature X is obtained using Eq. 1:

Gini X|A( ) � ∑n

i�1
Xi| |
X| |Gini Xi( ). (1)

However, the decision tree algorithm does not consider the
correlation between feature attributes; the single-decision approach
is easy to overfit, and information is gained from features with more
types of values. Multiple decision trees can be combined to build an
RF model to overcome the disadvantages of the decision tree
algorithm (Ahmadi et al., 2020). The RF algorithm utilizes a
sampling method without weights or put-backs to enhance the
accuracy of the learning algorithm. Training sample data are
sampled to generate n subsets of samples that are assigned to n
decision trees. RF does not restrict the growth of each decision tree
and does not require pruning of the decision trees.

A decision tree can be generated by utilizing two major steps:
processing of divisible nodes and random selection of the desired
variables to improve accuracy.When decision trees are generated via
node splitting, each decision tree selects attributes and generates
branches according to the splitting rule. In this study, the CART
algorithm was selected as the base splitter of RF, and the Gini index
was utilized as the node-splitting rule. To reduce the correlation of
each decision tree and improve the classification accuracy when
node splitting of decision trees is performed, several of these
attributes are selected for comparison by randomly selecting
variables (forest-RI) (Ziqiang et al., 2022).

The RF algorithm generates many decision trees through the
aforementioned steps, and these decision trees constitute the RF. n

randomly constructed decision trees are utilized to classify a test
sample, and the classification results of each randomly constructed
decision tree are aggregated to derive the final classification result
according to the voting method.

2.2 Key feature selection algorithm based on
random forest

The key feature selectionmodel utilizes the RF algorithm to evaluate
the importance of each feature. The importance score of each feature can
be calculated depending on its use in different decision trees. The higher
the score, the greater the influence of this feature on the prediction
results. The RF feature selection principle can handle high-dimensional
and sparse features, thereby avoiding conventional feature selection
methods for dimensional disasters. Meanwhile, when the RF
algorithm is utilized to analyze the correlation of feature variables, it
analyzes from the perspective of linear correlation and nonlinear
correlation of correlated factors. Furthermore, RF integrates multiple
input attributes and is suitable for complex data; it is fast, efficient, and
highly stable for processing sample data. Moreover, the model can
achieve high classification accuracy and prediction capability without
adjusting too many parameters.

In RF key feature selection,
��
M

√
features are generally selected

randomly from the M-dimensional features of the dataset for each
node of the decision tree in the RF. The node data are divided into
left and right sub-nodes based on the principle of Gini gain
maximization; thus, data importance can be reflected by node
data division, and the average change in the Gini index of a
feature in all decision tree nodes can be utilized to reflect its
importance, which is the Gini index-based feature importance
measure. However, to reflect the macroscopic impact of the
change in the input of each feature on the output, this study
adopts a method based on out-of-bag (OOB) error data to
measure the importance of features, which can fully utilize OOB
data and maximize the dependence of the prediction accuracy on
individual features.

Suppose n decision trees exist and n sample subsets are constructed,
the importance of the ith feature can be calculated as follows:

Step 1: Initially, set n = 1 and construct a decision tree as Tn in n
sample subsets while denoting the corresponding OOB dataset of
this decision tree as On.

Step 2: Regression prediction is performed on the OOB dataset On

based on Tn, and the OOB error of the regression prediction is
recorded as En.

Step 3: The value of the ith feature in On is appended with a
random perturbation. The perturbed OOB data are denoted as Oni,
which is then predicted by regression utilizing Tn. The predicted
OOB error is calculated as Eni.

Step 4: Steps 1–3 are repeated for n = 2,3,4,. . .,N;

Step 5: The importance of the ith feature Ii is equal to the average
change in the OOB error before and after random perturbation, that
is, Ii � 1

N∑N

n�1(En − Eni).
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3 Data pre-processing model based on
polynomial fitting surfaces

This study mainly focuses on the data-driven statistical prediction
model, which focuses on themaximumoutput of new energy rather than
the real-time output prediction of new energy, which is also different
from the existing power prediction method. There is no maximization
processing in the existing power prediction technique, and the common
method is to directly train and learn the acquired raw data after simple
pre-processing, while this study requires complex pre-processing of the
acquired raw data, which is also the innovation of this study. In this
research, data pre-processing mainly includes normalization processing
and maximization processing. Before using the upper envelope surface
method to select the maximum output, the key feature data need to be
normalized to improve the accuracy and efficiency of the model.

3.1 Normalization process

Before the maximum wind power generation capacity is predicted
and calculated, wind speed and temperature need to be normalized. The
wind speed is (0,20) m/s, and the temperature is at (−20,40)℃, both of
which have considerably different values. Wind speed and direction
normalization help accelerate the ML training convergence speed and
improve prediction accuracy and modeling efficiency.

In the wind power maximum generation capacity calculation
model, wind speed and temperature can be normalized by analogy
with existing wind power forecasts. The normalization method of
both variables is the same, and the method is the ratio of the current
value of the variable to the historical maximum value. The
normalization formula is expressed as follows:

Xg � Xt

Xmax
. (2)

Here, Xg represents the value of the normalized variable, Xt is
the value of the variable predicted by the numerical weather
prediction system, and Xmax is the historical actual maximum
value of meteorological observations.

3.2 Maximization process

This study proposes maximization processing for the
maximum generation capacity assessment requirement, with
the ability to screen valid data points. We propose a
processing method to screen the maximum wind power output
points by utilizing polynomial surface-fitting iterations to
construct valid datasets for subsequent ML. Because the
dataset with zero power was not meaningful for the maximum
generation capacity assessment, the dataset with zero output was
removed in this study to improve the iteration efficiency.

After feature selection, wind speed and temperature were
utilized as input feature variables to draw a three-dimensional
(3D) scatterplot of wind speed, temperature, and exit force. After
acquiring the 3D scatterplot, as shown in Figure 2, the
maximization process to construct the upper envelope by
analogy with the 2D planar scatterplot and the idea of
polynomial plane fitting applied to the 3D scatterplot to
construct the upper envelope surface were carried out. In the
linear regression treatment, a fitted surface was constructed for the
3D scatterplot, a polynomial surface was fitted to the scatter points,
and the scatter points in the upper part of the constructed surface
were screened to form a set. This operation was repeated for the
scattered points in this set, and the surface constructed by the
scattered points in the final set approximated the best upper
envelope of the original scattered-point plot in several
iterations. The specific steps are as follows:

FIGURE 2
Wind speed-temperature-power scatterplot.
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Step 1: A 3D scatterplot is constructed with wind speed,
temperature, and historical wind power as the x-axis, y-axis,
and z-axis, respectively, and the original dataset is recorded as
set C0.

Step 2: By utilizing a polynomial approach for surface fitting, a
surface-fitting function z � fi(x,y) is constructed, as expressed in
Eq. 3, where i represents the number of iterations (i= 1,2,3 . . . ) andpmn

represents the regression coefficient of xmyn. The 0th iteration for the
initial fitting of the surface is defined by utilizing the original data.

Step 3: In the (i−1) iteration, let the scatter be
c(i−1)k � (xk, yk, zk)(i−1). When zk − fi(xk, yk)> 0 is satisfied, it
means the scatter ck is in the upper part of z � fi−1(x, y). The
scatter satisfying the aforementioned condition is filtered to form the
set Ci, and the scatter in this set is iterated for the ith iteration to
form set Ci+1.

Step 4: The iteration is terminated when it satisfies the condition
(Ci) − card(Ci+1)< βcard(C0), and the elements in set Ci+1 are
considered valid sample points. card( ) denotes the number of

elements in the set, and β ∈[0.01, 0.05] is the iteration
termination factor.

fi x, y( ) � p00 + p10x + p01y + p20x
2 + p11xy + p02y

2 + p30x
3

+ p21x
2y + p12xy

2 + p03y
3 + p40x

4 + p31x
3y + p22x

2y2

+ p13xy
3 + p04y

4.

(3)

4 Maximum generation capacity
evaluation model based on whale
optimization support vector regression

4.1 Maximum generation capacity
assessment algorithm

4.1.1 Support vector regression machine
The basic principle of SVR is to calculate the decision function in

the feature space for a given training sample set, followed by a regression
prediction utilizing the decision function (Venkata et al., 2023). For
linearly indistinguishable problems, mapping of the sample data to a
high-dimensional feature space by utilizing a kernel function and
determination of the linear decision function in the high-
dimensional feature space outperform other ML algorithms when
the number of samples is small. In this study, after maximization,
the number of samples was 5%–10% of the original data; therefore, the
SVR algorithm was adopted (Ghali et al., 2022).

The sample training set is Traini � (x1, y1), (x2, y2), . . .{
(xn, yn)} ⊂ R2 × R. xi � (vi, ti)T is considered, and yi is set as
their corresponding outputs.

Let the decision function of the sample set in the feature space be

f x( ) � ωTϕ x( ) + b. (4)
Here, ω is the weight vector of the hyperplane and b is the

threshold value. By minimizing the structural risk principle and the
ε-insensitive loss function with sparsity, the objective function of the
ε-SVR model in a high-dimensional space can be expressed as the
following optimization problem:

min
ω,b

1
2
ω‖ ‖2 + C∑2

i�1 ξ i + ξ̂i( ),
s.t.yi − ωTϕ xi( ) + b( )≤ ε + ξi,

ωTϕ xi( ) + b( ) − yi ≤ ε + ξi,

ξ i, ξ̂ i ≥ 0, i� 1, 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

where ξi, ξ̂i is the slack variable and C is the penalty coefficient.
To solve the aforementioned optimization problem, the Lagrange
function is introduced and transformed into a pairwise optimization
problem as follows:

max − 1
2
∑2

i�1∑2

j�1 λi − λ̂i( ) λj − λ̂j( )ϕ xi( )Tϕ xj( ) +∑2

i�1yi λi − λ̂i( ) − ε λi + λ̂i( ),
s.t.∑2

i�1 λi − λ̂i( )� 0, 0< λi , λ̂i <C, i� 1, 2,

⎧⎪⎪⎨⎪⎪⎩
(6)

where λi, λ̂i ≥ 0 is a Lagrange multiplier. By solving the pairwise
optimization problem, the corresponding decision function is
obtained as follows:

FIGURE 3
Flowchart of the support regression machine algorithm
optimized by the whale algorithm.
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f x( ) � ∑2

i�1∑2

j�1 λi − λ̂i( )k xi, xj( ) + b, (7)

where k(xi, xj) � ϕ(xi)Tϕ(xj) is the kernel function.
SVR is a supervised ML method with a complete theoretical

foundation; however, different parameter selections have a direct
impact on the prediction accuracy and generalization ability of the
model (Shakul et al., 2022). The penalty parameter C and kernel
function parameters must be optimized in the SVR model.
Therefore, we utilize the whale algorithm to optimize the SVR
parameters.

4.1.2 Optimization of SVR parameters based on the
whale optimization algorithm

The WOA is a global search algorithm derived from the
unique bubble-net feeding behavior of humpback whales (CHEN
et al., 2023). The algorithm achieves an optimized search by
simulating whales contracting the envelope, spiraling to update
the hunt, and searching for prey (Samita et al., 2022). The whale
optimization algorithm is simple in principle, easy to be
programmed, and has better solution accuracy and
convergence speed with fewer parameters. Optimizing the
parameters of the new energy maximum power generation
capacity evaluation model based on SVR can improve the
evaluation accuracy of the prediction results. The WOA
optimizes the parameters of SVR by optimizing the penalty
coefficient C and kernel function parameters as well as
utilizing the training error of SVR as the individual fitness
value. The WOA–SVR parameter optimization process is
shown in Figure 3.

When the whale algorithm was not utilized, the two
parameters were not randomly selected; however, the plane

where the two parameters are generally obtained was
empirically divided into equally spaced grids, and the
parameters on the grid nodes were selected individually for
SVR training. After all nodes were trained, the training error
was compared, and the parameter value with the smallest training
error was selected as the optimal parameter value. The
aforementioned optimization algorithm is simple, and the
existence of the optimal parameters on the grid nodes is not
guaranteed. Therefore, the optimization algorithm is too rough,
and the parameters may only be local optimal solutions in the
grid. In contrast, the WOA is a heuristic algorithm for optimal
search, which is characterized by simple operation, simple
structure, easy implementation, and few adjustable parameters
in the parameter optimization process, which can considerably
avoid being caught in the local optimal solution.

In theWOA, the whale perceives the prey, swims in the direction
of the optimal whale individual, and identifies the location of the
prey surrounding it (Chu et al., 2022). The mathematical model is
shown in Eq. 8:

X t+1( ) � X* t( ) − A· CX* t( ) −X t( )| |( ), (8)
where t is the current number of generations sent, X*(t) and X(t)
are the positions of the prey and whale in the tth iteration,
respectively, and A and C are the coefficient vectors, expressed as
follows:

A� 2ar1 − a, C� 2r2, (9)
a� 2 − 2 ×

t

T max
, (10)

where a is the control parameter, r1, r2 are random numbers in the
range [0,1], and Tmax is the maximum number of iterations.

FIGURE 4
Variation curve of OOB error and the number of decision trees.
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When the whale obtains the position information of the prey,
it spirals continuously to approach the prey, with the prey’s
position as the center. To encircle and spirally approach the prey,
the whale is judged by probability p whether to contract the
encircling or spirally update the position. When p < 0.5, the
encirclement contraction method is executed; when p > 0.5, the
spiral update method is executed. The mathematical model is
shown in Eq. 11:

X t+1( ) � X* t( ) − A· CX* t( ) −X t( )| |( ), p< 0.5,
X* t( ) +Dp · ebl · cos 2πl( ), p≥ 0.5,{ (11)

whereDp � X*(t) −X(t), b is a constant with a specific value, and l
is a random number in the range [−1,1].

The whale algorithm utilizes the size of A as the basis to
determine whether to execute a random search for prey. When A <
1, the method of encircling the prey is executed; when A ≥ 1, the
whale cannot obtain valid clues, and the random search for the
prey is utilized to obtain valid information regarding the prey:

X t+1( ) � Xrand − A· CXrand t( ) −X t( )| |( ), (12)
where Xrand is the location of randomly selected individual

whales.

4.2 Evaluation indexes

The correlation coefficient and root-mean-square error were the
main evaluation indexes in this study. The model performance is
improved, and the prediction accuracy is higher when the
correlation coefficient is closer to 1 and the root-mean-square
error (Ermse) is small (ZHANG et al., 2022).

4.2.1 Correlation coefficient
The correlation coefficient r reflects the correlation between the

predicted maximum power generation and the fluctuation trend of

the measured maximum power generation in the envelope of the 3D
scatterplot.

r � ∑n
i�1 PM,i − �PM( ) PP,i − �PP( )[ ]���������������������������∑n

i�1 PM,i − �PM( )2∑n
i�1 PP,i − �PP( )2√ , (13)

where PM,i is the measured power of the wind farm with the sample
test set number i, PP,i is the predicted power of the sample test set
number i, n is the number of samples in the test set, �PM is the
average of the measured power of the samples in the test set, and �PP

is the average of the predicted power data of the samples in the
test set.

4.2.2 Root-mean-square error
Ermse is the most commonly utilized error evaluation metric to

measure the superiority of ML.

Ermse �
�����������������
1
n
∑n

i�1
PM,i − PP,i

Si
( )√

, (14)

where Si is the capacity of the wind farm with the serial number i in
the sample test set.

5 Computer simulations and discussion

5.1 Random forest feature selection
algorithm analysis

5.1.1 Optimization of the number of decision trees
and leaf nodes

The number of decision trees and leaf nodes must be determined
before selecting the key feature variables using the RF algorithm. The
error of the RF model decreased with an increase in the number of
decision trees; however, the computation time and the number of
learning cycles of the model increased, and overfitting occurred, thus
decreasing the generalization ability. Thus, the number of decision trees
and leaf nodes must be optimized to ensure the effectiveness of the RF
algorithm. Generally, the minimum number of leaf nodes is set to five
for decision tree training in regression problems (Breiman, 2001).

In this example, the minimum leaf node parameters are assumed to
be 5, 10, 20, 50, 100, 200, and 500 to determine the best decision tree and
leaf node parameters for the same training set. The OOB error of
different leaf nodes changed rapidly and slowly with an increase in the
number of decision trees during the training process, and the fastest and
most stable OOB error was selected. The number of leaf nodes with the
smallest error was selected as the optimal leaf node parameter, and the
minimum number of decision trees when the error was stable was
selected as the optimal number of decision trees in the trainingmodel to
optimize the training speed and reduce the training cost. The variation
curves of the error results with the number of OOB decision trees for
different leaf node parameters are shown in Figure 4.

As shown in Figure 4, in the decreasing error phase with the
number of decisions, the error-decreasing speeds of choosing the
number of leaf nodes as 10 and 20 were similar, and both can be
chosen as the parameter with the fastest error-decreasing speed.
From a comprehensive consideration of the error stabilization
phase curve, the minimum OOB error can be achieved when the

FIGURE 5
Histogram of feature importance measures.
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number of leaf nodes is 10, whereas the stabilization error is larger
when the number of leaf nodes is 20. Meanwhile, for the selection
of the number of decision trees, the error remained stable after the
decision trees reached 30, which is evident from the curve changes.
Based on the aforementioned considerations, the optimal number
of leaf nodes was set to 10, and the number of decision trees for
training was set to 30.

5.1.2 Key feature selection
Data from a wind farm in China for 2021 were analyzed as a case

study, and 52,067 time points were selected to obtain the corresponding

data. The seven key features of 52,067 time points in the sample set were
utilized as input independent variables, and the actual output power of
the current moment was utilized as the input dependent variable,
trained in an RF model with minimum blade number 10 and decision
tree number 30. The importance of the seven features was measured by
utilizing the feature importance measure based on OOB data. The
importance measurement results are shown in Figure 5.

As shown in Supplementary Table S2, the wind speed and
environmental temperature significantly impact the actual power
generation when utilizing the RF model for power generation
prediction. Therefore, in the data pre-processing stage, to determine

FIGURE 6
Schematic of the envelope construction process.
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the maximum power generation boundary and predict the maximum
power generation capacity, the two features of environmental
temperature and wind speed were selected as data inputs to reduce
data dimensionality, improve the prediction calculation efficiency, and
avoid falling into the dimensional trap while retaining the features that
significantly impact the predicted value to ensure the scientific accuracy
and effectiveness of the prediction.

5.2 Analysis of the data pre-processing
model

Data from a wind farm in China for 2021 were utilized as a case
study, 52,067 time points were selected, and under each time point,

three data points of wind speed, wind direction, and actual output
power were available for this wind farm. A 3D right-angle coordinate
systemwas constructed with wind speed as the x-axis, wind direction as
the y-axis, and wind turbine historical real-time output as the z-axis. A
3D scatterplot of wind speed–wind direction–output of the wind
turbine was drawn based on the obtained dataset. Meanwhile, the
scatterplots in the original dataset were formed as a set of C0 in the
form of ci � (xi, yi, zi). The raw dataset C0 �
ci | ci � (xi, yi, zi), i� 1, 2, . . . , 37931{ } was obtained by screening
37,931 scatters with a wind power output greater than 0.

A polynomial fit surface was constructed to determine the upper
envelope; however, the upper envelope cannot be determined by
performing a simple polynomial fit only once. To determine the
target sample points, a polynomial fit surface was constructed
several times by applying iterations. Suppose the iteration
termination factor β equals 0.02, the iteration termination
condition is β · card(C0)� 0.02 × 37931 ≈ 759.

After the first surface fit, as shown in Figure 6A, set C1 was
formed by selecting the scatter points that satisfied zi −
f0(xi, yi)> 0 from set C0. By utilizing the scatter points from set
C1 for the second surface fit, as shown in Figure 6B, the scatter
points from set C1 that satisfied zi − f1(xi, yi)> 0 were selected to
form set C2. Next, as shown in Figures 6C, D, iterations were further
performed to construct a polynomial fit to the surface. The specific
iteration process is shown in Supplementary Table S3.

The results of the five polynomial surface-fitting constructions are
shown in Figure 6. The iteration terminates when the difference in the
number of elements in the target set between the two iterations is less
than 2% of the original number of sample points for the first time, and
the elements of the current iteration are considered valid sample points.
As shown in Figure 6E, in the fourth iteration, the termination
condition was satisfied for the first time, set C5 was assumed as a
valid dataset, and set C5 contained 429 elements.

The polynomial fitted surface correlation coefficient formed as a
result of the fourth iteration is shown in Supplementary Table S4.
This polynomial, which was the basis for the screening of set C5, also

FIGURE 7
Adaptation curve graph.

FIGURE 8
Comparison of WOA-SVR prediction results.
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yielded a rough expression for the maximum power generation
capacity as a function of wind speed and ambient temperature. To
further evaluate the maximum power generation capacity, ML-
related algorithms were utilized for more in-depth analyses.

5.3 Analysis of the generation capacity
boundary assessment model

To optimize the penalty coefficient C and kernel function
parameters of SVR by utilizing the WOA, the population size was
set to 20, and the iterations were calculated 300 times with the
optimized values of both parameters ranging from 0.001 to 1,000.
The individual whale position parameters in each iteration process
were substituted into the SVR model for training, and the SVR
training error was utilized as the fitness value of each individual
whale. The minimum fitness value in the iteration was selected, and
the whale position was updated for the next iteration. An adaptation
curve of the minimum fitness value for each iteration with an
increasing number of iterations was constructed, as shown in
Figure 7. As the WOA optimization proceeded, the minimum
fitness decreased gradually and converged to the optimal
parameter point under the current parameter-taking range after
nearly 100 iterations. In this example, the penalty factor and
kernel function parameters were 6.6773 and 3.5954 after WOA
optimization, respectively.

The sample set was randomly divided into a training set and a
test set according to a given ratio to test the model effects. The
normalized wind speed values and temperature in the set were
utilized as inputs, and the corresponding historical real-time wind
farm output was utilized as the output. Before ML, the 429 datasets
were randomly divided into 350 and 79 datasets by the program, and
the randomly divided 350 and 79 datasets were utilized as the
training set and test set to test the effect of the completed
training ML model, respectively. To randomly assign the effective
sample set of the experiment serial number i, the training set was
Traini � (x1, y1), (x2, y2),/, (x350, y350){ }, x ∈ R2, y ∈ R; however,

in this computational evaluation model, the test set was
Testi� (x351, y351), (x352, y352),/,(x429, y429){ }, x ∈ R2, y ∈ R. The
effective sample set construction was completed through the
aforementioned operation. By utilizing the organized valid sample
set, simulation was performed by utilizing WOA–SVR to randomly
generate the training set Train1 and test set Test1, where the training
set Train1 and test set Test1 contained 350 and 79 datasets,
respectively. According to the datasets within the training set
Train1, the model was trained using the WOA–SVR algorithm, and
the training of the training set Train1 could be obtained, as shown in
Figure 8A. The training set Train1 is used to adjust SVR model
parameters, and after successfully building the maximum power
generation capacity evaluation model, the training set Train1 is
used to verify the effect of the trained calculation model. From
Figure 8A, it can be intuitively observed that the predicted value
and the real value are highly overlapping, and the above data show
the rationality of the selection of the data number in the training set
from a certain perspective. Meanwhile, the built model was used to test
the prediction of the test set Test1, and the training result of Test1
could be obtained, as shown in Figure 8B. In Figure 8B, it can be
intuitively observed that the predicted and true values of the test set fit
well, which indicates that the maximum power generation capacity
evaluation model built has certain accuracy.

Based on the datasets within the training set, the model was
trained using theWOA–SVR and unoptimized SVR algorithms, and
the test set was validated, as shown in Figure 9. After optimization,
Ermse was reduced from 0.055907 to 0.035662, and the correlation
coefficient r2 increased from 0.96730 to 0.99041. As shown in
Figure 9, the WOA has a significant optimization effect on
individual SVR training points with large errors. Although the
WOA–SVR algorithm predicted values with sample serial numbers
5, 71, and 75 had a larger deviation from the true value compared with
the SVR-predicted values, the difference was generally insignificant.
For sample serial numbers 1, 12, 14, 16, 17, 19, 20, 37, 39, 43, 45, 50,
53, 60, and 74, the SVR-predicted values had large errors to be
effective in the calculation of the maximum generation capacity,
and the prediction accuracy was poor. The WOA–SVR-predicted

FIGURE 9
Comparison chart of test set prediction results.
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values for sample numbers 9, 11, 13, 36, 46, 59, 63, 69, and 78 were
better than the SVR-predicted values. The predictions were
approximately the same for the remaining test samples.

Therefore, the WOA–SVR algorithm was more effective than the
non-parameter-optimized SVR algorithm in predicting the maximum
generation capacity. To analyze the power prediction result index, the
Ermse and correlation coefficient were selected as measures, and the
effective sample set was randomly divided into two parts, the training
and test sets, and simulated thrice, that is, i� 1, 2, 3 in Traini and Testi.
The average of the three simulation results was utilized as a measure, as
shown in Supplementary Table S5.

From Supplementary Table S5, for the Ermse, the average error of
the model constructed with the WOA–SVR algorithm was less than
3.3%, whereas that of the single SVR algorithm was over 5%; that is,
the optimization of the whale algorithm decreased Ermse. For the
squared correlation coefficient, the results of the three simulations of
the WOA–SVR algorithm were over 0.99, whereas that of the single
SVR algorithm was significantly lower than 0.97; that is, the
correlation coefficient was closer to 1 owing to the WOA–SVR
algorithm, which fully reflected the effectiveness of WOA–SVR
parameter optimization.

6 Conclusion

This study proposed a polynomial surface fitting-based model to
calculate and evaluate the maximum power generation capacity of
new energy sources, which could be utilized to determine the
available capacity of new energy sources and design a frequency
stability control strategy to ensure the safe and economic operation
of new energy power systems.

(1) A data-driven model was constructed, and the completeness
and reliability of the data were crucial for the accuracy of the
model calculation results. The utilization of RF feature selection
for correlation analysis and effective screening of multi-source
features could measure the nonlinear impact of changes in
multiple influencing factors on the power generation capacity.

(2) The innovative step of the proposed model was based on the
maximization analysis processing of key feature variables.
Through polynomial surface-fitting iterative calculation, the
upper envelope was constructed in the 3D scatterplot of the
key feature variable—wind plant output—to achieve the
maximization evaluation requirement.

(3) The WOA–SVR algorithm was utilized to predict the maximum
power generation capacity of new energy sources, and a comparative
analysis with the unoptimized SVR algorithm was conducted. The
WOA–SVR algorithm was more effective and applicable.

The new energy maximum generation capacity assessment
model was based on feature selection and maximization
processing models, and the accuracy of the model influenced the
assessment and analysis results. The data-driven model constructed
in this study could be integrated with the maximum power tracking
point of the physical model to analyze the size of the available FM
capacity of new energy. The evaluation and analysis of the maximum
power generation capacity in this study were completely based on
historical data without relying on a physical model, which had a

limited effect on the analysis of the sparse distribution of data points;
thus, further studies involving a physical model are required.
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