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The increasing integration of distributed generations brings great challenges to
the power grid. In this paper, a distributed photovoltaic (PV) integration
methodology in distribution network is established for large-scale PV
penetration. Firstly, a PV integration model was formulated with the aim of
maximizing PV integration capacity and enhancing the voltage profile.
Specially, the PV large-scale integration model for county-wide promotion is
proposed by considering various typical integration scenarios. Additionally, a novel
improved multi-objective Teaching-Learning based optimization (TLBO)
algorithm, namely, IM-TLBO, was proposed to seek an optimal Pareto front of
the PV integration model. The IM-TLBO algorithm innovatively incorporates the
elite reverse learning search strategy to enhance exploration in the solution space.
Moreover, the differentiated teaching guided by optimal individual and central
location is employed to improve the efficiency of the “teaching” process.
Meanwhile, a cyclic crowded sort deletion based on crowding distance is
developed to enhance the diversity of elite individuals and the distribution
characteristics of the Pareto Frontier. Finally, the performance of IM-TLBO is
tested in benchmark functions. Also, a simulation case in IEEE 33 bus system is
performed to verify the proposed PV integration method. It is observed that the
proposed method in this paper can not only realize the overall optimal integration
of roof distributed PV, but also improve voltage profile. The results of IM-TLBO are
compared to other classical algorithms, and it is shown that IM-TLBO
outperformed them in terms of convergence, distribution and diversity.
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1 Introduction

Energy conservation and pollutant emission reduction have gained global attention in
recent years (Du and Lu, 2011; Wang et al., 2021). It is of great practical significance to
vigorously promote the development of renewable energy generation technology (Painuly,
2001; Tahvonen and Salo 2001). Among various forms of distributed power generation, such
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as wind power and photovoltaic (PV) generation, the latter has
received significant attention as a crucial research topic due to its
environmental friendliness. In particular, China, with its expansive
territory and abundant PV resources, considers PV generation as a
primary and significant source of renewable energy (Zhang et al.,
2020; Yan et al., 2014). However, the increasing PV integration scale
and uncertain generation nature pose enormous challenges to the
security of distribution network (Liu et al., 2022; Zhao et al., 2015).
In order to integrate resources, reduce power peak load and optimize
distribution network investment, the Chinese government began to
officially promote PV integration to the grid in a whole county.
Improper large-scale PV integration raises the risk of system
instability. It is urgent to solve the problem of large-scale PV
integration in the whole county.

The subject of optimum integration of PV system has received
considerable attention in the literature (Shah et al., 2015). In
(Paatero and Lund, 2007), the authors conducted an analysis on
the impact of high PV penetration in medium-voltage distribution
networks. They investigated the PV integration effect on voltage
drop, network losses and grid benefits. In Ref. (Yong et al., 2022), a
continuous time scenario-based optimal configuration method was
proposed for PV and energy storage systems. The authors adopted a
collaborative approach involving source-network-load coordination
to address uncertainty related to sources and loads. In Ref. (Zhang
et al., 2020), a dual-layer planning method for distribution networks
incorporating distributed PV and energy storage was introduced.
The upper layer aimed to minimize the life cycle cost by determining
the capacities of PV and energy storage systems. Meanwhile, the
lower layer considered the influences of PV and load uncertainty to
regulate energy storage. In (Xiaorong et al., 2021), a robust optimal
allocation model for energy storage in distribution networks was
proposed, considering the flexibility of both generation and load
sides. This model specifically addressed the sharp fluctuations in
load caused by distributed PV generation. The current approach of
renewable energy network planning often lacks a comprehensive
optimization plan for large-scale integration throughout the entire
county. Specifically, the planning for large-scale PV integration in
counties should take into account the distinct access requirements
associated with different scenarios. Also, the majority of existing
research in the field of PV integration has primarily focused on
maximizing PV integration capacity. However, there has been
limited consideration given to the joint optimization planning,
including economic, technical, and other related aspects.
Economic and technical optimization objectives of integration
schemes often have conflicts. Most studies only transform the
multi-objective problem into a single-objective model through a
linear combination of different objectives based on a weighted sum.

The optimal integration of PV system in the distribution
networks is a complex non-linear optimization problem.
Numerous heuristic methods and approaches have been rendered
for PV integration problems. In (Song et al., 2009), the authors
present a sigmoid function-based PV system allocation
methodology using multi-valued discrete particle swarm
optimization. This approach aims to enhance the quality of
solutions obtained. In (Tan et al., 2019), in order to reduce
power loss and voltage deviation, a multi-objective PV allocation
methodology based on an artificial fish swarm algorithm (AFSA) is
proposed. In (Varaprasad and Radha, 2022), a novel optimization

algorithm called Archimedes Optimization Algorithm (AOA) was
proposed. Inspired by physical principles, this algorithm addresses
PV configuration in electrical distribution networks with the goal of
minimizing emissions and reducing network dependence as much
as possible. In Ref. (Zhang et al., 2023), a PV hosting capacity
depiction model based on information gap decision theory
optimization was proposed. This model offers insights into
determining the maximum PV hosting capacity in a distribution
network. In (Can and Yong, 2018), the methodology for distributed
hybrid solar-wind-battery system capacity planning is proposed
based on Grey Wolf Optimization (GWO). In (Kornelakis and
Marinakis, 2010), PSO (particle swarm optimization) algorithm is
used to locate the optimal number of system devices and the optimal
values of the PV module installation in PV grid-connected systems.
In (Merei et al., 2013), GA (genetic algorithm) is adopted to optimize
off-grid hybrid PV-wind-diesel system with different battery. In
(Mahmoud and Ahmed, 2016), an optimization method of a PV fed
water pumping system without storage based on teaching-learning-
based optimization algorithm is developed. The above-mentioned
traditional algorithms frequently encounter problems. GWO also
has the disadvantages of poor population diversity, slow
convergence rate in late stage, and easy to fall into local
optimization. AFSA has the shortcomings of high initial value
requirement and slow convergence. AOA has some problems
such as weak global exploration ability, slow convergence speed
and low solving accuracy when solving optimization problems.
Simple GA and PSO get local optimal solution too easily and
converge slowly. Classical TLBO algorithm has high convergence
speed, but lacks of diversity when attempting to solve multi-
objective optimization problems in large-scale renewable energy
integration models. Consequently, these methods are plagued with
low solving efficiency and suboptimal accuracy.

Motivated by the above concerns, this paper proposed a large-
scale distributed PV integrationmethod for a whole county territory.
The contributions of this paper are organized as follows.

1) To begin with, this study conducts a comprehensive analysis of
the distinct PV integration requirements across four typical
scenarios within the entire county territory. Subsequently, a
PV integration model for county-wide promotion is
formulated, where the objective functions are defined as
maximizing the access capacity while minimizing voltage
deviations in the distribution network.

2) The TLBO algorithm, originally designed for single-objective
optimization, often suffers from shortcomings such as a lack of
diversity and a tendency to converge to local optima. To address
these limitations and enhance the algorithm’s searching
capability, this study proposes an improved multi-objective
TLBO algorithm, namely, IM-TLBO. The IM-TLBO algorithm
innovatively incorporates elite reverse learning, differentiated
teaching and learning, elite individual preservation, and cyclic
crowded sort deletion. These enhancements aim to promote
diversity and prevent premature convergence, thereby improving
the overall performance of the algorithm.

3) The multi-objective benchmark functions are employed to verify
the performance of IM-TLBO. To demonstrate the effectiveness
of proposed PV integration method, the IEEE33-bus system is
employed to simulate the power grid of the county territory. A

Frontiers in Energy Research frontiersin.org02

Liu et al. 10.3389/fenrg.2023.1322111

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1322111


comparative analysis is performed with other existing methods
to evaluate the performance of the solutions. The experimental
results unequivocally support the rationality and superiority of
the improved multi-objective TLBO algorithm method.

The reminder of this paper is structured as follows. Section 2
presents the formulation of a distributed PV integration model
within the county territory. The following section provides a detailed
explanation of the IM-TLBO algorithm and subsequently presents
the model solving using the IM-TLBO approach. The numerical
simulation study on benchmark functions and IEEE-33 bus system
are then presented in Section 4 and Section 5, respectively. Finally,
conclusions are shown in Section 6.

2 Problem formulation

To develop an effective large-scale PV integration strategy for
the entire county, this study considers the installation requirements
for four typical scenarios. The PV integration model is established
as follows.

2.1 Objective functions

In pursuit of carbon emission reduction and the advancement of
renewable energy, maximizing the utilization of PV holds
paramount importance in the research on county roof distributed
PV integration. The first objective function of this research f1:

f1 � max C1 + C2 + C3 + C4( )
� max ∑Npv

i�1
Ppv,i

⎛⎝ ⎞⎠ (1)

where C1, C2, C3, C4 are the total distributed PV access capacity on
roofs of party and government organs, public buildings, industry
and commerce, and rural residents in the whole county, respectively;
Npv represents the total number of PV; Ppv,i represents the PV
access capacity of ith node.

The integration of renewable energy into the distribution network
will result in changes to the voltage quality. The second objective
function, denoted as voltage deviation (f2), is expressed as follows:

f2 � min∑Nbus

i�1

Ui − Uexp
i

ΔUmax
i

( )2

(2)

Where Nbus is the bus number of power system; Ui is the voltage of
ith nod; Uexp

i is the expected voltage of ith node; ΔUmax
i is the

maximum allowable voltage deviation of ith node.

2.2 Constraints

1) PV integration constraints

When planning the large-scale integration of PV systems on
county roofs, it is crucial to consider the diverse requirements
associated with different types of PV scenarios.

Party and government building roof constraints:

50%≤P AR1( )≤ 100% (3)
Roofs of public buildings such as schools and hospitals

constraints:

40%≤P AR2( )≤ 100% (4)
Commercial roof constraints:

30%≤P AR3( )≤ 100% (5)
Residential roof constraints:

20%≤P AR4( )≤ 100% (6)
where P(AR1), P(AR2), P(AR3) and P(AR4) represents the
proportion of the actual installed capacity of rooftop PV to the
maximum installed capacity of Party and government organs, public
buildings, industry and commerce, residential, respectively.

PV installed capacity constraint:

Ppv,i ≤Pi,max (7)
where Ppv,i represents ith installed PV power capacity and Pi,max

represents ith allowed max installed PV power capacity.
The integration of large-scale PV systems has an impact on the

security and stability of the power system. Along with this, there are
several other constraints that need to be considered in the
distributed PV access model. These constraints can be
summarized as follows:

2) Power flow balance constraints (Cheng et al., 2017b).

PGi + PDGi − PLi − Ui∑Nbus
j�1 Uj Gij cos θij + Bij sin θij( ) � 0

QGi + QDGi − QLi − Ui∑Nbus
j�1 Uj Gij sin θij + Bij cos θij( ) � 0

⎧⎨⎩ (8)

where Nbus is the number of the nodes; PGi, PDgi and PLi are
traditional generation active power output, DG (distributed
generation) active power output and load active power demand
of ith node, respectively; QGi、QDgi and QLi are traditional
generation reactive power output, DG reactive power output and
load reactive power demand of ith node, respectively; Ui is the
voltage of ith node; Gk (i,j) and Bij represents conductance and
susceptance between ith node and jth node; θij is the phase difference
between nodes i and j.

3) Node voltage constraints (Cheng et al., 2018).

When implementing rooftop distributed PV integration, it is
crucial to consider the voltage impact on the distribution network,
particularly the voltage deviation. For instance, the integration of
large-scale PV systems can lead to reverse power flow, resulting in an
elevated terminal voltage. As the PV integration ratio continues to
rise, the issue of overvoltage becomes more severe. Hence, it is
imperative to enforce deterministic voltage constraints. Given that
the power flow within the system is influenced by the integration of
distributed PV, the system voltage deviation is constrained, and the
node voltage deviation can be expressed as follows:

Δu% � U − Uexp

Uexp
× 100% (9)
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where Ui is the voltage of ith nod; Uexp represents the
expected voltage.

4) Power flow constraint of distribution network lines.

Pline,i ≤Pcapacity i � 1, .......,NObra( ) (10)

where i stands for the branch number of distribution network;
NObra is the number of branches; Pline,i is the active power flow of
ith branch; Pcapacity is active power capacity of line.

5) Transmission line constraints.

Si,min ≤ Si ≤ Si,max (11)
where i stands for the branch number of distribution network; Sline,i
is the power flow of ith branch; Scapacity is power capacity of line.

3 IM-TLBO based model solving

3.1 Basic TLBO

The TLBO algorithm is an emerging artificial intelligence
optimization technique that draws inspiration from the teaching and
learning process. TLBO offers a multitude of advantages, including the
elimination of parameter adjustment, a simple algorithm structure, and
rapid convergence speed (Rao et al., 2011; Rao and Patel, 2013).

1) Teaching process

In this stage, a teacher is chosen from the group, often identified
as the most proficient individual. The teacher xteacher endeavors to
maximize the performance of the entire group by employing their
utmost capabilities and expertise.

di mi � r3 xteacher − TF ·M( ) (12)
xnew, i � xi + di mi (13)

Where r3 is the random number between [0,1]; TF is learning
factor; M is the central location of the class.

2) Learning process

In this stage, the students enhance their scores through effective
communicationwith one another. Each individual, denoted as xi, updates
their location by learning from another individual, xj. In the context of a
minimizing problem, the learning process can be expressed as follows:

xnew,i � xi + r4 xi − xj( ), f xi( )<f xj( )
xi + r5 xj − xi( ), other⎧⎨⎩ (14)

Where r4 and r5 are random number between [0,1], f (xi) and f
(xj) are objective function values of xi and xj, respectively.

3.2 IM-TLBO algorithm

In this paper, an improved multi-objective TLBO algorithm,
named IM-TLBO, is developed. The primary improvements are
listed as follows.

3.2.1 Elite reverse learning based teaching strategy
In the conventional TLBO approach, the valuable information

concerning the global convergence of elite individuals within the
group is not effectively utilized in the teaching and learning processes.
Hence, in this paper, reverse learning strategies based on elite individuals
is proposed to address the drawbacks of the traditional TLBO search
strategy, which often leads to local optima and reduced solution accuracy.
This approach enables us to fully leverage the effective information
possessed by elite individuals, thereby enhancing both search
efficiency and the algorithm’s local exploration ability.

If there is a real number x between [L,U], its inverse number is
defined as:

x′ � L + U − x (15)
For x � (x1, x2, · · ·, xn), xi ∈ [Li, Ui], i � 1, 2, ..., d, the reverse

number of x is x′ � (x1
′, x2

′, · · ·, x′
n)

x′
i � k Li + Ui( ) − xi (16)

Where k is the random number between [0,1].
Based on optimization of elite reverse solutions, an improved

teaching process is developed. For original individual xteacher and xteacher′ :
If f(xteacher′ )<f(xteacher), xteacher′ replace xteacher.
For multi-objective optimization problem, multi-objective

individual comparison strategy for xteacher individual selection
will be introduced in latter chapter.

3.2.2 Differentiated teaching and learning strategy
In the traditional TLBOalgorithm, the central position of the group is

typically guided by the optimal individual xteacher, without considering the
variations among individuals. To address this limitation, this paper
introduces a differentiated teaching and learning strategy based on the
principle of “teaching students according to their aptitude”. In this
strategy, parts of individuals continue to be guided by xteacher, playing
the role of outstanding individuals. Meanwhile, the other individuals
tempt to approach the average score (central position). This strategy helps
expedite the overall improvement of these specific individuals and
prevents their scores from falling significantly below the group
average. The individuals of the population are sorted according to
fitness in ascending order in the minimization problem. The
differentiate teaching and learning strategy can be expressed as follows.

di mi � r3−1 xteacher − T ·M( ), i � 1, 2, · · · · · · ·, N1( )
di mi � r3−2 T ·M − xi( ), i � N1 + 1, N1 + 2, · · · · · · ·, N( ){ (17)

xnew, i � xi + di mi (18)
where r3-1, r3-2 are the random numbers between [0,1]; TF is learning
factor;M is the central location of the class;N is the size of the population.

3.2.3 Elite archive set reduction strategy
In the multi-objective optimization process, the elite archive plays a

crucial role in preserving non-dominated solutions. The selection of
xteacher individuals is of significant importance. The ultimate objective is
to achieve a final Pareto solution set that closely approximates the true
Pareto solution set while promoting an equitable distribution of
solutions. To address this objective, the CCSD (cyclic crowded sort
deletion) strategy is presented in multi-objective TLBO when the
number of elite individuals exceeds the maximum threshold. This
strategy aims to enhance the algorithm’s performance by effectively
managing the crowdedness of solutions in the elite archive. By
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incorporating the CCSD strategy, the algorithm strives to improve the
quality and diversity of the final Pareto solution set, leading to more
accurate and well-distributed solutions (Chenga et al., 2017).

The Euclidean crowding distance of xi and xj is defined:

Cr xi, xj( ) � ������������������∑obj
k�1

fk xi( ) − fk xj( )( )2√√
(19)

Where obj is the number of objective functions; f is the fitness
function of the individual.

The steps of elite archive set reduction strategy are outlined
as follows:

Step 1: The distances between each individual in the archive are
computed by measuring the average Euclidean distance to its two
nearest neighbors. This calculation yields the crowding distance for
each individual, providing a measure of their proximity within the
file set. Subsequently, the individuals are sorted based on their
crowding distances.

Step 2: The archive is then pruned by removing the most crowded
individuals, which are identified as having the least crowding distance.
Afterward, the crowding distances of the remaining individuals in the
archive are recalculated to reflect the new configuration.

Step 3: Step 2 is iteratively repeated until the expected number of
individuals in the archive is attained, ensuring the optimization
process aligns with the predefined objectives.

3.2.4 Comparing strategy of multi-objective
individuals

In the original TLBO algorithm, the elite xteacher serves as a
guiding force for the population’s center. During the learning
process, random individuals are selected to learn from each
other. The comparing strategy becomes essential in determining
the fitness values during the stages of elite individual reverse learning
and learning. In this paper, a comparing strategy is developed to
select both the elite individual and the learned individual. Suppose
the two individuals xi and xj, and their minimizing objective
functions are fi(x1) and fi(x2), respectively.

1) If all fi(x1)≤fi(x2)(i � 1, 2, ..., n), i.e., x1 ≺ x2, then the
individual x1 is selected as the better individual.

2) If all fi(x2)≤fi(x1)(i � 1, 2, ..., n), i.e., x2 ≺ x1, then the
individual x2 is selected as the better individual.

3) Other situations, x1 and x2 are non-dominated with each other,
x1 or x2 is randomly selected as the better individual.

Based on above elite reverse learning, differentiated teaching and
learning strategy, CCSD and comparing strategy, the improved
multi-objective TLBO, i.e., IM-TLBO algorithm is proposed
in Figure 1.

3.3 IM-TLBO based model solving

The approach for solving the county roof PV access model using
the IM-TLBO algorithm is presented in detail below.

Step 1: Model Initialization
To begin, the model is initialized by obtaining the parameters of the

distribution network and investigating the available area for distributed
PV installation on different types of rooftops. Furthermore, the
parameters of the IM-TLBO algorithm are assigned.

Step 2: Algorithm Initialization
In this step, the algorithm is initialized by setting the PV

installing capacity as control variables x and initializing the
location of the population. Additionally, the values of the fitness
functions f1 and f2 based on equations 1 and (2) are calculated.

FIGURE 1
The outline of IM-TLBO algorithm.
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Step 3: Population Iteration
During this phase, the population undergoes iteration by

updating their locations based on the proposed IM-TLBO
algorithm. Non-dominated individuals are saved in an elite
archive. The xteacher is selected to execute the elite reverse
learning process. If individual constraints are not satisfied,
penalty functions are added to the fitness functions. Random and
dynamic selection methods are employed to select xteacher
individuals from the elite archive. When the number of
individuals in the archive exceeds its maximum capacity, the
cyclic crowded sort deletion CCSD strategy is utilized to remove
individuals.

Step 4: Termination Condition Evaluation
At this stage, the optimization solution is evaluated to determine

if it meets the termination condition specified during the model
initialization. If the termination condition is satisfied, the non-
dominated solution is outputted as the final optimized result.
Otherwise, the process returns to Step 3 for further iteration.

By following this systematic procedure, the county roof PV
access model can be effectively solved using the improved IM-
TLBO algorithm.

4 Benchmark functions test

To evaluate the effectiveness of the IM-TLBO algorithm in
addressing multi-objective optimization problems, a series of
tests are conducted using ZDT1-ZDT4 benchmark functions
(Deb et al., 2002; Cheng et al., 2017a; Tripathi et al., 2017) in
Table 1. The simulation tests are performed in matlab
2017 software under core i7 windows 10. The optimization
results are presented in Figure 2. Furthermore, the
performance of the IM-TLBO algorithm is compared with the
widely used TV-MOPSO, MODE, and M-TLBO algorithms, and
the comparative results are summarized in Table 2.

It is demonstrated in Figure 2 that the IM-TLBO algorithm is
highly effective in optimizing the ZDT1-ZDT4 benchmark
functions. The generated Pareto front accurately converges to
the true Pareto Frontier, indicating good convergence. Moreover,
the Pareto Frontier solutions obtained by the IM-TLBO
algorithm are uniformly distributed, signifying its superior
diversity and solution distribution. A comprehensive
comparison of IM-TLBO with other classical algorithms is
presented in Table 2, where the performance characteristics of
convergence and diversity are analyzed using the IGD index. The
results indicate that the IM-TLBO algorithm outperforms other
classical algorithms in terms of convergence and diversity.
Hence, proposed IM-TLBO algorithm has good performance
in both convergence and diversity.

5 Case study

5.1 Case introduction

In order to demonstrate the effectiveness of proposed PV
integration method of the whole county, IEEE 33 BUS system in
Figure 3 is adopted to simulate distribution network. In test system,
the total PV installed capacity f1 in Eq. 1 and voltage deviation f2 in
Eq. 2 are multi-objective fitness functions of optimization
algorithms. The basic reference voltage grade of the system is
12.66 kV. Bus 1 is the balance bus which is connected with upper
power grid. The roof PV integration scenarios setting are
shown Table 3.

5.2 PV integration solutions analysis

The obtained non-dominated Pareto solutions for PV access
using the proposed IM-TLBO algorithm are presented in Figure 4. It
is evident from the results that the method proposed in this paper

TABLE 1 Benchmark functions.

Problems n Variable bounds Objective functions Optimal solutions Comments

ZDT1 30 [0,1] f1 x( ) � x1
f2 x( ) � g x( ) 1 − �������

x1/g x( )√[ ]
g x( ) � 1 + 9 ∑n

i�2
xi⎛⎝ ⎞⎠/ n − 1( )

x1 ∈ 0, 1[ ]
xi � 0
x � 2, 3, ..., n

Convex

ZDT2 30 [0,1] f1 x( ) � x1
f2 x( ) � g x( ) 1 − x1/g x( )( )2[ ]
g x( ) � 1 + 9 ∑n

i�2
xi⎛⎝ ⎞⎠/ n − 1( )

x1 ∈ 0, 1[ ]
xi � 0
x � 2, 3, ..., n

Non-convex

ZDT3 30 [0,1] f1 x( ) � x1

f2 x( ) � g x( ) 1 − �������
x1/g x( )√ − x1

g x( ) sin 10πx1( )[ ]
g x( ) � 1 + 9 ∑n

i�2
xi⎛⎝ ⎞⎠/ n − 1( )

x1 ∈ 0, 1[ ]
xi � 0
x � 2, 3, ..., n

Convex, disconnected

ZDT4 10 x1 ∈ 0, 1[ ]
xi ∈ −5, 5[ ]
i � 2, ..., n

f1 x( ) � x1
f2 x( ) � g x( ) 1 − �������

x1/g x( )√[ ]
g x( ) � 1 + 10 n − 1( ) +∑n

i�2
xi

2 − 10 cos 4πxi( )[ ]
x1 ∈ 0, 1[ ]
xi � 0
x � 2, 3, ..., n

Non-convex
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effectively addresses the PV integration problem for the entire
county by simultaneously maximizing the installed capacity and
minimizing voltage deviation. The IM-TLBO algorithm successfully
yields a well-distributed Pareto front, showcasing its ability to
handle conflicting objective functions. The distributed PV
integration method introduced in this study takes into account
both the access capacity and its impact on the system voltage
index. These results offer decision-makers a range of PV
integration schemes to choose from, catering to different
economic and technical preferences.

To further validate the superiority of the proposed PV
integration method, four different cases are compared. Four
cases are no PV system installed case (Case 1), full PV
integration case (Case 2), minimum ratio for the entire county
case (Case 3), and PV optimal access case (Case 4). The
comparative results are presented in Table 4. It is revealed in
Table 4 that Case 1, representing the original IEEE-33 node
system, renders certain nodes below the lower voltage limit.
Consequently, this case fails to meet the necessary conditions
for secure, stable operation, making it infeasible. Similarly, Case

FIGURE 2
Pareto fronts of ZDT1-ZDT4 by IM-TLBO. (A): Pareto front of ZDT1. (B): Pareto front of ZDT2. (C): Pareto front of ZDT3. (D): Pareto front of ZDT4.

TABLE 2 Comparison results in ZDT1-ZDT4 of different algorithms.

Functions Metrics TV-MOPSO MODE M-TLBO IM-TLBO

ZDT1 IGD(M) 4.58e-03 4.60e−03 4.68e−03 3.85–03

Var 2.15e-08 4.00e−08 4.12e−08 2.25e−09

ZDT2 IGD(M) 4.79e−03 4.05e−03 - 3.82e−03

Var 3.14e−08 5.51e−09 - 5.73 e−10

ZDT3 IGD(M) 4.84e−03 1.06e−02 5.28e−03 4.76e−03

Var 1.11e−08 1.93e−08 8.47e−07 1.93e-08

ZDT4 IGD(M) 5.19e+00 3.58e−02 - 3.84 e−03

Var 1.65e+01 1.57e−03 - 2.67e-09
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2, characterized by full PV access, demonstrates an excessive
access ratio leading to an overvoltage phenomenon.
Consequently, this case is also deemed impractical. Case

3 satisfies the minimum installation ratio requirement of the
whole county, ensuring that the system’s power flow adheres to
the conditions necessary for secure and stable operation.
However, Case 4, which employs the proposed PV optimal
integration method not only fulfills the system’s requirements
for safe and stable operation but also outperforms Case 3 in terms
of optimal total PV capacity and voltage deviation indexes. In
conclusion, these results affirm the effectiveness of the proposed
PV optimal integration method by guaranteeing the system’s
safety and stability while simultaneously improving the overall
PV capacity and decrease voltage deviation.

5.3 PV integration schemes analysis

The selected optimal solutions from Figure 4, namely, the
representative optimal voltage deviation scheme (S1), optimal PV
capacity scheme (S2), and compromise scheme (S3), are presented
in Table 5, showcasing their respective maximum integration
capacity and minimum voltage deviation. These results serve as
valuable references for decision-makers involved in distribution
network planning, offering multiple perspectives for economic
and technical decision supports.

FIGURE 3
IEEE33bus system.

TABLE 3 Roof PV integration scenarios setting.

Scenario number Bus number Scenario type Maximum PV access capacity/MW

1 1 Party and government offices 1 1.5

2 4 Public facility 1 3

3 6 Party and government offices 2 1.5

4 9 Industry and commerce 1 5

5 12 Industry and commerce 2 4

6 16 Resident user 1 2

7 19 Resident user 2 1.5

8 23 Industry and commerce 3 5

9 26 Public facility 2 1.5

10 30 Resident user 3 1.5

FIGURE 4
Pareto solutions of large-scale PV access based on IM-TLBO.
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Table 6 demonstrates the distributed photovoltaic capacity
installation scheme for the compromise solution S3. A detailed
analysis of the planning results in Table 6 reveals that the
installation solution effectively satisfies the installation ratio
requirements across various scenarios for large-scale photovoltaic
access within the county. It is worth noting that due to the imposed
voltage limit, the installation capacity ratio decreases as the node
moves further away from the balance bus.

Figure 5 illustrates the bus voltages of the compromise solution S3 in
the distribution network. Prior to the installation of rooftop distributed
PV systems, the voltages of all buses in the original IEEE33 bus
distribution network are generally below 1 p.u. Notably, the voltage
quality of nodes located near the end of the line falls below the normal
range, measuring below 0.95 p.u. However, when the rooftop distributed
PV systems integrated, the bus voltage profile of the distribution network
undergoes a significant improvement. The roof distributed PV
integration method proposed in this paper effectively enhances the
voltage quality to bring the voltage value near the end of the line
back into the normal range. These results demonstrate that the proposed
method not only maximizes the actual intergation capacity, but also
enhances the node voltage profile.

5.4 Algorithms comparison analysis

In order to evaluate the performance of the strategies utilized in
the proposed IM-TLBO algorithm, a comparison was made with the
multi-objective TLBO algorithmwithout elite reverse search strategy
and differentiated teaching learning strategy (M-TLBO) and the
classic TV-MOPSO and MODE algorithm, as presented in Figure 6.
It is evident that all algorithms were able to effectively address the
multi-objective programming problem of PV large-scale integration
presented in this study. The optimal Pareto solutions obtained in
Figure 6 validate the effectiveness of each algorithm.

A closer comparing of the optimization results obtained from
the comparison reveals that the Pareto Frontier obtained by the IM-
TLBO algorithm, as depicted in Figure 6A, is situated on the lower
right when compared to the M-TLBO Frontier as a whole. This
indicates that the convergence of the IM-TLBO algorithm is
superior to that of the M-TLBO algorithm. The improved
strategy employed in the IM-TLBO algorithm thus enhances its
search ability.

Furthermore, it can be inferred from the results illustrated in
Figure 6B that the convergence of the IM-TLBO algorithm surpasses
that of the TV-MOPSO algorithm. Additionally, the Pareto Frontier
solutions achieved by the IM-TLBO algorithm in Figure 6B are more
uniformly distributed, indicating that IM-TLBO displays better
diversity than TV-MOPSO. Therefore, it can be concluded that
the CCSD proposed in this study effectively improves the diversity of

TABLE 4 Comparison of PV integration results of different case.

Case 1 Case 2 Case 3 Case 4

feasibility infeasible (undervoltage) infeasible (overvoltage) feasible feasible

Optimal f1/MW - - 8.5 10.87

Optimal f2/p.u - - 8.6 8.06

TABLE 5 Result of Rooftop PV integration.

Solutions Solution S1 Solution S2 Solution S3

f1/MW 9.25 11.76 10.87

f2/p.u 8.06 10.69 9.02

TABLE 6 Compromise solution S3 of roof PV access.

Scenario type Installed capacity/MW

Party and government offices 1 1.500

Public facility 1 1.060

Party and government offices 2 0.750

Industry and commerce 1 1.500

Industry and commerce 2 1.200

Resident user 1 0.404

Resident user 2 1.500

Industry and commerce 3 1.910

Public facility 2 0.603

Resident user 3 0.300

FIGURE 5
Impact of roof PV on bus voltage in compromise solution S3.
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individuals as well as the uniformity of their distribution.
Comparing the results depicted in Figure 6C, it is shown that the
convergence of the Pareto Frontier solutions achieved by the MODE
algorithm is notably inferior to that of the IM-TLBO algorithm.
Additionally, the distribution characteristics of the MODE Pareto
Frontier are also poorer.

In summary, the comparison analyses conducted in this research
demonstrate the superior performance of the strategies utilized in
the proposed IM-TLBO algorithm when compared to the M-TLBO
algorithm, the classic TV-MOPSO and MODE algorithms.

6 Conclusion

This paper focuses on the method for large-scale distributed PV
integration in an entire county. To begin with, a roof PV integration
model is developed to maximize roof PV access capacity and
minimize voltage deviation within the distribution network
system, taking into account the requirements of large-scale
integration scenarios across the county. The model ensures the
maximization of photovoltaic access capacity in different
scenarios while maintaining the safe and stable operation of the
distribution network. Furthermore, it considers the impact of
photovoltaic access on power flow within the distribution network.

In order to solve the PV large-scale planning integration model
efficiently, an improved IM-TLBO is proposed. This algorithm

enhances the optimization process and the quality of solutions.
Simulation experiments are conducted using the IEEE33 bus system
to validate the performance of the enhanced multi-objective TLBO
algorithm in PV access planning. The analysis reveals that the
proposed method successfully addresses the maximum
photovoltaic access capacity challenge and significantly improves
the voltage quality at each node of the system after installing the
rooftop distributed photovoltaic systems.

Moving forward, future research on roof distributed PV systems
will explore the integration of energy storage systems to achieve peak
shaving and load shifting functions during the scheduling process.
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