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Transient stability assessment (TSA) plays a pivotal role in guiding power grid risk
control strategies. However, it faces challenges when dealing with complex
multi-graph inputs generated by pre-fault, fault occurrence, and post-fault
states. Meanwhile, most previous research studies neglected the assessment
of the transient stability level. To address this, we propose a multi-task transient
stability assessment (MTTSA) approach. In MTTSA, we introduce a multi-graph
sample and aggregate-attention network (GraphSAGE-A) designed to capture
stability features even amidst topology changes. A multi-head attention
mechanism and local normalization method are adopted for a better
extraction of the global and contextual information. Additionally, we introduce
a quantified transient stability risk index considering the transient stability
boundary and incorporate a multi-task dense structure to enhance MTTSA’s
performance. Empirical tests, under changing operating conditions, conducted
on the IEEE 39-bus system showcase a significant performance improvement
with the proposed MTTSA method.
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1 Introduction

With the increasing penetration of renewable energy and widespread utilization of
power electronic devices, the modern power system becomes less resistant to disturbances
and, thus, requires more reliable and effective transient stability assessment (TSA) methods.
On one hand, the accuracy and speed of traditional analysis methods have been challenged.
On the other hand, most previous studies concentrated on the binary stability category,
which rarely concerned a quantified stability risk assessment under the influence of TSB. In
such contexts, it is essential to adopt a multi-task transient stability assessment (MTTSA)
method in order to predict the risk levels and activate emergency control on time.

The practical implementation of TSA is facilitated by the rapid proliferation of phasor
measurement units (PMUs) (Gurusinghe and Rajapakse, 2016) and the development of
feature extraction technology in power grids. PMUs provide real-time loadmonitoring data,
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and modern artificial intelligence algorithms can effectively extract
features of large amounts of data.

As is shown in Table 1, traditional TSA is previously combined
with the direct method of transient stability analysis and the time-
domain simulation technique (Maria et al., 1990). To improve the
accuracy of prediction, researchers proposed a fully time-domain
simulation (TDS)-based method (Diao et al., 2017), which solves
high-dimensional nonlinear differential-algebraic equations (DAEs)
of the power system using numerical integration algorithms.
However, the results of this numerical differentiation greatly
depend on the parameters of power grid models, such as
synchronous generators, loads, transmission lines, and emergency
control devices. In addition, the increasing time costs brought by the
growing scale of the power system limits the speed of the TDS-based
method (Senyuk et al., 2023).

The goal of online TSA is realized due to the development of
machine learning (ML) and deep learning methods. Liu et al. (2020)
and Liu et al. (2021) developed the transient stability margin with
the concept of critical clearing time (CCT), which is tested to easily
change through multiple time-domain simulations. The qualitative
methods based on the analysis of the kinetic energy of a generator
rotor before, during, and after a contingency gradually develop
stability criteria and form the trajectory-based transient stability
index (TSI) (Glavic et al., 2007; Xu et al., 2015). The deployment of
high-precision PMUs (Gurusinghe and Rajapakse, 2016) has led to
an increase in the rate of power system parameter sampling, which,
in turn, supports the utilization of large data in ML-based methods.
The model-free ML methods, such as artificial neural network
(ANN) (Siddiqui et al., 2018), support vector machine (SVM)
(Gomez et al., 2011), and random forest (Mukherjee and De,
2020), can solve the problem of TSA. ANNs with a parallel
structure were first applied to TSA (Siddiqui et al., 2018).
Nonetheless, ANN-based TSA algorithms have not been widely
adopted due to computational limitations. SVMs were used to
process the binary classification task of TSA with short-time
response and high reliability, but it is sensitive to the inevitable
noise of input data. There are decision tree-based methods including
fuzzy decision tree (Kamwa et al., 2012) and random forest
(Mukherjee and De, 2020) with drawbacks of the proneness to
re-training. Overall, the mentioned TSA algorithms are willing to
overfit restrictions by generalization ability.

Different from traditional ML methods, deep learning models
are capable of handling significantly larger-scale data by
automatically generating features from raw input. Yu et al.
(2018) developed a TSA system based on the long short-term
memory network (LSTM) to capture the long-term dependencies

along the time steps of time series. Furthermore, an LSTM-based
gated recurrent unit is added to a two-stage TSA method for the
analysis of uncertain samples after the first stage (Zhan et al., 2022).
Convolutional neural network (CNN) is also widely used in many
outstanding TSA models (Gupta et al., 2019; Shi et al., 2020). The
time series sampled by PMUs are mapped into heatmap
representation (Kamwa et al., 2012) or processed as a multi-
channel matrix (Shi et al., 2020) to leverage the strengths of
CNN in learning representations from images. Additionally, the
gated recurrent unit model is developed to process the time-adaptive
TSA (Chen and Wang, 2021). Moreover, an attention mechanism is
introduced and combined with bidirectional (Bi)-LSTM to extract
more robust features (Mahato et al., 2021). Nevertheless, a power
grid inherently exhibits a structured graph representation, where
buses are modeled as nodes and transmission lines are modeled as
edges (Ishizaki et al., 2018). CNN, LSTM, or Bi-LSTM attention
mechanisms failed to effectively recognize the system’s topological
features, which has an impact on TSA tasks.

Fortunately, the introduction of graph neural networks (GNNs)
provides a promising approach for addressing the aforementioned
issues. Although bus-modeled nodes possess numerous temporal
features, the effectiveness of combining the TSA method based on
random walk-based GNN is not satisfactory. The GNN models,
including graph convolutional network (GCN) (Huang et al., 2020),
graph sample and aggregate network (GraphSAGE) (Lin et al.,
2022), and graph attention network (GAT) (Huang et al., 2021),
effectively handled both the temporal and system topological
features of nodes and are widely utilized in TSA tasks. Huang
et al. (2020) proposed the online TSA comprising GCN, which
explicitly integrates the bus (node) states with the topological
characteristics. The GCN model is also capable of power grid
fault location prediction and load shedding decision (Kim et al.,
2019; Chen et al., 2020). As variants of GCN, GraphSAGE and GAT
models enable the automatic generation of small-scale topological
changes from raw samples.

The trajectory-based TSI observed in power systems is widely
applied for the qualitative assessment of transient stability, but the
fixed TSB affects the overall generalization ability of TSA methods for
diverse samples (Yan et al., 2021). Zheng et al. (2017) transformed the
TSA problem into a relationship between state space using time series
approximation and the region of attraction, while Du and Hu (2021)
and Li et al. (2021) quantified the transient stability risk of uncertain
samples using the TSB associated with sample orientation in a two-
stage LSTM-based approach. A trajectory-based piece-wise stability
index (PSI) was developed by Huang et al. (2021) to describe the
transient stability level instead of CCT.

TABLE 1 Comparison of previous studies.

Method Advantage Disadvantage

Traditional TSA High accuracy with appropriate simulation Large calculating time costs

Machine learning models Short-time response and high reliability Sensitive to the noise of data

Deep learning models Short-time response; high reliability; and robustness Fail to recognize topology features

GCN Short-time response; high reliability; robustness; and topology extraction Lack of topological generalization ability

GraphSAGE and GAT Short-time response; high reliability; robustness; and adaptability to topology Lack of quantified risk assessment
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In our study, we design a multi-graph sample and aggregate-
attention network (GraphSAGE-A) for MTTSA feature aggregation.
A multi-head attention mechanism is utilized to replace the global
information aggregation from the neighbors, while the extraction for
contextual features is addressed by the local normalization for edge
weights. A TSI-based transient stability prediction task (TSP) and a
quantified transient stability risk prediction task (QRP) considering
the uncertain samples of TSP work in parallel and share the features
abstracted by GraphSAGE-A. A transient stability risk index (RI) is
developed to instruct the subsequent risk control. The main
contributions of this paper are summarized as follows:

1) A multi-graph GraphSAGE-A model requires the system
dynamics before, during, and after a fault (t0− , t0+ , and tc+ )
as input and realizes TSA with good precision even under
topological changes.

2) A multi-head attention mechanism is adopted to extract the
global and contextual information better, while the local
normalization method for edge weights is proposed to
improve the generalization ability for the subgraph.

3) A multi-task method concurrently considers the transient
stability qualitative and quantitative analyses. An RI,
considering the variability across different samples, is
proposed to quantify the extent of the deviation from TSB.

The rest of this paper is organized as follows. Section 2 proposes
the topology adaptive MTTSA method, while Section 3 presents the
designs of GraphSAGE-A in detail. Experiments are conducted on
the IEEE 39-bus system and discussed in Section 4. Finally, the
conclusion is provided in Section 5.

2 Topology adaptive multi-task
transient stability assessment method

2.1 MTTSA problem modeling

From a mathematical perspective, the power system TSA can be
modeled by high-dimensional nonlinear DAEs with initial
conditions at three snapshots as follows:

dx

dt
� f x, y( )

0 � gG x, y( )
x, y( ) ∣∣∣∣ t0− � x0, y0( )
G | t0− � G0−

G | t0+ � G0+

G | tc+ � Gc+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (1)

where vector x represents the state variables including dynamic
generator rotor angles and bus voltages, while vector y denotes the
algebraic variables (e.g., the static impedance of transmission lines).
G|tj, j � 0−, 0+, c+ represents the parameterized network topologies
of the graph type (Ishizaki et al., 2018) at the jth sampling shot
before, during, and after a fault.

The mentioned data-driven TSA methods, using ML (Kamwa
et al., 2012; Siddiqui et al., 2018) or deep learning models (Ishizaki
et al., 2018; Yu et al., 2018), calculate the full-time series features of
the period (x, y) | t{ }, t ∈ t0− ∪ [t0+, tc+ + kΔt]. Here, Δt stands for a
time step with k> 0. The pre-fault one, which evaluates the transient
stability for a pre-defined disturbance setting, relies on numerical
analysis to solve DAEs. In contrast, the post-fault one focuses on
evaluating the stability trends during the occurrence of a
contingency, which leads to increased demands for dynamics
from PMUs after the fault. Both pre- and post-fault methods
explored the correlations among the state variables, particularly
the relationship between generator rotor angles and other state
variables. Nevertheless, they failed to provide fast predictions
because of the time-consuming TDS or a significant number of
PMU sampling.

Three snapshots (t0− , t0+ , and tc+ ) utilized instead of the period
(x, y) | t{ }, t ∈ t0− ∪ [t0+, tc+ + kΔt] realized online TSA by avoiding
the vast majority of TDS or PMU sampling. However, we need to
adopt theMTTSAmethod with a better ability for feature extraction,
especially the topological structure.

2.2 Design of the MTTSA method

Regarding the significant requirement for topology
representation learning, GraphSAGE-A becomes the critical point
of the proposed MTTSA method, as shown in Figure 1. The
aggregate-attention layers in the multi-graph node embedding
module generate features for TSP and QRP modules. Considering
the ensemble learning, we develop two predictor tasks, where TSP
refers to the binary classification problem and QRP constructs the
regression model. Both TSP and QRP belong to the full-connected
network. Then, the MTTSA method is divided into the joint-
training stage and the applying stage. In the joint-training stage,
the sample loader structure allows mini-batch training for
GraphSAGE-A, while TSP and QRP share the output from the
multi-graph node-embedding module.

Meanwhile, the design with the labels of various tasks guarantees
stability concerning coarse- and fine-grained embedding captured.
As a result, richer inter-task information leads to the better
performance of both TSP and QRP. During the online applying
stage, state variables from TDS or PMU sampling are input into the
trained GraphSAGE-A to generate the stable possibility p̂ from TSP
and the predicted RI ]̂ from QRP.

3 Multi-graph sample and aggregate-
attention network

3.1 Model input and data preprocessing

Considering the dynamic embedding from TDS or PMU
sampling, the amplitude and phase angle of voltage and the
active and reactive power of both generators and loads had a
total of four dimensional features for the i − th bus at the j − th
snapshot. The raw input of the K − th sample can be described as the
following matrix XK ∈ Rm×4n:
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XK �

U11, θ11,P11,Q11, /,U1i, θ1i, P1i,Q1i, /,U1n, θ1n,P1n,Q1n

..

.
1 ..

.

Uj1, θj1,Pj1,Qj1, /,Uji , θji, Pji,Qji, /,Ujn, θjn,Pjn ,Qjn

..

.
1 ..

.

Um1, θm1,Pm1,Qm1, /,Umi, θmi, Pmi,Qmi , /,Umn , θmn ,Pmn ,Qmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(2)

where Uji, θji, Pji, and Qji represent the voltage amplitude, voltage
phase angle, active power, and reactive power of the i − th node at
the j − th shot, respectively. Following the z-score normalization, the
data are performed as follows:

X* � X − μ

σ . (3)

X* is the normalized value of X, and μ and σ are the mean and
standard deviation of the features, respectively.

The number of input graph nodes refers to the total buses of the
power grid, while the information of edges refers to the transmission
lines. The multi-graph representing the single sample is defined
as follows:

GKj � VKj,AKj( ). (4)

GKj represents the graph of the K − th sample at the j − th
snapshot, while Vkj represents the j − th row of the normalized XK.
AKj is the adjacency matrix. The formula is

AKj u[ ] v[ ] �
0 u,V( ) ∉ Ekj

Zm v,u( )
∣∣∣∣ ∣∣∣∣ V,V( ) ∈ Ekj

1 u � v

⎧⎪⎨⎪⎩ , (5)

where AKj[u][v] are the element of the matrix AKj following the
location (u, v), while v and u are any two node indices of the graph
GKj. EKj[u][v] and |ZKj(v,u)| denote the existence and static
impedance of a transmission line from the v − th bus to the u −
th bus at the j − th snapshot of the K − th sample, respectively.

3.2 GraphSAGE

For each node targeted of the given GKj, the GraphSAGE model
samples the neighbors and aggregates their features to the neighbors’
vector hkN(v) depending on the representations of the previous stage:

hkN v( ) � AGGk WeightNorm AKj u[ ] v[ ]( ) p hk−1u ,∀u ∈ N v( )( ), (6)

FIGURE 1
MTTSA method.
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where k refers to the k − th stage and N(v) denotes the neighbor
indices of the target node index v. The 1-hop neighbors indices, whose
corresponding element with v in the adjacencymatrix is not 0 or 1, are
usually utilized according to the size of the graph. AGGk is defined as
the method at the k − th stage to process the representations,
including mean, pooling and LSTM. In addition, the initial
representations of node indices are the normalized node features.

h0v � Ujv
*, θjv*, Pjv

*,Qjv
*( ) ∈ VKj. (7)

Ujv
*, θjv*, Pjv

*, and Qjv
* are the elements of node features VKj. Here,

we adopt the local normalization of the adjacency matrix to meet the
requirements of local aggregation as needed by the GraphSAGE
algorithm. The method is

WeightNorm AKj u[ ] v[ ]( ) � AKj u[ ] v[ ]∑h∈N v( )AKj h[ ] v[ ],∀u ∈ N v( ), (8)

where WeightNorm(AKj[u][v]) refers to the result of local
normalization for the edge from the u − th node to the v − th
node and AKj[u][v] stands for the element of AKj according to
the location (u, v).

Then, the node index v tends to form its own vector hkv at the
k − th stage for the next step such that

hkv � σ Wk · CONCAT hk−1
v , hkN v( )( )( ), (9)

whereWk is the weight matrix for the training of the k − th stage. σ is
usually the ReLU function for activation, and CONCAT denotes the
concatenating method for the input given.

3.3 Graph attention

The association degree differs between different nodes (Ding
et al., 2022). It means the differences between global and contextual
information cannot be performed in the weight set by the
aggregation functions of the GraphSAGE model. A graph
attention mechanism can compute the relationship between any
two nodes regardless of their adjacency to extract the global view in
the graph. Hence, the graph attention mechanism is used as the
aggregation method to weigh the significance of the nodes among
the neighbors. Furthermore, a multi-head graph attention
mechanism allows multiple graph attention blocks to work in
parallel to aggregate more contextual information at the same time.

First, a multi-head function is defined as follows:

Multihead m( )kv,u( ) �
CONCAT Whk−1,1

v ,Whk−1,1
u ,( )

...
CONCAT Whk−1,mv ,Whk−1,m

u ,( )
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (10)

where Multihead(m)k(v,u) stands for the totally m heads attention
processing the matrix at the k − th stage mapped by all the single
typical attention processing matrixes for any two node indices from
the 1st step to the m − th step. Now, we can calculate the weight αkvu
between the node index u and v via a softmax function.

αkvu �
exp LeakyReLU aTMultihead m( )kv,u( )( )( )

∑j∈N v( ) exp LeakyReLU aTMultihead m( )k v,j( )( )( ). (11)

In the formula, aT denotes the parameter vector of the network,
and LeakyReLU is a nonlinear activation function. Finally, the
multi-head graph attention output for every node index can be
expressed as follows:

hk
v � σ ∑

j∈N v( )
WeightNorm AKj j[ ] v[ ]( ) · αk

vj
·Whk−1

v
⎛⎝ ⎞⎠. (12)

Figure 2 shows the aggregation for the target node given in
GraphSAGE or GraphSAGE-A. The local normalization strategy
allows the reshaping of edge weights for the subgraph.

Figure 3 shows the design of the node-embedding module as
well as the dense layers for TSP and QRP. The multi-head attention
mechanism considers the global and local structure by weighing the
more important nodes. The three-layer structure, input-size, and
out-size for each layer are designed according to the node numbers
per graph and the dimension of node features.

3.4 TSP and QRP in dense

The output of the node-embedding module is concatenated by
the outputs HL

m of the three graphs for the K − th sample as follows:

�HK � CONCAT HL
m( ),m � 1, 2, 3. (13)

Finally, the embedding matrix is formed as a vector, which is
processed by full-connect multi-layer perceptron (MLP) modules:
TSP and QRP. TSP refers to the classification task, whereas QRP
refers to the regression task. We adopt the softmax and softsign
functions for the output of TSP and QRP as (14) and (15),
respectively.

p̂i �
exp zTSPi( )∑i exp zTSPi( ), (14)

v̂ � zQRP

1 + zQRP| |. (15)

The confidence p̂i refers to the i − th category, while v̂ denotes
the predicted stability risk index.

3.5 A transient stability risk index

There is a three-dimensional label for each sample input in the
GraphSAGE-A. The first and second dimensions of one-hot label
refer to the TSP task via a trajectory-wise TSI as follows (Rahmatian
et al., 2017):

TSIK � 360° − Δδmax| |K
360° + Δδmax| |K, (16)

where |Δδmax|K refers to the maximum rotor angle difference
between any two generators during the sampling or simulation of
the K − th sample. When TSIK < 0, the K − th sample is unstable.
Otherwise, the system is stable. It appears that the TSI defines a
stability margin using a fixed value, while the TSB shifts slightly.
Therefore, a transient stability RI is proposed tomeasure the stability
deviation so that the special subsequent control schemes can be
considered.
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A fixed deviation ΔK of the K − th sample is defined as follows:

ΔK � 360(| ° − Δδ max| |K)∣∣∣. (17)

A normalized CCT is also considered as follows:

t*K � tK − μCCT
σCCT

, (18)

where t*K and t*K refer to the normalized and original CTT of the
K − th sample, respectively. μCCT and σCCT denote the mean and
standard deviation of the total dataset. Then, we developed an RI for
the K − th sample as follows:

RIK � TSIK ΔK > δts
min sigmoid t*K + ξ( ) − 1,TSIK( ) ΔK ≤ δts{ , (19)

where sigmoid refers to the nonlinear activation function matching
the strong nonlinearity and non-autonomy of the power system and

δts denotes a discrimination threshold for the TSB shift among the
samples of the training set. ξ considers the extreme cases, especially
the multi-swing unstable samples. min selects the minimum value of
inputs. The RI value is limited within the range of [−1, 1] when
proper δts approaches 0.

3.6 Loss function

Multi-task downstream networks, including the TSP task and
the QRP task, share the output from node-embedding step as input.
Evidently, the joint loss function of GraphSAGE-A consists of the
loss from TSP and QRP. Additionally, a regularization item should
be considered as follows:

LOSS � LTSP + LQRP + βLR , (20)

FIGURE 2
Sampling and aggregation process.

FIGURE 3
Structure of GraphSAGE-A.
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where the binary classification loss LTSP is defined via the cross-
entropy function with batch size B as follows:

LTSP � −1
B
∑
b

ob1 · log p̂b1( ) + 1 − ob1( ) · log 1 − p̂b1( )[ ], (21)

where (ob0 , ob1) is the one-hot label for the TSP task and p̂b � (p̂b0 , p̂b1)
denotes the stable possibility of the b − th sample. As for the
regression loss LQRP, a mean squared error (MSE)-based function
is utilized with batch size B as follows:

LQRP � −1
B
∑
b

ν̂b − RIb( )2, (22)

where ν̂b and RIb stand for the predicted and real RI of the bth

sample. We adopt the L2 function as the regularization item with
weight β. The Adam optimization is used for training.

3.7 Evaluation metrics

To evaluate the performance of the TSP task, we introduce the
accuracy and f1-score metrics given by the following equations:

ACC � TP + TN

TP + TN + FP + FN
× 100%, (23)

F1 � 2TP

2TP + FP + FN
× 100%, (24)

where TP, TN, FP, and FN, respectively, stand for the number of true
positive, false negative, false positive, and false negative results. The
MSE can evaluate the performance of the regressor. The formula is

MSE � ν̂b − RIb( )2
TP + TN + FP + FN

. (25)

FIGURE 4
Topology of the IEEE 39-bus system.
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4 Experiments

4.1 Test system and simulation settings

The proposed MTTSA method is tested on the IEEE 39-bus
system. As is shown in Figure 4, the total system consists of 39 buses,
10 generators, 19 loads, 34 transmission lines, and 12 transformers.

All the samples are collected via TDS on PSD-BPA with sixth-
order generator models. The loads are set as a proportional mix of
the constant impedance and induction motor model. The settings of
the simulation can be depicted as follows:

• Situations based on all transmission lines working are called
the “Base” cases, while the “N-1” cases need one transmission
line off by avoiding those cases with islands

• A total of 11 different load levels within 80%–120% are
considered, while the generator outputs randomly match
the power flow

• Three-phase grounding faults and two-phase grounding faults
at the 0% of any transmission lines last for 0.1 s during every
simulation lasting for 6 s

• Labels of each contingency for TSP and QRP can be collected
and computed

Thus, 11,160 samples are selected with 5,929 stable ones and
5,231 unstable ones. The shuffled dataset is divided into the train set,
validation set, and test set with a ratio of 3:1:1, respectively, to ensure
the balance of distribution. All the experiments of the MTTSA
method are conducted on a 64-bit computer with Intel(R) Core i7-
12700 CPU@ 3.61 GHz CPU, 32 GB RAM, and NVIDIA GeForce
RTX 3080Ti 12G GPU.

4.2 Tests on the multi-task training method

Figure 5 shows the effectiveness of the proposed multi-task training
strategy with the same settings of the node-embedding module. The
joint-training method clearly leads to a significant increase from three
perspectives, including the ACC, F1-score, and MSE. The QRP mask
promotes a clear instability risk from certain samples because enriched
information was obtained from the multi-task training method.

4.3 Hyperparameter testing in the
GraphSAGE-A

For the whole structure of GraphSAGE-A, the multi-head
attention aggregation is developed as the key physical-enhanced
part. Regarding the hyperparameters, the number of heads K and
dropout rate dropout, both on the node features and the attention
weights, respectively, are considered as the key parameters to be
adjusted. During the tests of different parameter pairs, such as K �
(1, 2, 4, 6, 8) and dropout � (0, 0.1, 0.2, 0.3, 0.4, 0.5) (Figure 6), we
find that each new setting brings enhanced performance on TSP and
QRP, where the ACC and the F1-score increase by approximately
0.39% and 0.002%, respectively, while the MSE drops to 0.0068%.
The optimal hyperparameter is selected asK � 6 and dropout � 0.4.
All the hyperparameters of the model are shown in Table 2.

4.4 Verification of the multi-head
attention structure

The local normalized edge weight method and the multi-head
attention structure allow for more efficient adaptability to topology.
In order to verify the improvement, the GraphSAGE-mean and each
method detached GraphSAGE-A are compared to the proposed
model with the same hyperparameter. The results are shown in
Table 3. Essentially, adding both the single and simultaneous one as
the developed model has shown significant profits compared to the
baseline model.

4.5 Verification of RI

Figure 7 shows the distribution of CCT and RI of the uncertain
samples when shifting TSB considered (ΔK ≤ δts) with settings of
δts � 15, ξ � 2 in (16). Apart from the stable samples, the nonlinear
function can map samples located on the stable boundary to the
appropriate range. The subsequent control strategies can be adopted
for the power grid when the RI with suitable parameters is
sufficiently small.

4.6 Comparison with baseline methods

We compare five baseline models with the proposed
GraphSAGE-A method. Among them, CNN considers the
feature-shaped 2D image as inputs, while LSTM adopts the raw
inputs. The GNN-based models analyzed the same graph dataset
with the three-layer node-embedding structure. Table 4 provides
the results.

All the metrics of GraphSAGE-A performed better than the
others, where ACC exceeds 96.66% and MSE decreases to 0.0092.
The multi-head attention mechanism has been verified as a key
factor for performance improvement, owing to its proper
combination of global and local information.

Among the baseline methods, graph-deep structures such as
GCN, GraphSAGE, and GAT stacked with topological processing
show better performance than the traditional deep networks.

FIGURE 5
Performance of different strategies.
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Compared to GCN, the approximate structure of GraphSAGE-mean
exhibits slight improvements across three metrics. Similarly,
GraphSAGE-A also demonstrates slight improvements compared
to GAT, which shares the multi-head attention structure.

4.7 Effectiveness analysis of the topological
generalization ability

We further use the trained GraphSAGE-A inmore samples from
even worse conditions of the IEEE 39-bus system to test the
generalization ability for the topology. The total 2,000 samples
from “N-2” and “N-3” cases are selected with 960 stable and
1,040 unstable ones. The results are shown in Table 5.

Among the baseline models, traditional deep networks such
as CNN and LSTM experience significant performance
degradation when facing topological changes, where the ACC
and F1-score decline by approximately 10% and 0.002% while the
MSE drops to 0.017%. Due to the limitations in its inductive
learning, GCN slightly decreases when facing topological
changes. GraphSAGE, which considers reasoning and learning,
GAT with introduced attention mechanism, and GraphSAGE-A,
which simultaneously considers both, maintain stable
performance. The results indicate that the method proposed in
this paper outperforms other models in terms of adaptability
to topology.

4.8 Analysis of unbalance distribution

A total of 500 samples from “Base,” “N-1,” “N-2,” and “N-3”
cases are selected with 450 stable ones and 50 unstable ones to verify
the extreme imbalance. A focal loss function is developed to rewrite
the loss of TSP (Lin et al., 2017) as follows:

FIGURE 6
(A–C) Performance under various hyperparameters of the multi-head attention mechanism.

TABLE 2 Hyperparameters of GraphSAGE-A.

Batch size 171 Learning rate 0.001

Number of
heads K

6 Regularizer weight β 0.0005

Dropout rate 0.4 Node-embedding layer
size

(4, 16, 16, and 8)

TSP layer size (936, 128, 16,
and 2)

QRP layer size (936, 128, 16,
and 1)

TABLE 3 Tests on the model structure verification.

Model structure ACC F1-
score

MSE
(×10–3)

Proposed 96.66 0.8021 9.18

GraphSAGE-A with the global
normalized edge weight graph

94.21 0.7324 9.76

GraphSAGE-A with the typical attention
mechanism

94.03 0.7477 10.14

GraphSAGE-mean 92.56 0.6988 12.04
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LTSP � −1
B
∑
b

α · o( b
1)γ · log p̂b1( ) + 1 − α( ) · 1 − ob1( )γ · log 1 − p̂b1( )[ ], (26)

where (ob0 , ob1) is the one-hot label for the TSP task and p̂b � (p̂b0 , p̂b1)
denotes the stable possibility of the b − th sample. α ∈ (0, 1) is a
weighting factor for class 1 and 1 − α is for class 0. γ ∈ [0, 2] is a
value setting.

During the tests of different parameter pairs, such as α �
(0.09, 0.1, 0.12, 0.14, 0.16) and γ � (0, 0.5, 1, 1.5, 2) (Figure 8),
the optimal hyperparameter is selected as α � 0.12 and γ � 1.5.
The performance under imbalance is maintained with a
proper setting.

5 Conclusion

In this paper, anMTTSAmethod is adopted to detect the accurate
TSP and QRP of power systems after faults. The system features from
pre-fault, fault occurrence, and post-fault snapshots (t0− , t0+ , and tc+ )
are transformed into multi-graph inputs. In addition to the transient
stability binary analysis, the multi-task strategy allows the transient
stability risks to be quantified and labeled by the RI, which considers
the stability margin variability across various samples. During the
joint-training stage, a topology adaptive network GraphSAGE-A is
developed to learn the transient features, where amulti-head attention
mechanism efficiently aggregates global information from the
neighbors via proper weights. The extraction for contextual
features is addressed by the local normalized strategy.

Therefore, tests based on the IEEE 39-bus system illustrate the
obvious improvement of the proposedMTTSAmethod compared to
baseline models. The adopted RI has been proved to quantify the
transient stability risk considering the uncertain samples caused by
TSB. Combined with the joint downstream, the risk of the power
grid is rapidly calculated to guide the risk control strategies. Through
the proper setting of credibility thresholds, the multi-head attention
structure and the local normalization for edge weights are verified to

FIGURE 7
(A,B) Distribution of the RI (uncertain part) and CCT.

TABLE 4 Comparison with baseline methods on “Base” and “N-1.”

Model ACC F1-score MSE (×10–3)

CNN 91.96 0.6749 13.44

LSTM 90.84 0.6704 13.5

GCN 92.48 0.6987 12.1

GraphSAGE-mean 92.56 0.6988 12.04

GAT 96.6 0.7986 9.25

Proposed 96.66 0.8021 9.18

TABLE 5 Comparison with baseline methods on “N-2” and “N-3.”

Model ACC F1-score MSE (×10–3)

CNN 82.48 0.5467 16.79

LSTM 80.21 0.5231 17.57

GCN 91.68 0.671 12.46

GraphSAGE-mean 92.56 0.6986 12.05

GAT 96.54 0.7985 9.46

Proposed 96.65 0.8021 9.18

FIGURE 8
Performance under various hyperparameters of the focal
loss function.
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be effective for model performance. Particularly, under severe
topology variations, the MTTSA retains a steady precision and
topology adaptive ability.

Further works will focus on optimizing the parameters of the
model and improving the generalization ability for addressing more
complex data.
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