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Meta-reservoir computing for
learning a time series predictive
model of wind power

Li Zhang*, Han-Xiao Ai, Ya-Xin Li, Li-Xin Xiao and Cao Dong

Xiangyang Electric Power Supply Company, State Grid, Xiangyang, Hubei, China

Wind energy has become an essential part of the energy power source of
current power systems since it is eco-friendly and sustainable. To optimize the
operations of wind farms with the constraint of satisfying the power demand, it
is critical to provide accurate predictions of wind power generated in the future.
Although deep learning models have greatly improved prediction accuracy, the
overfitting issue limits the application of deep learning models trained under
one condition to another. A huge number of data are required to train a
new deep learning model for another environment, which is sometimes not
practical in some urgent situations with only very little training data on wind
power. In this paper, we propose a novel learning method, named meta-
reservoir computing (MRC), to address the above issue, combining reservoir
computing and meta-learning. The reservoir computing method improves the
computational efficiency of training a deep neural network for time series data.
On the other hand, meta-learning is used to improve the initial point and other
hyperparameters of reservoir computing. The proposedMRCmethod is validated
using an experimental dataset of wind power compared with the traditional
training method. The results show that the MRC method can obtain an accurate
predictive model of wind power with only a few shots of data.
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1 Introduction

The utilization of wind power has dramatically improved in the last decade.Wind power
generation is random due to the uncertain property of wind speed. The uncertainty of wind
power generation brings challenges to the power system dispatch with safety constraints and
operational stability (Ummels et al., 2007). Thus, accurate wind turbine power generation
prediction is critical for improving the safety and efficiency of utilizing wind energy in
power systems (Lange, 2005). Nowadays, wind turbines are often equipped with Supervisory
Control and Data Acquisition (SCADA) systems that record the real-time data on wind
turbine operations. The data from the SCADA system can be applied to monitor the status
of the wind turbines. On the other hand, we can also use the data to build predictive models
for wind turbine power.

The research on wind power prediction has been mainly focused on providing time
series predictions based on time series data (Burke and O’Malley, 2011). Deep learning
models have been applied to improve the accuracy of wind power prediction. One
mainstream method is to use a long short-term memory (LSTM) neural network to
model the time series wind power model. For example, Chen et al. (2019) proposed

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1321917
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1321917&domain=pdf&date_stamp=2024-01-23
mailto:zhang.li336@gmail.com
mailto:zhang.li336@gmail.com
https://doi.org/10.3389/fenrg.2023.1321917
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1321917/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1321917/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1321917/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhang et al. 10.3389/fenrg.2023.1321917

a two-layer method, which combines extreme learning machine
and LSTM to address the nonlinear property of the wind power
model and overcome the weakness of linear combination by using
only one layer. In addition, Ko et al. (2021) proposed a deep
residual network that integrates long and short bidirectional LSTM
to improve accuracy and training efficiency further. Recently, a
probabilistic prediction of wind power has also been addressed.
Zhang et al. (2021) designed a multi-source and temporal attention
network to improve prediction performance by introducing three
specific designed sources. Furthermore, Safari et al. (2018) used
ensemble empirical mode decomposition to divide the wind power
time series into different components with different time–frequency
characteristics. Then, the authors used chaotic time series analysis
to discover the components with chaotic properties. Subsequently,
the predictive model provides the predictions for the chaotic
and nonchaotic parts separately, which improves the prediction
accuracy. Zhao et al. (2021) proposed an integrated probabilistic
forecasting and decision framework to optimize the prediction
interval of wind power and quantify the probabilistic reserve
simultaneously. An extreme learning machine is applied to reduce
the time efficiency of establishing the prediction interval. In
addition, a novel closed-form prediction for wind speed and wind
power is presented by Wang et al. (2021). Liu et al. (2018)integrated
wavelet packet decomposition, gray wolf optimizer, adaptive
boosting.MRT, and robust extreme learningmachine to increase the
accuracy of multi-step prediction for wind power.

Recent research has discovered that the wind speed dynamical
model and the wind turbine power curve depend on the
environment, such as atmospheric conditions and temperature
(Cascianelli et al., 2022; Pandit et al., 2023). None of the above
research on wind power predictive models has considered
environmental changes. Wu et al. (2023) presented a heuristic result
that considers the atmospheric model in wind power prediction.
However, it does not give hints on building a more general model.
Deep models encounter overfitting issues (Duffy et al., 2023). As
the environment changes, the prediction by deep models deviates
from the real value and needs to be modified by using data from
the new environment. The traditional training methods for deep
models need a sufficiently large number to train the model, which is
computationally complex for real-time modification. In addition, it
may not be practical to quickly obtain many new data.

The reservoir computing method is a computationally efficient
method to train neural network models (Hamedani et al., 2018;
Nokkala et al., 2022), including recurrent neural networks (RNNs)
and LSTM neural networks. Although using the reservoir
computing method for deep models can significantly reduce the
computational complexity for training, the issue of not having
enough data quickly is still unresolved. Meta-learning has been
validated to adapt the deep model to a new situation with only a
few shots of data (Li and Hu, 2021; Tian et al., 2022). This paper
combines the advantages of reservoir computing and meta-learning
and proposes a novel wind power predictive model, named the
meta-reservoir computing method. Meta-learning optimizes part
of the hyperparameters of the reservoir computing algorithm based
on a multiple-task dataset. Then, the enhanced reservoir computing
algorithm can efficiently adapt the predictive model of wind power
to a new task with a few data samples. We conducted experimental
data-based validations to evaluate the proposed meta-reservoir

computing method. The main contributions of this paper are
summarized as follows:

• This is the first study to consider the problem of adapting a deep
learning wind power predictive model with small samples.
• Meta-learning is combined with reservoir computing for the
first time to improve the training efficiency of deep learning
models for wind power prediction with the constraint of small
samples.

The remainder of this paper is organized as follows: Section 2
presents the addressed problem after formulating the model,
integrating the environment factors; Section 3 explains the proposed
meta-reservoir computing method for wind power predictive
modeling; Section 4 presents the validation results of applying the
proposed meta-reservoir computing method to an experimental
dataset; and Section 5 presents the conclusions of this paper.

2 Addressed problem: fast model
learning for wind power prediction

Let the time index be k = 0,1,2,… ,T,…. At every time k, the
wind power is defined by pk.Wind power is generated from thewind
turbine and depends on the wind speed at the current time index k.
Let sk be the wind speed at time step k. A nonlinear map called the
wind turbine power curve (Luo et al., 2022) describes the correlation
between wind speed and wind power output, which is expressed as
follows:

pk = h(sk,wk) , (1)

where wk defines the uncertainty related to the measurements and
the model bias.

On the other hand, the mechanism of generating wind speed sk
is essentially a Markov process defined by

sk+1 = f (sk,vk) , (2)

where vk is the system noise and f(⋅) is the function that describes
the state transition with randomness. Note that the randomness is
addressed by the system noise vk. Then, we can equivalently regard
the wind power itself following a Markov process defined by

pk+1 = g(pk,δk) . (3)

In practice, g(⋅) is not available. One basic solution is to use the
time series dataset of wind power to estimate g(⋅), which essentially
follows a data-driven fashion. Let

DT ≔ {pk}
T
k=0 (4)

be the available dataset. The traditional problem is to solve

min
̃g

T−1

∑
k=0
(pk+1 − ̃g(pk))

2. (5)

However, recent research reveals that the wind speed dynamical
model and the wind turbine power curve vary as the environment
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changes (Cascianelli et al., 2022; Pandit et al., 2023).Namely, instead
of using (Eqs 1, 2), the following model should be used:

pk = h(sk,θ,wk) , (6)

sk+1 = f (sk,θ,vk) , (7)

where θ defines an unknown variable to represent the influence of
the environment change. Then, the dynamical model of the wind
power is written by

pk+1 = g(pk,θ,δk) . (8)

Suppose the dataset DT includes the data collected from different
environments specified by labels from {1,… ,K}. If we train the
model ̃g by solving Eq. 5 directly based on DT, the solution
will not fit any model conditioned on the label i, i = 1,… ,K.
On the other hand, when the new dataset DK+1

T′ conditioned
on a new environment specified by θK+1 comes with very few
samples (namely, T′ is very small), there is no effective way
to adapt the solution to dataset DT to the new environment
model.

This paper addresses the problem of providing a solution
̃g* robust to each environment parameter θi, i = 1,… ,K.

On the other hand, ̃g* should also have a property that
it can be adapted to the solution of a new set, ̃gK+1, very
efficiently, with only very few data obtained on the new
environment.

3 Meta-reservoir computing for wind
power prediction

3.1 Reservoir computing

Reservoir computing is a computational approach for time series
data processing based on neural networks. Reservoir computing
was first proposed by Jaeger and Haas (2004) for optimizing RNN
models for given training data. Since RNN is widely used for time
series data modeling, reservoir computing can also be generalized
to the applications of time series data processing (Tanaka et al.,
2019).

In reservoir computing, the time series data are supposed to be
generated from unknown dynamical models driven by sequences
of inputs, and the system outputs sequences of outputs. It can
also be applied to autonomous systems by setting the input at
each time as zero. In this paper, since we do not have input for
the dynamics of wind speed, the input is not considered. The
reservoir in reservoir computing is essentially the state variable of
the established dynamical model for predicting the output, and
it does not have to represent the underlying state of the actual
physical systems (Tanaka et al., 2019). Let rk be the reservoir at time
step k. The measured output at time step k is defined by yk. The
reservoir at time step k+ 1, rk+1, is a function of rk and yk, written
by

rk+1 = frc (Wrcrk +Wbackyk) , (9)

where frc is a neural network and Wrc and Wback are the weight
matrices for reservoir–reservoir connections and output–reservoir

connections, respectively.The output at time index k+ 1 is predicted
by

yk+1 =Woutrk+1. (10)

The computational complexity is immense if we want to train
Wout, Wback, and Wrc together. Note that the model capacity is
substantial if there are enough reservoirs and neurons. The model
can achieve high accuracy even thoughWback andWrc are randomly
given and only Wout is trained. The algorithm of implementing
reservoir computing with a dataset Drc

T ≔ {yk}
T
k=0 is summarized in

Algorithm 1.
Note that λ is a parameter for regularization. Using a large

λ confers the method a higher robustness but may lose some
accuracy. With a small λ, the obtained model will have better
accuracy but may encounter the overfitting issue. The choice
of λ should be made according to the problem and the user
demands.

3.2 Meta-learning

The meta-learning discussion first focused on learning
in a multiple-task scenario. To specify the training
process of meta-learning, it is formulated as a bi-level
optimization problem. We will clearly explain how the
bi-level optimization framework of meta-learning fits our
problem.

As introduced in Section 2, the dataset DT includes the
data obtained from different environments specified by the
task labels {1,… ,K}. Then, the dataset can be divided into K
different tasks. Each task has a corresponding dataset Di

Ti
, i =

1,…,K. Instead of only considering the parameter vector in
the model to be learned in meta-learning, another important
variable, ω, which specifies the algorithm about how to learn the
parameter, is also optimized. The variable ω can include the initial
point of the parameter, the hyperparameters for the gradient-
descent method, the choice of cost function, and the selected
model.

The dataset of each task is separated into a training set Di,tr
Ti

and test set Di,te
Ti
. Note that the parameter obtained by each dataset

depends not only on the training dataset but also on the learning
variable ω. The loss function depends on the trained parameter

Inputs: dataset Drc
T
= {yk}k=0,…,T

  1: Select the model frc and reservoir rk

  2: Generate weight matrices Wback and Wrc randomly

  3: Generate initial reservoir r0 randomly

  4: Obtain the weight matrix Wout by solving the

following problem

min
T

∑
k=0
‖Woutrk −yk‖

2 +λ‖Wout‖22 (11)

Output: Initial reservoir r0, Weight matrices Wout,

Wback, and Wrc

Algorithm 1. Implementation of reservoir computing for a time series dataset
Drc

T .
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FIGURE 1
Experimental data used in this validation. The dataset includes data from eight different environments, plotted in (A–H). For each environment, there
are 13 different profiles.

FIGURE 2
Implementations of the meta-reservoir computing and reservoir computing methods.

vector. Let Ltrain(⋅) and Ltest(⋅) be the loss function for training and
testing, respectively.Then, the training process inmeta-learning can
be formulated as

min
ω

K

∑
i=1

Ltest (Di,te
Ti
,θ(i)* (ω) ,ω) , (12)

s.t. θ(i)* (ω) = argmin
θ

Ltrain (Di,tr
Ti
,θ,ω) , i = 1,…,K. (13)

Let ω* be the solution to the bi-level optimization problem. In
every iteration, the learning parameter ω is optimized for a given θ,
and finally, it converges to the optimal value for learning a task. The

optimality here refers to the given training dataset. Even for a newly
given task, the learning parameter ω* can provide better efficiency
to find the optimal parameter for the newly given task.

3.3 Algorithm for meta-reservoir
computing

This paper proposes a novel wind power predictive model
learning algorithm that combines reservoir computing and meta-
learning. As introduced in Section 2, we have the dataset DT
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FIGURE 3
Few-shot adaptation for environment 5. (A) MRC with 15 samples; (B) MRC with 30 samples; (C) RC with 15 samples; and (D) RC with 30 samples.

FIGURE 4
Few-shot adaptation for environment 6. (A) MRC with 15 samples; (B) MRC with 30 samples; (C) RC with 15 samples; and (D) RC with 30 samples.

obtained frommultiple environments. Regarding each environment
as a task, we separate the dataset into

Di ≔ {p(i)k }
Ti

k=0
, i = 1,…,K. (14)

Note that we have
K

⋃
i=1

Di =DT (15)

and

Di⋂Dj = ∅, if i ≠ j. (16)

For each task, we further separate the dataset into data for
training and data for testing as follows:

Di
train ≔ {p

(i),train
k }

Ti,train

k=0
, Di

test ≔ {p
(i),test
k }

Ti,test

k=0
. (17)

Note that we have

Di
train⋂

i
D
test
= ∅, (18)

Di
train⋃

i
D
test
=Di, (19)

for every task i = 1,… ,K.
We use reservoir computing to train a temporal prediction

model of wind power. Thus, the parameter to be trained is W(i)out.
There are a lot of hyperparameters to be optimized, such as the
initial point of reservoirs, the initial point of the solution of the
optimization problem for obtainingW(i)out, the gradient-descent rate,
and the ratio λ for regularization. This study adopts the initial point
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FIGURE 5
Quantitative prediction results showing the MSE curve along with the training iteration (30 samples): (A) Environment 1; (B) Environment 2; (C)
Environment 3; (D) Environment 4; (E) Environment 5; (F) Environment 6; (G) Environment 7; (G) Environment 8.

FIGURE 6
Intuitive explanation of the quantitative prediction results.

of the solution to the optimization problem,Wout(0), and the initial
point of reservoirs r0 as the learning parameter ω*. Namely, we have

ω* = (Wout (0),r0) . (20)

Note that the learning parameter ω* is common for each task, and
the parameter differs in each task. For the loss function, we adopt
the loss function of Eq. 11 for both training and testing processes. It
is written as

Ltrain (Di
train,W

(i)
out,ω)

=
Ti,test

∑
k=0
‖W(i)outr

(i)
k − p
(i),train
k ‖

2
+ λ‖W(i)out‖

2
2, (21)

Ltest (Di
train,W

(i),*
out ,ω)

=
Ti,train

∑
k=0
‖W(i),*out r

(i)
k − p
(i),test
k ‖

2
+ λ‖W(i),*out ‖

2
2. (22)

Inputs: dataset

DT = {pk}k=0,…,T = {D
1
train
,D1

test,……,D
K
train
,DK

test}, the

regularization ratio λ, a new dataset DK+1
T′

  1: Select the model frc and reservoir rk

  2: Generate weight matrices Wback and Wrc randomly

  3: Solve the problem described by Eqs 23, 24

with dataset DT and obtain ω*

  4: Obtain the weight matrix W
(K+1)
out by solving the

following problem described by Eq. 11 with dataset

DK+1
T′

, parameters frc, rk, ω*, Wback, and Wrc

Output: ω = (r0,Wout(0)), weight matrices WK+1out, Wback,

and Wrc

Algorithm 2. Implementation of meta-reservoir computing for learning a wind
power predictivemodel.

Then, the training process in meta-reservoir computing is written
as

min
ω

K

∑
i=1

Ltest (Di
train,W

(i),*
out ,ω) , (23)

s.t. W(i),*out = argmin
W(i)out

Ltrain (Di
train,W

(i)
out,ω) , i = 1,…,K. (24)

According to the above discussions, we summarize the meta-
reservoir computing algorithm for learning a wind power predictive
model in Algorithm 2.

4 Experimental validation

In this section, we first introduce the experimental dataset
and several settings for validation. The validation results are then
presented with detailed discussions.
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4.1 Dataset for validation

This validation uses the experimental dataset shown in Figure 1.
This dataset includes time series data obtained from eight different
environments, as shown in Figures 1A–H, respectively. In addition,
for each environment, we have 13 different profiles. The same
environment means that the data were collected in the same period,
places, and weather.

For meta-learning, seven profiles in each environment are used
as training data and the rest as test data. For a fair comparison,
we compare our MRC with normal reservoir computing (RC)
without meta-learning. In each validation, we use data from seven
environments to train a model and then use the rest for validation.

The comparison of the implementations of the MRC and RC
methods is shown in Figure 2. For RC methods, the training set is
used to train a recurrent neural network.We obtain only a parameter
vector for the recurrent neural network. When a new task comes
as a test set, only a few shots in the test set are used for training
a new recurrent neural network. The trained parameter vector can
be used as the initial value of reservoir computing for updating the
recurrent neural network for the new task. For MRC methods, the
training set is used for meta-learning. Except for one parameter
vector for the training set, the learning parameter, including a good
initial point, is also obtained. When a new task comes, the learning
parameter is used to learn a new parameter vector for the new
task.

4.2 Validation results

The performance of the MRC and RC methods is evaluated
by checking the accuracy of the model learned by each method
with a fine-tuning process based on a sample number of 15 or 30
from a new task. During fine-tuning, each gradient-descent step
is computed with the same data points. Figures 3, 4 provide the
qualitative results for using environments 5 and 6 for the test. The
red solid line is the model trained by using all the data in the test
set, which can be regarded as a perfect model. The results show that
theMRCmethod can provide a model very close to perfection, even
with a few shots of data. Note that both MRC and RC methods do
not have good initial points. However, the MRC method can adapt
the model very quickly. The RC method fails to adapt the model to
a proper model with the limited data number.

Figure 5 providesmore quantitative prediction results.Themean
square errors (MSEs) of the model at each iteration are plotted for
each case with a different environment as the test set. It is obvious
that the proposed MRC method can adapt the model to a given
environment even though the initial MSE is almost the same as that
of the RCmethod.The reason is that theMRCmethod optimizes the
initial value of the reservoir, which may provide some information
to find a better gradient to reduce the loss. The intuitive explanation
is given in Figure 6.

5 Conclusion

A wind power prediction model must be able to be adapted
to a new environment, with a few samples of data from the new

environment. The traditional deep learning methods encounter the
overfitting issue and are hard to be adapted to a new environment.
A huge dataset is still needed. This paper proposes a novel
learning method for a wind power prediction model. The reservoir
computing algorithm is combined with meta-learning to efficiently
adapt the wind power prediction model to a new environment
with only a few samples. The algorithmic structure of reservoir
computing significantly reduces the computational complexity of
learning a deep model. On the other hand, the initial points and
other hyperparameters of reservoir computing are optimized by
meta-learning based on the historical dataset. Experimental datasets
have validated the proposed meta-reservoir computing method for
learning the wind power prediction model. The validation results
show that the proposed meta-reservoir computing can find a good
model for the new environment in a very small number of iterations
with a few shots of new data.

The proposed method opens a new avenue for training wind
power predictive models for different environments. Instead of
giving the best point for each environment, it is better to find a good
learning parameter to be ready for new tasks. In future work, we will
investigate comparing the proposedmethodwithmore existing deep
models.
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