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With the rapid development of the power system and increasing demand for
intelligence, substation operation training has received more attention. Action
recognition is a monitoring and analysis system based on computer vision and
artificial intelligence technology that can automatically identify and track
personnel actions in video frames. The system accurately identifies abnormal
behaviors such as illegal operations and provides real-time feedback to trainers or
surveillance systems. The commonly adopted strategy for action recognition is to
first extract human skeletons from videos and then recognize the skeleton
sequences. Although graph convolutional networks (GCN)-based skeleton-
based recognition methods have achieved impressive performance, they
operate in spatial dimensions and cannot accurately describe the dependence
between different time intervals in the temporal dimension. Additionally, existing
methods typically handle the temporal and spatial dimensions separately, lacking
effective communication between them. To address these issues, we propose a
skeleton-based method that aggregates convolutional information of different
scales in the time dimension to form a new scale dimension. We also introduce a
space-time-scale attention module that enables effective communication and
weight generation between the three dimensions for prediction. Our proposed
method is validated on public datasets NTU60 and NTU120, with experimental
results verifying its effectiveness. For substation operation training, we built a real-
time recognition system based on our proposed method. We collected over
400 videos for evaluation, including 5 categories of actions, and achieved an
accuracy of over 98%.
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1 Introduction

Substations are an essential part of power systems and their safe operation is crucial to
ensure the reliability of power supply. The safety awareness and standardized operation of
substation operators are important factors to ensure the safe operation of substations.
Therefore, incorporating artificial intelligence especial action recognition technology into
substation operation training can effectively improve the safety awareness and standardized
operation level of substation operators, thereby ensuring the safe operation of substations.
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For example, dangerous or erroneous action of substation operators
can be identified and warned.

In order to recognize action, skeleton data can first be extracted
from a video sequence and then recognized. This approach has the
advantage of fast processing speed and avoidance of interference
from changes in background and lighting in the video.

However, action recognition based on skeleton data remains a
challenging task, as it not only requires modeling the spatial domain
(between joint points) but also better describing temporal features. Early
studies used manually designed features to process skeleton data, but
these features had limited expressive power and could not describe
complex actions. In recent years, deep learning methods, especially
those based on graph convolutional networks (GCN), have achieved
superior performance. The human skeleton can be considered a graph
structure composed of joint points and natural connections between
them, making skeleton data suitable for modeling in the spatial domain
(between joint points). However, GCN cannot be used for time domain
modeling. Existing methods for recognizing GCN-based classes
typically use traditional one-dimensional convolution to describe
temporal features, but due to the varying length of dependency
between moments, the kernel size has a significant impact on
recognition accuracy. Additionally, these methods often alternately
process spatial and temporal information, resulting in insufficient
interaction between the temporal and spatial dimensions and unable
to fully explore the inherent connections between time and space.

To address these issues, we propose in this paper a time-domain
multi-scale information aggregation method for human skeleton-
based action recognition. In order to accurately capture the
dependency between varying length moments, the convolution
results of multiple time-domain convolutional kernels are
aggregated at a new scale dimension, producing a four-
dimensional tensor including time, space, feature channels, and
scale. To enable the network to automatically select important
features, this paper proposes a time-space-scale fusion attention
mechanism that fully integrates information across different
dimensions to produce a scale-sensitive attention weight to
reweight the original feature tensor. The method is validated on
two publicly available datasets: NTU60 and NTU120. We have
deployed our method at substation operation training locations,
building a real-time behavior recognition system.We collected more
than 400 video sequences, including five different action categories,
with an overall recognition rate of 98%.

2 Related works

Computer vision has been increasingly applied in the power
system due to its ability to analyze large amounts of data and detect
anomalies. By analyzing video footage or sensor data, computer
vision algorithms can identify potential issues in the power grid such
as damaged equipment, broken wires, or other hazards that could
lead to outages or safety concerns. For example, the system in (Chan
et al., 2004) was able to conduct automatically intruder detection,
fire alarm zone detection and substation meter reading in power
substations. Automatic busbar detection from images can be
conducted in (Chen et al., 2015). Mobile robots for electric
power substation equipment’s inspection was surveyed in (Allan
and Beaudry, 2014; Lu et al., 2017; Dong et al., 2023). Automatic

safety helmet detection for operators was achieved in (Li et al., 2017).
In this paper, we focus on the actions of substation operators and
develop algorithms to automatically identify their actions, providing
a basis for subsequent analysis of the standardization and safety of
their actions.

For skeleton-based action recognition, early methods employed
manually designed features (Vemulapalli et al., 2014; Weng et al.,
2017), with limited generalization ability and unable to extend to
recognizing various complex actions. With the development of deep
learning, methods based on recurrent neural networks (RNN),
specifically long short-term memory networks (LSTM) were
proposed to model the time domain (Du et al., 2015; Liu et al.,
2016; Zhang et al., 2017). With the introduction of graph
convolutional networks (GCN) and their superior performance,
more and more research has been conducted based on GCN.

Graph neural networks (GNNs) (Wu et al., 2020) can handle
graph data with arbitrary topology, and have been extensively studied
in recent years. In these studies, graph convolutional networks
(GCNs) were first introduced as the first-order approximation of
local spectral convolutions (Kipf and Welling, 2016), due to their
simple mean neighborhood aggregator, they are widely used for
processing various graph data, including human skeleton data.
However, existing methods for skeleton-based action recognition
based on GCNs (Yan et al., 2018; Li et al., 2019; Cheng et al.,
2020; Shi et al., 2020) tend to focus on improving the information
processing in the spatial domain, while using a single one-dimensional
convolution with a fixed receptive field in the temporal domain. This
makes the network unable to model complex temporal dependencies
and separate the time and spatial domains, resulting in limited
exchange of information between them. To address these issues,
this paper proposes a multi-scale time-domain information fusion
network that effectively models complex relationships in the temporal
domain, and a time-space-channel-scale fusion mechanism that fully
communicates the four different data dimensions.

3 Proposed method

3.1 Method overview

The overall framework of the proposed method is shown in
Figure 1. After three-dimensional (or two-dimensional) skeleton
data goes through a series of spatial-temporal processing units, it
passes through fully connected layers and obtains classification
results by using the softmax function. Each spatial-temporal
processing unit consists of two parts: a spatial processing unit
and a temporal processing unit. The spatial processing unit is
conducted by adaptive graph convolution (AGCN), while the
temporal processing unit is the core of our method, which
consists of multi-scale convolutional aggregation and space-time-
scale fusion attention mechanism (STSA). In this method, the
number of spatial-temporal processing units is set to 10.

3.2 Multi-scale aggregation

To overcome the problem of single receptive field in temporal
convolution and difficulty in describing complex temporal
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FIGURE 1
Overall architecture of the proposed method.

FIGURE 2
Diagram of space-time-scale fusion attention.

TABLE 1 Performance evaluation on NTU RGB + D dataset compared with other
methods.

Method (year) Cross-sub (%) Cross-view (%)

ST-GCN (Yan et al., 2018) 81.5 88.3

2s-AGCN (Shi et al., 2019) 88.5 95.1

Dynamic-GCN (Ye et al., 2020) 91.5 96.0

Adaptive-ST-GCN (Chen et al., 2021a) 91.5 96.0

MSTGCN (Chen et al., 2021b) 91.5 96.6

EfficientGCN-B4 (Song et al., 2022) 90.8 96.7

GSTLN (Dai et al., 2023) 91.9 96.6

Proposed 92.1 96.5

The bold values are the maximum values.

TABLE 2 Performance evaluation on NTU RGB + D 120 dataset compared with
other methods.

Method (year) Cross-sub (%) Cross-set (%)

ST-GCN (Yan et al., 2018) 70.7 73.2

2s-AGCN (Shi et al., 2019) 82.9 84.9

Dynamic-GCN (Ye et al., 2020) 87.3 88.6

Adaptive-ST-GCN (Chen et al., 2021a) 88.4 88.3

MSTGCN (Chen et al., 2021b) 87.5 88.8

EfficientGCN-B4 (Song et al., 2022) 88.7 88.9

GSTLN (Dai et al., 2023) 88.1 89.3

Proposed 88.9 89.7

The bold values are the maximum values.
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dependencies, we propose in this paper a multi-scale convolutional
aggregation method. The effectiveness of using multiple
convolutional kernels to obtain different receptive fields has been
validated in previous works. However, in these works, the results of
multiple convolutional kernels are usually added or connected to
achieve the purpose of multi-scale information aggregation. In this
way, the importance of information at multiple scales is the same,
making it difficult for the network to adaptively select scale
information and have poor flexibility. This paper proposes to
aggregate multi-scale information into a new scale dimension
and then combine it with subsequent space-time-scale fusion
attention mechanism to enable the network to fully fuse different
dimensions of information and re-weight features based on the
principle of adaptively selecting important information at time-
space-scale dimensions.

Let the input features beX ∈RC×T×V, and after passing through S
different sizes of convolutional kernels, we get S equally sized
features. We aggregate them in the new scale dimension into a
feature tensor: X1 ∈ RC×T×V×S.

3.3 Space-time-scale fusion attention

The output tensor of the multi-scale aggregation has four
dimensions: space, time, scale, and feature channel. As shown in
Figure 2, we then perform feature reduction along space, time and
scale dimension respectively, the reduction operation named MC
module consists of a mean pooling layer (M) and a 1 × 1
convolution block (C). The resulted feature tensors are:
F1 ∈ RC×T×1×S, F2 ∈ RC×1×V×S, and F3 ∈ RC×T×V×1, which are then
expanded to C × T × V × S respectively and added as
X2 ∈ RC×T×V×S. This process can be written as:

X2 � RV F1( ) + RT F2( ) + RS F3( )
in which

F1 � MCV X( )
F2 � MCT X( )
F3 � MCS X( )

where MC(.) the MC module, R(.) is the repeat operation.
After reduction along a certain dimension, the information in

the remaining dimensions can be fully fused without interference
from the reduced dimension. The final addition operation will
further merge the fusion results of each dimension. In the
implementation, replication can be completed by the automatic
expansion function of the addition operation (most deep learning
frameworks such as PyTorch, Tensorflow, etc., support this
function).

TABLE 3 Results of ablation experiments.

Method Cross-sub (%)

Kernels: 3, 5, 7 88.6

Kernels: 3, 5, 7, 9 88.7

Kernels: 5, 7, 9, 11 88.8

Kernels: 5, 7, 9 88.9

Kernels: 7, 9, 11 88.7

Kernels: 7, 9, 11 88.7

w/o STSA 88.3

Fusion time-scale 88.3

Fusion space-time 88.6

Fusion space-scale 88.5

The bold values are the maximum values.

FIGURE 3
Visualization result of the learned attention by STSA.
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3.4 Adaptive GCN

The skeleton can be represented as a graph structure, with joint
points as vertices and connections between joint points as edges. Let

the set of joint feature vectors be denoted by P � Pi{ }Vi�1, where V is
the number of joint points. The set of edges can be represented by an
adjacency matrix A. By obtaining the adjacent points of each vertex,
a neighborhood can be obtained for performing convolution
operations similar to those used in image data:

pi′ � ∑
pj∈N pi( )

pjwij

WhereN(Pi) is the neighborhood of Pi. A linear approximation
to the above convolution operator was proposed in (Kipf and
Welling, 2016):

P′ � Λ−1
2 A + I( )Λ−1

2PW

Where P is the matrix of the combination of all the vertex
features, and

Λij � ∑
j

Aij + Iij( )

FIGURE 4
Five categories of substation operation actions.

TABLE 4 Number of samples in each action category.

Category Num. Of samples

1. Verify electricity 86

2. Cabinet operation (standing) 92

3. Cabinet operation (crouching) 84

4. Rotate the switch handle 78

5. Pull the capacitor switch 81

Total 432
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In this paper, an adaptive topology structure similar to (Chen Y.
et al., 2021) is used, where A is considered as a trainable parameter
while the adjacency matrix serves as the initial values for A. This
allows the network to go beyond the natural connections in
topological structure and better describe the complex
relationships between joint points.

4 Experiments

4.1 Evaluation on public datasets

The effectiveness of the proposed method was evaluated on two
publicly available datasets: NTU-RGB + D (Shahroudy et al., 2016)
and NTU-RGB + D 120 (Liu et al., 2019).

1) NTU-RGB + D: This dataset is a large-scale three-dimensional
human skeleton action recognition dataset. It contains
56,880 skeleton motion clips. These actions were performed
by 40 volunteers using three different perspectives of the
Kinect v2 camera, categorized into 60 classes. Two common
benchmarks used on this dataset are: 1) Cross-subject (cross-
subject): training samples are from 20 volunteers, while testing
samples are from the remaining 20 volunteers. 2) Cross-view
(cross-view): training samples are from two camera perspectives,
while testing data comes from a different perspective.

2) NTU RGB + D 120: This dataset is currently the largest three-
dimensional human skeleton based action recognition dataset. It
was created by adding an additional 57,367 skeleton motion clips
to the NTU-RGB + D dataset, surpassing the number of categories
to over 60. As a result, the dataset includes a total of
113,945 samples with more than 120 categories. Likewise, the
newly added samples were also captured using three different
perspectives of the Kinect v2 camera. Two common benchmarks
used on this dataset are: 1) Cross-subject (cross-subject): training
samples are from 53 volunteers, while testing samples come from
the remaining 53 volunteers. 2) Cross-setup (cross-setup): training
and testing samples are split based on the camera setup number.

The proposed method is implemented using the PyTorch deep
learning framework, and training is completed on an RTX
3090 GPU. Stochastic gradient descent (SGD) algorithm with a
learning rate of 0.1 and momentum of 0.9 is adopted as the
optimizer. In all experiments, the number of training epochs is

65, with the first 5 rounds serving as warm-up to make trainingmore
stable.

As shown in Tables 1, 2, the proposed method is compared against
existing methods on NTU RGB + D dataset and NTU RGB + D
120 dataset. These comparative methods are all of relatively high
performance in recent years. As can be seen from Table 1, the
proposed method achieved the best performance on the NTU RGB
+ D dataset in the Cross-sub benchmark. On the other benchmark:
Cross-view, although performance is not best, it also had a small gap
with the best performance. From Table 2, we can see that the proposed
method achieved the best performance on two benchmarks of NTU
RGB + D 120 (Cross-sub and Cross-set). These results demonstrate the
effectiveness of proposed method. All the results are recognition top-1
accuracy, which is computed as the number of corrected predicted
samples divided by the total number of samples.

In order to evaluate the impact of different combination of
temporal convolution kernels, we conduct a series of experiments on
cross-sub benchmark of NTU RGB + D 120, the evaluation results
are shown in Table 3. The method with kernels of sizes 5, 7,
9 achieved the best performance. Adopting larger kernels or
smaller kernels will not boost the performance. We also tried
adding more convolutional kernels, but this did not lead to an
improvement in performance.

In order to evaluate the role of the space-time-scale fusion
attention (STSA) mechanism, we conducted an experiment with
STSA removed. As shown in Table 3, the performance drops
significantly, which demonstrate the effectiveness of the STSA.
We also evaluate the role of different dimensions in STSA by
removing one of the dimension branches. As shown in Table 3,
we evaluate time-scale, space-time and space-scale fusion
respectively. Among them, space-time fusion yields relatively
better result, which is yet lower than space-time-scale fusion.

To visualize the content learned by our network, especially the
STSA attention mechanism proposed in this paper, we present the
results of the STSA attentionmechanism in the first temporal-spatial
processing unit in Figure 3. The example is a “drinking water”
scenario. Red indicates high weights, and blue indicates low weights.
The weights are normalized using the following equation:

wnormalized � w−min
max −min

In terms of the scale dimension (kernel size k), we can see that at
different scales, the network focuses on different contents, which
means that the network has the ability to adaptively select the scale.

TABLE 5 Action recognition results of the five action categories and overall results.

Category Acc. (%) (proposed) Acc. (%) (Chen et al., 2021a) Acc. (%) (Yan et al., 2018) Acc. (%) (Shi et al., 2019)

1. Verify electricity 100 100 98.1 96.2

2. Cabinet operation (standing) 97.3 94.6 92.4 89

3. Cabinet operation
(crouching)

100 100 94 92

4. Rotate the switch handle 93.5 93.5 89.4 87.2

5. Pull the capacitor switch 100 94 91.8 89.8

Overall 98.3 96.5 92.9 90.9
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4.2 Application in power substation
operation training

The proposed method was applied to operation training in
power substation. We collected the operation videos of trainees
during the training process and used body posture estimation
algorithm Alphapose (Fang et al., 2022) to extract 2D skeleton
data of human bodies for action recognition. The model was trained
on Halpe dataset (Fang et al., 2022) which is able to extract 2D
skeleton including 26 joints. In order to make the network’s
structure unchanged, the 2D data is treated the same way as 3D
skeleton data. The action categories of trainees were divided into five
types: 1) verify electricity; 2) cabinet operation (standing); 3) cabinet
operation (crouching); 4) rotate the switch handle; 5) pull the
capacitor switch. Examples of the five categories of actions are
shown in Figure 4. The colors in Figure 4 represent different
parts of human skeleton. We collected multiple videos from
multiple perspectives of operators for each category. Similarly to
NTU60, we resampled the skeleton data extracted from each video
in time, and all the resampled skeleton data had the same dimension
in time. We selected 60% of them as training samples and the
remaining as testing samples. The number of samples in each action
category is listed in Table 4.

The recognition system runs on a PC with Intel i9 CPU, 32 GB
RAM and RTX3090 GPU. The system is able to achieve real-time
recognition. For each frame, the computation time of posture
estimation is 41 ms, and the computation time of action
recognition is 12 ms, so the system runs at 18.9 FPS which is
sufficient for most of the real-time applications.

In these five action categories, the first and third categories are
relatively easy to identify, while the remaining three categories are
more similar, with the main difference being hand movements. The
proposed method is compared against (Yan et al., 2018; Shi et al.,
2019; Chen Y. et al., 2021). The proposedmethod and (Chen Y. et al.,
2021) achieved 100% accuracy in the first and third categories. And
the other two methods (Yan et al., 2018; Shi et al., 2019) made wrong
predictions in these two categories. The proposed method also
achieved all correct classification results in the fifth category
which outperforms other three methods. The overall recognition
rate of the method in this paper exceeded 98% which outperformed
(Chen Y. et al., 2021) by 1.8% (Yan et al., 2018), by 5.4% and (Shi
et al., 2019) by 7.4%. See Table 5 for comparison results. From the
results, we can learn that the action of “Rotate the switch handle” is
most prone to misclassification. Though the proposed method
achieved an accuracy of 93.5% ranking first alongside (Chen Y.
et al., 2021), in our future work, we will conduct further research on
this category of action.

5 Conclusion

In this paper, we propose a skeleton-based action recognition
method that aggregates convolutional information of different scales
in the time dimension and a space-time-scale attention module that
enables effective communication and weight generation between
dimensions. Our proposed method is validated on public datasets
NTU60 and NTU120, with experimental results demonstrated its
effectiveness. For substation operation training, we built a

recognition system and collected hundreds of videos for evaluation,
including 5 categories of actions, and achieved satisfactory recognition
accuracy.
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