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With the increasing number of units involved in power system regulation and the
increasing proportion of industrial load, a single data source has been unable to
meet the accuracy requirements of online monitoring of unit conditions in the
new power system. Based on the stacked autoencoder (SAE) network, combined
with multi-source data fusion technology and adaptive threshold, a generator
condition monitoring method is proposed. First, a SCADA–PMU data fusion
method based on the weighted D–S evidence theory is proposed. Second, the
auto-coding technology is introduced to build a stacked self-coding deep
learning network model, extract the deep features of the training dataset, and
build a generator fault detection model. Finally, by smoothing the reconstruction
error and combining it with the trend change in the state monitoring quantity
detected by the adaptive threshold, the fault judgment is realized. The simulation
results show that, compared with the traditional method based on a single data
source, the proposed method has higher robustness and accuracy, thus
effectively improving the refinement level of generator condition monitoring.

KEYWORDS

D–S evidence theory, multi-source data fusion, stacking self-coding network, generator
condition monitoring, deep learning

1 Introduction

As one of the core components of the power plant, the generator set maintains high
speed for a long time and runs continuously in multi-coupling fields such as machine,
electricity, grid, and heat. With the increasing number of units involved in regulation and the
increasing proportion of industrial load, abnormal parameters or control strategies (Zhu
et al., 2018; Wang and Chen, 2020) are found in some units during operation. If the
parameter errors are not found in time and the dynamic characteristics of the generator are
grasped, the conventional system regulation strategy may have negative effects, such as unit
reverse regulation and deviation between actual power output and issued instructions, under
system disturbances, such as system faults and system joint debugging processes. In severe
cases, the disturbance range of the system may be enlarged, and the generator oscillation and
other events may occur, which may lead to system safety problems. Therefore, higher
requirements (Li, 2015; Wei et al., 2021) are put forward for online monitoring and fault
diagnosis technology of generator sets.

Data-driven methodologies and physical model-based methods can be used to diagnose
generator faults. Li H. M. et al. (2010) built the heat conduction model of each part of the
generator based on the finite analysis method and simulated the temperature to realize the
condition monitoring of the generator. However, the process of modeling and solving
physical models is complex, and it is difficult to consider all influencing factors. Once the

OPEN ACCESS

EDITED BY

Zhengmao Li,
Aalto University, Finland

REVIEWED BY

Menglin Zhang,
China University of Geosciences Wuhan,
China
Yue Yin,
Sichuan University, China

*CORRESPONDENCE

Chao Xing,
xingchao_yn@163.com

RECEIVED 07 October 2023
ACCEPTED 19 October 2023
PUBLISHED 14 November 2023

CITATION

Xing C, Xi X, He X and Liu M (2023),
Generator condition monitoring method
based on SAE and multi-source
data fusion.
Front. Energy Res. 11:1308957.
doi: 10.3389/fenrg.2023.1308957

COPYRIGHT

© 2023 Xing, Xi, He and Liu. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Brief Research Report
PUBLISHED 14 November 2023
DOI 10.3389/fenrg.2023.1308957

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1308957/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1308957/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1308957/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1308957&domain=pdf&date_stamp=2023-11-14
mailto:xingchao_yn@163.com
mailto:xingchao_yn@163.com
https://doi.org/10.3389/fenrg.2023.1308957
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1308957


model is built, it is difficult to modify, and it is not practical in
practical engineering application.

In recent years, some progress in the research on generator
condition monitoring based on data-driven has been made. Sun
et al. (2012) proposed an SVM method based on particle swarm
optimization for vibration fault monitoring of generator sets. Zare
and Ayati (2021) established a multi-channel convolution neural
network model, which can be used for fault monitoring of various
units. Ren et al. (2019) used variational mode decomposition and
transfer learning to monitor faults. However, most data-driven model
training needs a large number of historical known fault samples, so the
demand for fault data is high. However, in practice, it is difficult to
collect all types of fault samples, which brings some difficulties (Li D.
et al., 2010) to the application of this type of algorithm.

A stacked autoencoder (SAE) is an efficient algorithm of deep
learning, which only reconstructs the normal operation data,
reduces the dependence on fault data, and is suitable for fault
monitoring of small data. Zhao et al. (2018) and Zhao et al.
(2019) realized fault monitoring of wind turbines through the
SAE deep learning network based on sample data in the SCADA
system. However, with the increasing number of units involved in
regulation and the increasing proportion of industrial load in the
power system, a single data source can no longer meet the accuracy
requirements of online monitoring of unit status (Jiang et al., 2017).
Under system disturbances, such as system fault and system joint
debugging, SCADA and PMU record the fluctuation data of each
unit in the network. SCADA and PMU have their own advantages
and disadvantages. In order to realize their complementary
advantages, it is necessary to integrate their monitoring data
(Huang et al., 1999; Huang and Jia, 2017).

At present, most of the methods for fault identification in
generator sets are to artificially select a certain monitoring
parameter to set a fixed early warning threshold (Fang et al.,
2021) according to historical experience. Chen et al. (2020)
analyzed and calculated the contribution degree of each state
parameter to the overrun of the monitoring index on the SAE
model and then determined the threshold of the monitoring index
under the normal operation of the unit. Xing (2021) calculated the
absolute value of the average value of each state parameter by the
sliding window and determined the product of its maximum value
and sensitivity coefficient as the threshold value to monitor the state.
However, the standard of the normal working state of the generator
set is changing all the time, and the traditional method of judging the
abnormal performance index of the equipment by a fixed threshold
has its limitations, which can easily lead to misjudgment and missed
judgment (Tian et al., 2021).

In view of this, this paper proposes a generator condition
monitoring method based on the SAE network, which combines
multi-source data fusion technology with the adaptive threshold.
First, a SCADA–PMU data fusion technique based on the notion of
weighted D–S evidence is suggested. Then, automatic coding
technology is introduced to build a stacked self-coding deep
learning network model, extract the depth characteristics of the
training dataset, and build a generator condition monitoring
model. Finally, combined with the adaptive threshold, the
running state of the generator is monitored. The simulation
results based on real-world examples demonstrate the great
accuracy and robustness of the suggested strategy.

The main contributions of this paper are as follows: this paper
uses SCADA–PMU fusion data to monitor the generator condition.
Compared with a single data source, it solves the problems caused by
the long sampling period of SCADA data and the single type of PMU
data and effectively improves the accuracy and robustness of
generator condition monitoring. The adaptive threshold suggested
in this study resolves the issues of alarm latency brought on by a too-
high threshold and false alarms brought on by a too-low threshold and
effectively improves the refinement level of generator condition
monitoring.

2 Multi-source data fusion technology

In this study, the identical data types gathered by SCADA and
PMU are combined, the data from each device are synchronized, the
data are then combined using the D–S evidence theory, and the
decision-making outcomes are analyzed as a result. Figure 1 depicts
the data fusion decision model.

2.1 Determining the reference time

For the fusion of timescaled SCADA data and timescaled PMU
data, time synchronization must be achieved first. The measurement
time is relatively short and can be considered as both stationary. The
usual method for measuring the temporal synchronization
relationship of mixed measurement data is to obtain the
correlation coefficient between the two.

ρgw t1, t2 − τ( ) � csw t1, t2 − τ( )����������������������
Css t1, t2( )cww t2 − τ, t2 − τ( )√ , (1)

where ρgw is the correlation coefficient of PMU measurement Zw and
SCADAmeasurement Zs; t1 is the current SCADAmeasurement time
(unknown); t2 is the timescale of the current PMU data; τ is the time
series of the current PMU; andC is the cross-covariance function. Take
csw as an example, and it is expressed as follows:

Csw t1, t2 − τ( ) � Rsw t1, t2 − τ( ) − μsμ
T
w, (2)

where μs and μw are the mean values of Zs and Zw over a period of
time, respectively. Rsw is the correlation function of measuring Zs

and Zw, and its expression is given as

Rsw t1, t2( ) � E Zs t1( ) Zw t2( )[ ]T{ }, (3)
ρgw t1, t2 − τtρgw t1, t2 − τt( )( ) � max ρgw t1, t2 − τ( )[ ], (4)

t � t2 − τt, (5)
where ρgw(t1, t2 − τt) is a matrix of correlation coefficients; τt is the
most relevant corresponding moment; and t is the fusion data
benchmark moment.

2.2 Determining a weight matrix of fusion
data

The weight value is determined by the measurement data
accuracy, and the data accuracy is determined by the
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measurement accuracy of the device and the reference time
deviation:

ε � et + em, (6)
where ε is the measurement data error; et is the time synchronization
error; and em is the measurement error of the device.

The time synchronization error et is determined by the reference
time deviation and the rate of change of the measured quantity:

et � ktd, (7)
where k is the rate of change of the measurement and td is the
deviation between the measuring time and the reference time.

When the measurement error of the equipment is known, the time
synchronization error must be determined first in order to derive the
overall error. From the time synchronization of the timescale existing in
the PMUmeasured data, it can be seen that the SCADAmeasured delay
is regarded as obeying the following probability density:

f td( ) � 1
σt

��
2π

√ e− td−t( )2/ 2σ2t( ), (8)

where σ2t is the variance of td.
The overall error variance is stated as follows:

E εε[ ]T � E eme
T
m[ ] + k2E tdt

T
d[ ], (9)

where k2E[tdtTd ] is the synchronization error variance σ2t .
As a result, the time synchronization-aware weight matrix can

be expressed as follows:

R−1 � 1

E εε[ ]T. (10)

2.3 Data fusion technology based on the
D–S evidence theory

In order to solve the problem of inconsistent sampling time
between SCADA and PMU data, this paper finds samples similar to
SCADA data in historical PMU data samples and uses the hot
platform interpolation method to fill SCADA data.

This paper proposes a weighted D–S evidence theory-based data
fusion approach. The difference between historical SCADA and
PMU data is used to determine the weight of the SCADA data. The
specific steps are as follows:

Step 1. Establish a recognition framework. The data samples to be
fused are analyzed, and PMU and SCADA are taken as elements to
form the recognition framework Θ in the D–S evidence theory.

Θ � θ1, θ2, . . . , θn{ }, (11)
where θ is called an event or element of Θ. Their various

combinations constitute the power set 2Θ, which is expressed as
follows:

2Θ � ∅, θ1{ }, θ2{ }, . . . , θn{ }{ }. (12)

Step 2. Establish an initial trust allocation. In the recognition
framework, the basic probability distribution function m is
obtained according to the data samples of the same category in
the proposition.

m ∅( ) � 0,∑
A⊆Θ

m A( ) � 1.
⎧⎪⎨⎪⎩ (13)

The basic probability number of event A is referred to as m(A)
in the formula, and it represents how much confidence is
placed in A.

Step 3. According to the causal relationship, calculate the trust
degreem of all propositions. The trust degree of each proposition in
the recognition framework is built using the reliability function and
likelihood function of the D–S evidence theory. The degree of trust
of a proposition is equal to the sum Bel of the initial degree of trust of
evidence in each of its premises.

Bel A( ) � ∑
B⊆A

m B( ), (14)

where Bel(A) represents the degree of trust in the event A.

Step 4. Evidence synthesis. The information offered by various
sources of evidence is combined using the D–S evidence theory, and
the confidence level of each statement is calculated. The synthesis
rules are shown in Formula 16:

m A( ) �
∑

A′∩Bj�A
m1 Ai( )m2 Bj( )
1 −K
0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (15)

FIGURE 1
Data fusion decision model.
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whereA and B represent SCADA and PMU, respectively. i and j
represent specific feature data in SCADA and PMU data, and the
coefficient 1

1−K represents the normalized constant.

Step 5. Data fusion. Finally, the trust degrees of SCADA and PMU
propositions are taken as weights, and the final fusion data M is
obtained by weighting them.

Mi � m A( )Ai + 1 −m A( )[ ]Bi. (16)

3 Stacked self-coding network

3.1 Self-encoder

A self-coding network consists of two visible layers of d nodes
and a hidden layer of h nodes, as shown in Figure 2.

In the model training process, input x is encoded through the
hidden layer to obtain y. The model then converts the encoded y
into a set of outputs through the decoder. The output layer is also
considered the reconstruction of the input because the input and
output layers both have the same number of nodes, designated as x̂
and having the same physical meaning as x. The reconstruction
process can be expressed as

y � f Wyx + a( ), (17)
x̂ � f Wzx + b( ), (18)
f x( ) � 1

1 + e−x
, (19)

where Wy and Wz are the weights of the encoding and decoding
processes, respectively; unit biases of the intermediate and output
layers are represented by a and b, respectively; and f() is the
activation function. Therefore, in the training process, it is
necessary to adjust the following parameters: θ = [W, a, b].

The objective function of the model is given as

E � argmin
W,a,b

c x, x̂( )( ), (20)

where x̂ depends on parameter θ and c(x, x̂) represents error E.
The basic structure of the self-encoder is a restricted Boltzmann

machine (RBM), in which the nodes of the input and hidden layers
can only take 0 or 1, that is, (v, h) ∈ {0,1}. According to the Gibbs
distribution, the joint distribution of the unit nodes can be
obtained as

P v, h( ) � 1
z
eh

TWv+bTh+aTv, (21)

where z is the normalized constant.
The conditional probability distribution of the unit nodes in the

RBM can be expressed as

E v, h( ) � −hTWv − bTh − aTv, (22)
P vi � 1|h( ) � f ai +Wyh( ), (23)
P hj � 1 | v( ) � f bi +Wzv( ). (24)

The structure learning of RBM aims to fit the input data to the
maximum extent. The reconstruction error Re is used as an index to
describe the fitting degree:

Re x, x̂( ) � x − x̂‖ ‖2. (25)
Equation 26 represents the loss function. In order to update the

network parameter θ, we need to minimize the global loss function
by the gradient descent method, so as to obtain the optimal solution
of parameter θ.

JAE θ( ) � 1
N

∑
x

Re x, f x( )( ), (26)

W k+1( ) � W k( ) + ε
∂JAE θ( )
∂W

, (27)

a k+1( ) � a k( ) + ε
∂JAE θ( )

∂a
, (28)

b k+1( ) � b k( ) + ε
∂JAE θ( )

∂b
, (29)

where ε is the initial learning rate.

3.2 Stacked self-coding network

The SAE model is trained according to the training dataset of
generator condition monitoring. The procedure is to train a single
RBM, use the hidden layer’s output as the input of the following
level, and then train the network parameters of the following level
step by step until the full self-coding network has been parameter
trained. By connecting the input and hidden layers of several self-
encoders, an SAE network model is formed, which can deeply mine
the characteristics of generator state variable data. Figure 2 shows a
typical SAE network structure.

In the training process, the condition monitoring data x of the
generator set without labels in the long-term normal operation state
is used as the pre-training sample. The model parameter θ is trained
by minimizing the reconstruction error Re so that the input data x is
as close as possible to the decoded reconstruction value x̂. The input
x of the SAE network model can be expressed as x = [IA, IB, IC, Ifd,
UA, UB, UC, P, Q, θ, Te,Wm, f, Δf], where the symbols in the formula
correspond to ABC three-phase current and voltage, excitation

FIGURE 2
Self-coding network model structure.
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current, output active and reactive power, power angle,
electromagnetic torque, generator speed, frequency, and
frequency change.

The output of the hidden layer can be utilized as the input of the
higher layer to extract deeper features after the network has been
created. This is performed by extracting features from the data and
storing them in the hidden layer. If the model can well reconstruct
the output data into the initial input, the reconstructed value of the
input is obtained, which means that the trained model parameters
retain enough rich information characteristics of the input data
because the input variables correspond to the output variables and
have the same physical meaning. Self-coding networks are
connected to form a deeper SAE model and minimize the loss of
input information, so that the network can maintain the constant
complexity of data.

3.3 Adaptive threshold settings

In order to deal with the dynamic non-stationary
characteristics of the generator during operation, it is necessary
to filter and smooth the reconstruction error Rei, as shown in Eqs
30, 31. The processed reconstruction error value can be used to
calculate an adaptive threshold for detecting anomalies. The alarm
threshold can be calculated by adding the noise value to the
standard deviation of the original reconstruction error σ, as
shown in Eq. 32a.

Xt � c + εt +∑p
i�1
φiXt−i +∑q

j�1
θjεt−j, (30)

y p( ) � 1∑i
k�−i

w k( )
∑i
k�−i

x p + k( )w k( )⎛⎝ ⎞⎠, (31)

U t( ) � Rei′ ± nσ, (32a)
where p and q are the autoregressive and moving average orders of
the model; φ and θ are undetermined coefficients that are not zero; εt
is the independent error term; Xt is a stationary, normal, and zero
mean time-series; y(p)is the weighted average of point p, p = 3, 4,...,
n-2; w(k)is the weighting function, where w(k) = 1/(ak2+1), with the
adaptive factor a, a > 0, and an integer k; x(p + k) is the measured
value at point p + k on a curve; yi represents the reconstruction error
Rei; k is the sampling length; U(t) is the alarm threshold; Rei′ is the
current value of the reconstruction error after the smoothing
process; and n is taken as 3.

When the generator works abnormally, the characteristics of the
reconstruction error distribution will change, resulting in the
reconstruction error value falling outside the control range.
When this trend changes beyond the preset threshold, the
generator can be judged to be abnormal. In practice, the
monitoring threshold is usually set high, and there may be lag in
monitoring abnormal changes in parameters directly. Therefore, the
adaptive threshold can be used to determine the fault of the
generator.

Re >U t( ), abnormal warning,
Re ≤U t( ), normal.

{ (33a)

4 Experiment and result analysis

4.1 Data acquisition and parameter setting

In this paper, the experimental verification is divided into
simulation example and actual example. The simulation example
is based on the simulation data of a 60-MW single-machine system
constructed using Simulink to establish the sample set. In the actual
example, the monitoring data of a 250-MW #1 generator in a real
power plant in Yunnan in the past 2 years under normal conditions
are selected to establish the training sample set. All the simulation
experiments are programmed in the Python environment.

Based on the operation data of multiple generators under
normal operating conditions for several years as the training
dataset of the model, different hidden layers and initialization
parameters of RBM were selected to construct the SAE network
model. The reconstruction error of the network was analyzed and
compared. It was found that the SAE model of the generator was set
with four hidden layers, each with a unit count of 1000, 500, 250, and
50, respectively. When the parametersW, a, and b of the SAE model
are initialized to a random smaller value that follows a Gaussian
distribution, the initial learning rate ε is set to 0.1, and the network
update rate is set to 0.001; this set of parameters can better preserve
the information of the training dataset. Moreover, when verified
with multiple sets of data samples, this set of parameters has good
stability. Therefore, this article finally selected the optimal parameter
that retains the least generator information loss as the basic
parameter of the model to further train the SAE network. Taking
into account the impact of the iteration period on training time, the
iteration period for parameter tuning is selected as 200.

4.2 Analysis of simulation results

In order to test the usefulness and accuracy of the abnormal state
monitoring method of the generator based on data fusion, this study
replicates the normal operation of the generator by increasing or
decreasing the load.

Two faults are, respectively, set to simulate the method’s efficacy
and correctness to carry out simulation verification:

Fault 1. Overload operation of the generator. The system is
continuously connected to the load until the generator is
overloaded at the 300th time point.

Fault 2.Generator three-phase short circuit. During the system, the
load is increased or decreased to simulate the working condition
under normal operation until the three-phase short-circuit fault
occurs at the 400th time point.

In order to verify the robustness of this method, three methods
are used to monitor the fault condition:

Method 1. Condition monitoring method based on SCADA–PMU
fusion data and fixed threshold (Zhao et al., 2018).

Method 2. Condition monitoring method based on single SCADA
data and adaptive threshold (Zhao et al., 2019).
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Method 3. Condition monitoring method based on single PMU
data and adaptive threshold.

Method 4. Condition monitoring method based on SCADA–PMU
fusion data and adaptive threshold.

4.2.1 Simulation results of the data fusion method
In this paper, PMU and SCADA are regarded as elements in the

recognition frame Θ, which are denoted as Θ � A, B{ }. The
importance of shared features of PMU and SCADA in input x =
[ IA, IB, IC, UA, UB, UC, P, Q, θ, Wm, f] of the SAE network model is
taken as the trust degree in the D–S evidence theory, as shown in
Table 1.

4.2.2 Validity analysis of the adaptive threshold
This research simulates fault 1 using Methods 1 and 4 to

determine the efficacy of the adaptive threshold. The simulation
results are shown in Figure 3.

Figure 3 shows that themonitoring variableRe starts to increase at
200 s, deviating from the original steady trend, and the load demand
has approached the rated power of the generator at this time.WhenRe

crosses the adaptive threshold at 300.02 s, a warning is issued.
Approximately 10 s later, Re crosses again and remains above the
adaptive threshold, thus judging that there is a fault. However, because
the threshold value is generally set high in practice, the fixed threshold
only sends an early warning signal at 317.5 s. The simulation results of
Methods 1 and 4 for fault 2 are shown in Figure 4.

Figure 4 shows that the monitoring variableRe begins to increase
at 200 s, breaking away from the steady trend. The reason is that
after 200 s, the load is randomly increased or decreased every 20 s to
simulate the adjustment instruction of the AGC system to generator
peak shaving. At 400.04 s, Re crosses and peaks above the adaptive
threshold; the fault is judged, and an early warning signal is issued.
Because the fixed threshold is set according to the normal operation
of the generator in the previous 200 s, although the warning signal is
generated 0.02 s earlier than the adaptive threshold when the
generator is short-circuited, many false alarms are generated in
the process of peak regulation of the generator. Compared with the
fixed threshold, the adaptive threshold proposed in this paper solves
the false alarm caused by a too-low threshold and the alarm
hysteresis caused by a too-high threshold and has good
robustness and accuracy.

TABLE 1 Distribution of feature confidence.

Feature Mi(A) Mi(B)

IA 0.043 0.039

IB 0.052 0.041

IC 0.042 0.043

UA 0.102 0.114

UB 0.095 0.105

UC 0.092 0.097

P 0.133 0.124

Q 0.104 0.113

θ 0.097 0.087

Wm 0.114 0.121

f 0.126 0.116

According to the evidence theory method proposed in this paper, the weight of PMU and SCADA data in the fusion data is {0.643463, 0.356537}, respectively.

FIGURE 3
Simulation results of fault 1 by Methods 1 and 4.
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4.2.3 Robustness analysis of fused data
The reconstruction effect of the stacked self-coding network is

assessed in this paper using the mean absolute error and the root
mean square error, with the mean absolute error and root mean
square error being expressed as shown in Eqs 32b, 33b, respectively:

MAE �
∑m
i�1

yi − xi

∣∣∣∣ ∣∣∣∣
m

, (32b)

RMSD

����������∑m
i�1

yi − xi( )2
m

,

√√
(33b)

where xi is the actual value of the multidimensional state
variable of the ith sample, yi is the multidimensional state
variable reconstruction residual of the ith sample, and m is the
sample number of the test dataset.

The stacking self-coding network proposed in this paper is used
to simulate and verify the normal working condition of fault 1 by

using Methods 2, 3, and 4, respectively, and the distribution of
reconstruction residuals under the normal working condition of the
model is shown in Figure 5.

FIGURE 4
Simulation results of fault 2 for Methods 1 and 4.

FIGURE 5
Distribution of residual values of the three methods.

TABLE 2 Residual error results of model reconstruction.

Fault 1 Fault 2

MAE RMSD MAE RMSD

Method 2 0.103274 0.10773 0.089864 0.095267

Method 3 0.093116 0.09662 0.107413 0.119880

Method 4 0.069352 0.07223 0.080095 0.081756

FIGURE 6
Simulation results of fault 1.
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Figure 5 shows that when Method 4 is used to train the model,
the highest residual value is the smallest and the model residual
value distribution is the closest. The reconstructed residual error
results of the model under all working conditions are shown in
Table 2.

As can be seen from comparing the simulation results in Table 2,
the reconstruction effect of the model is best when using Method 4,
and it is more resilient to the disturbance of time-varying working
conditions. The average absolute error and root mean square error
of the model are the smallest when using Method 4 to train the
model.

4.2.4 Accuracy analysis of fusion data
The simulation results of fault 1 using Methods 2, 3, and 4 and

the difference in distribution of its threshold and residual values are
shown in Figures 6, 7, respectively.

Figure 7 shows the difference between the threshold value and
the residual value. When the difference value drops below 0, it
means that Re crosses the line and sends out a signal. It can be clearly
seen from the figure that due to the limitation of SCADA data
sampling step size, the warning time for Re to cross the threshold in
Method 2 is 322.5 s, which is approximately 20 s slower than that in
the other two methods. At the same time, the false alarms appeared
at 37.5 s, 205 s, and 277.5 s in Method 2. Method 3 is also affected by
the lack of PMUmonitoring data, and Re is generally small. After the
warning is issued at 300.06 s, Re falls back below the threshold after
0.04 s, and the response to the fault is not obvious enough, and there
may be no alarm in the face of a gradual fault. Method 4 not only has
no false alarm but also has the fastest warning time among the three
methods, which shows that the reconstruction effect of Method 4 is
the best, and the accuracy of disturbance under time-varying
working conditions is better than the other two methods.

The alarm time and relative error of faults 1 and 2 simulated by
Methods 2, 3, and 4 are shown in Table 3.

4.3 Actual example

The fault case of #1 generator is that the load slip occurs at 10:14:
57 on a certain day, then the output of #1, #2, #3, #4, and
#5 generators in the power plant decreases, and the output of #1
~ #5 units decreases to 0 after approximately 48.55 s.

The operation fusion data of the #1 unit in a period of time
before and after the failure is used for the test, and the simulation
results are shown in Figure 8.

It can be seen from the simulation results that the monitoring
variable Re suddenly increases at 10: 14: 56: 20 ms, crosses the
threshold, and gives an early warning but falls back to the
threshold after approximately 0.4 s. Finally, at 14 min and 59 s,
it crosses again and remains above the threshold. At this time, it is
determined that a fault has occurred and an early warning signal is
sent out. It can be found that the method can send out the
abnormal warning earlier, and the effectiveness and
applicability of the method are verified by combining with the
actual fault cases.

When the unit is in normal operation, the generator is in a state
of dynamic balance; there is an internal relationship between the
monitoring variables, and the trend change remains relatively stable.
When an anomaly occurs, the long-term stable relationship is
destroyed, and the monitoring quantity reflecting the overall state
will deviate from the original trend. Through the examination of the
generator of unit #1’s experimental findings, it can be verified that
the fault breaks the relationship between the parameters, resulting in
a change of trend of Re.

FIGURE 7
Difference between the threshold and residual values of fault 1.
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This paper not only improves the monitoring threshold of the
generator abnormal condition but also fully considers the influence
of data structure on the monitoring model. Therefore, the
monitoring scheme obtained has higher robustness and accuracy
than the traditional methods.

5 Conclusion

For the research on the generator condition monitoring method,
this paper proposes a generator condition monitoring method based
on the SAE network, which combines multi-source data fusion
technology and adaptive threshold. The proposed method’s
effectiveness is confirmed by the actual fault scenario, which also
serves the goal of the generator condition monitoring.

In this paper, the data of SCADA and PMU are fused to extract
the internal relationship of multiple fused data parameters of the
generator, and the abnormal state of the generator is judged by
combining with the SAE network. Aiming at the sampling difference
between SCADA and PMU data, a new data fusion method and
adaptive threshold based on the D–S evidence theory is proposed in
this paper, and it is combined with the SAE network to monitor the
operation status of the generator. The simulation results

demonstrate that the suggested method has more robustness and
accuracy than the conventional method and can actually improve
the refinement level of generator condition monitoring by realizing
gradual failure prediction.
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