
Reconfiguration and
displacement of DG and EVs in
distribution networks using a
hybrid GA–SFLA multi-objective
optimization algorithm

Yazeed Yasin Ghadi1, Hossam Kotb2*, Kareem M. Aboras2,
Mohammed Alqarni3, Amr Yousef3,4, Masoud Dashtdar5 and
Abdulaziz Alanazi6

1Department of Computer Science and Software Engineering, Al Ain University, Abu Dhabi, United Arab
Emirates, 2Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University,
Alexandria, Egypt, 3Electrical Engineering Department, University of Business and Technology, Jeddah,
Saudi Arabia, 4Engineering Mathematics Department, Faculty of Engineering, Alexandria University,
Alexandria, Egypt, 5Department of Electrical Engineering, Faculty of Sciences and Technologies Fez, Sidi
Mohamed Ben Abdullah University, Fes, Morocco, 6Department of Electrical Engineering, College of
Engineering, Northern Border University, Arar, Saudi Arabia

A combined algorithm for reconfiguring and placement of energy storage
systems, electric vehicles, and distributed generation (DG) in a distribution
network is presented in this paper. The impact of this technique on increasing
the network’s resilience during critical periods is investigated, as well as
improvements in the network’s technical and economic characteristics. The
three objective functions in this regard are the network losses, voltage profile,
and running costs, which include the costs of purchasing electrical energy from
the upstreamnetwork and the devices used, aswell as the cost of load shedding. In
addition, the impacts of the presence of DG on power flow and the modeling of
the problem’s objective function are examined. To solve the problem of
reconfiguration and placement of a multi-objective distribution feeder, a
genetic algorithm (GA) and shuffled frog leaping algorithm (SFLA) hybrid
algorithm is used. The proposed GA–SFLA algorithm is used to solve the
problem with changes in its structure and its combination in three stages.
Finally, the proposed method is implemented on the 33-bus distribution
network. The simulation results show that the proposed method has an
effective performance in improving the considered objective functions and by
establishing a suitable fit between the different objective functions based on the
three-dimensional Pareto front. Moreover, it introduced a more optimized
architecture with lower loss, lower operating costs, and greater reliability
compared to other optimization algorithms.
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1 Introduction

In recent years, increasing penetration of distributed generation
(DG) sources in distribution systems has improved various
characteristics such as reliability and reduced losses. On the other
hand, due to the uncertainty of DG sources, providing too much
load using these technologies will cause problems such as instability.
In this way, to increase the penetration of renewable energy sources,
the role of other technologies in power systems has become more
prominent. Energy storage systems (ESSs) are one of these efficient
pieces of equipment in the network, which can increase the
penetration of renewable resources in the network by taking
advantage of their charging and discharging properties. On the
other hand, ESSs are not the only devices capable of charging and
discharging in the network, and the properties of electric vehicles
(EVs) can be used to improve the characteristics of the system and its
optimal use (Karthikeyan et al., 2018; Dashtdar et al., 2020; Dashtdar
et al., 2022a; Nawaz et al., 2023). Like ESSs, EV batteries can be
charged and discharged. Due to the low battery capacity, it is
possible to show its effect by combining these devices in the
network. In addition, due to the expansion of the use of smart
grids, basic issues in power systems have become more important,
among these issues are reconfiguration, increasing the resilience of
the distribution network under critical conditions such as floods and
storms. This issue has been examined from different perspectives.
One of the most important indicators for improving resilience is
reducing system load shedding. Therefore, changing the structure of
the distribution network and adding up-to-date technologies
according to the existing conditions can lead to the improvement
in the overall performance of the system (Sharma et al., 2020; Shi
et al., 2022; Sui et al., 2022).

Several studies have been carried out on the optimal placement
of energy storage devices, DG, and optimal reconfiguration in the
network. In these studies, various optimization methods have been
used to determine decision variables. Daily reconfiguration is carried
out to reduce losses and improve reliability, which was initially
executed using classical methods, but the distribution network
includes hundreds of switches, so it was not possible to consider
all the existing configurations and check all of them by classical
methods, which is why today smart methods are used. The genetic
algorithm (GA) was utilized by Dashtdar et al. (2021a) for
reconfiguration and optimal placement of UPQC in the
distribution network. One of the operational goals of
reconfiguration is to improve the load balance index, which was
studied by Kahouli et al. (2021), simultaneously reducing losses and
reliability as objective functions. A multi-objective approach for
optimizing the stochastic reconfiguration problem in the presence of
wind turbines (WTs) and fuel cells is provided in the work of
Nikkhah and Rabiee (2019).

Connecting DG resources to distribution systems can have a
positive or negative effect on network performance, which can
include reducing losses, improving voltage profile, improving
reliability, reducing environmental pollution, and postponing
investment for network development. The presence of DG in the
reconfiguration problem will cause changes in the way of power flow
and determine the objective function, which is generally considered
a cost function with the presence of DG. Each DG source’s cost
function is regarded as a multiplier of the power generated by it.

Using the quadratic function to calculate the power generation cost
of DGs is more suitable because the calculated cost for power
generation will be closer to reality (Arif et al., 2017; Hamida
et al., 2018; Dashtdar et al., 2021b; Dashtdar et al., 2022b). The
appropriate allocation of DGs in the distribution system is a problem
of optimization with both discrete and continuous variables. Some
researchers have used intelligent and evolutionary methods to find
the optimal location of DGs. Rafi and Dhal, (2020a) presented a new
strategy for the optimal allocation of DG in the distribution feeder to
minimize losses and increase the voltage at the end of the feeder
during peak load using a hybrid optimization technique. Reddy et al.
(2018) presented a method based on an Ant Lion Optimization
algorithm to optimize DG in radial distribution systems and
minimize losses from the point of view of subscribers. Hassan
et al. (2022) presented the nature-inspired optimization
algorithm as well as the techno-economic pattern to determine
the optimal size and location of DG in distribution systems. By
examining the research in this field, we notice a new perspective
called the combination of two reconfiguration problems at the same
time as the optimal allocation of DG units. Mahboubi-Moghaddam
et al. (2016) proposed the multi-objective reconfiguration of
distribution network feeders, considering the operating cost,
transition stability, and losses using the EGSA. In this article, the
transient stability is calculated by using the critical clearing times
index and considering the probability of fault occurrence in different
locations. In the work of Sedighizadeh et al. (2017), using the
imperialist competitive multi-objective algorithm based on fuzzy
logic, optimal reconfiguration for distribution networks to improve
simultaneous losses, Average Energy Not Supplied (AENS), the
System Average Interruption Frequency Index (SAIFI), the
System Average Interruption Duration Index (SAIDI), and the
Average Service Unavailability Index (ASUI) is proposed.
Hooshmand and Rabiee (2019) proposed multi-objective energy
management, considering the effects of reconfiguration, renewable
resources, demand response, and energy storage. The proposed
model simultaneously minimizes the cost of purchasing energy
and unsupplied energy by determining the optimal location of
renewable resources, storage devices, and demand response.
Truong Anh et al. (2018) first addressed the placement and
optimal size of the DG using the runner root algorithm and then
performed the reconfiguration of the distribution network in the
presence of the DG to reduce losses. Siahbalaee et al. (2019)
presented a method for reconfiguration in the presence of DG,
with the aim of minimum losses, minimum number of switches, and
minimum voltage deviation of buses using the improved shuffled
frog leaping algorithm (SFLA) and evaluated the effect of
simultaneous reconfiguration and placement of DG in reducing
losses and increasing the minimum level voltage. Teimourzadeh and
Mohammadi-Ivatloo (2020) discussed optimization of the
reconfiguration problem in the presence of DG to reduce losses
and improve the voltage profile, in which different load levels were
considered and the three-dimensional group search optimization
(3D-GSO) method was used to solve the optimization problem. DG
sources are modeled as negative load, and its effect on power flow is
considered as voltage constraints. So far, meta-heuristic algorithms
with various efficiency and accuracy and with different objective
functions have been presented for the reconfiguration and
placement problem of DG such as GA (Saonerkar and Bagde,
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2014; Ajmal et al., 2021; Mahdavi et al., 2021), PSO (Jena and
Chauhan, 2016; Saleh et al., 2018; Rafi and Dhal, 2020b), SFLA
(Arandian et al., 2014; Azizivahed et al., 2017; Onlam et al., 2019),
fuzzy (Sedighizadeh and Bakhtiary, 2016; Mohammadi et al., 2017;
Hosseinimoghadam et al., 2020), and ABC (Jamian et al., 2014;
Quadri and Bhowmick, 2020; Dashtdar et al., 2022c).

In recent years, there have been significant advancements in the
field of multi-objective optimization of distribution networks with
DG and EV placement. For instance, a study by Lotfi et al. (2020)
presented a comprehensive analysis of the reconfiguration and
optimization of distribution networks considering DG
integration. The authors propose a methodology based on a
multi-objective particle swarm optimization algorithm to
minimize losses, improve voltage profile, and optimize the
operation of DG units. Another relevant work in this field was
conducted by Lotfi and Ghazi (2021). They investigated the
integration of renewable energy sources, such as wind energy,
into distribution networks. The authors propose a multi-objective
optimization approach to simultaneously minimize power losses,
improve voltage profile, and enhance the overall performance of the
network. Furthermore, a recent study by Lotfi (2022) focused on the
mutual effect of network reconfiguration and EV charging/
discharging in distribution networks. The authors proposed a
multi-objective optimization algorithm to optimize the placement
of EV charging stations and the reconfiguration of the network,
considering the impact on power losses, voltage profile, and EV
charging/discharging. Additionally, the integration of ESSs is an
essential aspect of the optimization of distribution networks. Lotfi
(2020) investigated the impact of ESSs on the operation and
performance of distribution networks with DG and EVs. The
authors proposed a multi-objective optimization algorithm to
minimize losses, improve voltage profile, and optimize the
operation of energy storage systems in the network.

By including these references, we aim to provide a better
understanding of the motivation behind our research, highlight
the novelty of the proposed method, and demonstrate our
awareness of relevant past works in the field. So, in this article,
the problem of multi-objective optimization of reconfiguration of
distribution networks with the placement of DG is discussed. The
advantage of the proposed method in this article compared to
previous research is the simultaneous combination of three
objective functions including losses, voltage profile, and
operating costs consisting of the costs of purchasing electrical
energy from the upstream network and the devices used and the
cost of load shedding. In this regard, a comprehensive
mathematical model is presented to investigate the increasing
penetration of wind energy as a renewable energy source in the
network. In addition, in this model, the mutual effect of network
reconfiguration on the number of vehicles being charged and
discharged in the electric vehicle parking lot is investigated. The
presented model is evaluated in 24 h under normal and critical
conditions. In this way, assuming that the connection with the
upstream network is interrupted during certain hours of the day,
the amount of load interruption before and after the occurrence of
the fault is obtained. Finally, according to the objective of the
problem, from the point of view of the distribution company, in
addition to minimizing the cost of purchasing electric energy from
the upstream network and wind turbine owners and the cost of

buying and selling energy to ESSs and EV parking, it also
minimizes the cost of shedding controllable loads. Due to the
complexity of solving the problem, therefore, the algorithm used
must be accurate and efficient. In this article, an improved multi-
objective hybrid algorithm combining GA and SFLA is presented
by applying changes in their structure in three stages to minimize
the cost of operation losses and improve the voltage profile. Finally,
the differences and characteristics of the proposed strategy with
references (Lotfi 2020; Lotfi et al., 2020; Lotfi and Ghazi, 2021;
Lotfi, 2022) can be listed as follows:

• Optimal placement of PV, WT, ESS, and EV units in the
network based on criteria F1, F2, and F3

• A detailed description of how to implement power flow in the
network in the presence of DG units and display the power
and voltage output of each network section

• Considering critical and real conditions such as failure and
exit of some network lines, in addition to bringing the strategy
closer to reality, reducing the costs of load shedding is
evaluated in the problem

• Performance evaluation of the proposed hybrid GA–SFLA
algorithm based on MID, diversity, NPS, and spacing criteria

This article is structured as follows: Section 2 defines the
problem formulation and constraints. Section 3 presents the
structure of the proposed hybrid GA–SFLA algorithm for solving
the problem. Section 4 presents the simulation results and
discussion. Finally, Section 5 summarizes the conclusion and
future work.

2 Modeling and formulation of the
placement and reconfiguration
problem

Figure 1 shows the general problem space and solving method
schematically. Here, three objective functions, including operating
costs, losses, and total voltage deviations, are defined, and through
simultaneous placement and reconfiguration, these objective
functions based on the power flow are tried to be minimized
with a subset of simple recursive equations. The algorithm
implemented to solve the problem is a hybrid algorithm with a
combination of GA and SFLA features, which are defined in three
stages. The following section details how to model the units and
formulate the problem along with the constraints. In this research,
two types of DG sources, wind and solar, are used, and their output
has uncertainty, so the important issue is how to model this
uncertainty.

2.1 Solar photovoltaic modeling

The amount of solar radiation and the ambient temperature are
two critical factors that influence probability variations and behavior
in photovoltaic (PV) power generation. The probability distribution
function of these parameters can be generated using a variety of
distribution functions, and the normal distribution function is
utilized in this article to simulate the relevant parameters. After
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modeling solar radiation and ambient temperature with a
probability distribution function, Eq. 1 is used to obtain the
amount of PV generation power (Lotfi and Ghazi, 2021):

PPV � PSTC ×
GING

GSTC
× 1 + kα Tc − Tr( )( ), (1)

where the amount of solar radiation and ambient temperature under
standard conditions are considered as GSTC = 1,000 W/m2 and Tr =
25°C, respectively. GING is the amount of solar radiation, Tc is the
temperature around the cell, and kα is the temperature coefficient for
the maximum power. Figure 2 shows the probability distribution
function of PV generation power.

2.2 Wind turbine modeling

The wind speed is continually fluctuating. The average amount
provided for a certain area cannot simply represent the amount of
WT generation installed in that location. Probability distribution
functions can be utilized to determine the abundance of wind speed
in a region. The Weibull distribution is more commonly used in
wind speed forecasting. The general relationship of a Weibull
distribution with variable X with scale parameter λ and shape
parameter K is expressed through the following equation (Lotfi,
2022):

Weibull λ, K( )� λKXK−1 exp −λXK[ ]. (2)
For wind speed, we use the same probability distribution based

on the following equation (Lotfi, 2022):

f V( ) � h

c

v

c
( )h−1 exp − v

c
( )h[ ]. (3)

The parameters c and h represent scale and shape parameters
for wind speed v, respectively. In this article, the values of c and h
are considered as 9 and 2, respectively. The wind speed influences
the output power of a WT, and there is a non-linear relationship
between these two variables. The “power–speed” characteristic
curve of WT, represented by Eq. 4 (Lotfi, 2022), illustrates the
amount of active power produced by WT for varying wind
speeds.

PWT v( ) �

0 0≤ v≤ vci or vco ≤ v

PWT,r ×
v2 − v2ci
v2r − v2ci

vci ≤ v≤ vr

PWT,r vr ≤ v≤ vco

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ , (4)

where vco, vr, and vci are the cut-out speed, rated speed, and cut-in
speed, respectively. PWT,r is the rated speed of WT. Moreover, the
probability distribution function of the WT-generating unit is
depicted in Figure 3.

FIGURE 1
General space of the placement and reconfiguration problem.
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2.3 Modeling of the energy storage system

ESS is a system that stores energy at certain times and re-injects
it into the system at other times. The performance of the ESS creates
two important possibilities for the distribution network. One is the
increase of inertia in the island network, which leads to the
improvement of system stability, and the other is the activation
of this system to improve economic performance. The operation of
the ESS is based on the pricing shown in Figure 4, which shows the
electricity price chart at different hours of the day based on the
normalized monetary unit.

The considered protocol is in the following form of (Lotfi, 2020):

ESS t+1( ) �
ESS t( ) + ch rate × Δt EP t( )≤ 25
ESS idle( ) 25<EP t( )≤ 40
ESS t( ) − disch rate × Δt EP t( )> 40

⎧⎪⎨⎪⎩ , (5)

where EP(t) is the electricity price at time t, ESS(t) is the energy
available in the energy storage system at time t, Δt is the smallest part

of time equal to 1 h, and ch_rate and disch_rate are the charging and
discharging rates of the ESS, respectively, which represent the power
injected into the network during ESS operation.

2.4 Problem formulation

A multi-objective function is considered in this work which
includes all costs of the distribution company and consists of three
objectives. The first goal is to minimize the voltage deviations
(VDs) of the entire network, which is defined as follows (Lotfi,
2020):

F1 � VD �∑24

t�1∑Nbus

i�1 Vt
i − Vde

i

∣∣∣∣ ∣∣∣∣, (6)

where Vi
t is the voltage of the ith bus at time t and Vi

de is the desired
voltage of the ith bus equal to 1 p. u. Most losses in power systems
are related to distribution networks. Reducing losses in distribution
networks frees up system capacity, especially during load peak

FIGURE 3
Probability power of the wind unit.

FIGURE 2
Probability power of the PV unit.
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hours. Here, the second goal is to reduce the losses of the entire
system, which is defined as follows (Lotfi, 2020):

F2 � Losses �∑24

t�1∑Nline

l�1 Rl Itl( )2, (7)

where Il
t is the current of the lth line at time t and Rl is the resistance

of the lth line of the network. One of the main goals in the design and
development of distribution networks is to transfer electric power
from distribution stations to subscribers at the lowest cost while
maintaining network operation limits. Therefore, the third objective
is to reduce the operating cost of the distribution network by
considering DG, which is expressed as follows:

F3 �FRES +FEES +FEV +FVOLL,

FRES �∑24

t�1EP t( )× ∑NUps

i�1 PUps i, t( )+∑NWT

i�1 PWT i, t( )+∑NPV

i�1 PPV i, t( )( ),
FESS �∑24

t�1EP t( )× ∑NESS

i�1 Pdch
EES i, t( )−∑NESS

i�1 Pch
EES i, t( )( ),

FEV �∑24

t�1EP t( )× ∑NPL

p�1∑NEV

v�1 NumEV v( )× Pdch
EV p,v, t( )−Pch

EV p,v, t( )( )( ),
FVOLL �∑24

t�1∑Nbus

i�1 VOLL i,t( )×PLSH i, t( ).
(8)

As shown in Eq. 8, the objective function F3 consists of different
costs. Here, EP(t) is the price of electricity, the FRES function is related
to the total cost of purchasing electrical energy from the upstream
network and renewable wind and solar units, and the FEES function
considers the costs of charging and discharging the battery so that
when the ESS is charged, it can receive an amount from its owner and
in case of discharge, an amount is paid to the ESS owner. The FEV
function considers the parking costs of electric vehicles. In this model,
each vehicle pays or receives an amount to the distribution company
according to the amount of charging or discharging. The FVOLL
function is related to the cost of load shedding. Naturally, due to
the high cost of load interruption for the distribution company, there
is no load interruption in normal situations, but in critical times due to
the low availability of resources, there is a need to interrupt the load,

whereNumEV(v) is the number of each type of vehicle, and VOLL is
the cost of the value of the lost load. Finally, after forming the defined
functions, these functions are combined in a multi-objective function,
which is expressed as Eq. 9:

min F �∑3

i�1ωiFi � ω1F1 + ω2F2 + ω3F3( ), (9)

Fi � fi

fi
max

. (10)

To form the multi-objective function according to Eq. 10, the
normalized form is used, where each function is normalized based
on its maximum value, so the problem of the units of the functions
not being the same is solved, and the functions also change in an
almost equal interval. Therefore, in this article, the goal of
minimizing Eq. 9 will be based on optimal reconfiguration and
DG placement in the network, and this will be achieved under the
condition that the constraints of the problem are met and network
information can be extracted correctly. So, one of the important
factors in this issue will be how to implement power flow in the
distribution network because DG and reconfiguration have a direct
effect on it, which will be mentioned in the next section.

2.5 Power flow equations

With the increasing effect of DG, the distribution network
transforms from a passive to an active network. This requires
changes in the analysis and distribution strategy. In the presence of
DG, conventional power flow methods for the distribution system no
longer have the desired performance, so it is necessary to make changes
in these methods so that DGs, which are generally modeled as active
photovoltaic (PV) or active–reactive power (PQ) nodes, can be included
in power flow calculations. Therefore, DG units, which are controlled as
PQ buses, are entered as loads with negative impedance in the power

FIGURE 4
Electricity prices at different hours.
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flow. Figure 5 shows a single-line diagram of a sample feeder with DG.
In this case, the power flow used, which is generally forward–reverse
power flow, is not complicated, but for DG units that are controlled as
PV buses, the correct amount of reactive power injection produced by
the unit must be determined. For this purpose, an initial guess for the
amount of injected reactive power is considered, and the power flow of
the network is similar to the previous state. Then, by comparing the
relevant bus voltage with the desired value, the voltage difference is
calculated, and the amount of injected or received reactive power is
calculated to provide the desired voltage. Then, with the new value of
the calculated reactive power, the power flow is performed again and the
PV bus voltage difference is calculated, and this process continues until
the desired constant voltage is reached. Finally, according to Figure 5,
power flow equations can be defined as follows (Lotfi, 2020; Lotfi et al.,
2020; Lotfi and Ghazi, 2021; Lotfi, 2022):

Pk+1 � Pk − Ploss,k − PLk+1

� Pk − Rk

Vk| |2 P2
k + Qk + Yk Vk| |2( )2{ } − PLk+1, (11)

Qk+1 � Qk − Qloss,k − QLk+1 � Qk − Xk

Vk| |2 P2
k + Qk + Yk1 Vk| |2( )2{ }

− Yk1 Vk| |2 − Yk2 Vk+1| |2 − QLk+1,

(12)

Vk+1| |2 � Vk| |2 + R2
k +X2

k

Vk| |2 P2
k + Q2

k( )−2 RkPk +XkQk( )

� Vk| |2 + R2
k +X2

k

Vk| |2 P2
k + Qk + Yk Vk| |2( )2( )

−2 RkPk +Xk Qk + Yk Vk| |2( )( ),
(13)

where Pk is the active power of bus k,Qk is the reactive power of bus k,
Ploss,k is the loss of active power of bus k, Qloss,k is the loss of reactive
power of bus k, PLk+1 is the active power consumption of bus k+1,
QLk+1 is the reactive power consumption of bus k+1, Rk is the
resistance of the communication line between bus k and k+1, Xk is
the reactance of the communication line between bus k and k+1, Yk is
the parallel admittance of bus k, and Vk is the voltage range of bus k.

2.6 Problem constraints

The constraints of the problem consist of the reconfiguration
limitations, power flow, maintenance of network characteristics, and
the units used in it, which were pointed out. A graph is a radial
network consisting of a tree without loops. To apply the
reconfiguration limit for this condition, the number of network
lines must be equal to the number of network buses minus one.
Therefore, Eq. 14must be valid, whereNbus is the number of network

FIGURE 5
Single-line diagram of a sample feeder, (A) without DG and (B) with DG.
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buses and Lr (i,j) is a binary variable indicating the state of the lines
(Lotfi, 2020; Lotfi et al., 2020; Lotfi and Ghazi, 2021; Lotfi, 2022).

∑
ij∈Nbus

Lr i, j( )� 2 Nbus−1( ). (14)

One of the main constraints is the consideration of power flow
limits, in which various operating and physical limits of the network,
such as network voltage limits, power passing through lines, and
power injection to the network, are considered. In this article, in
addition to the injection power from the upstream network, the
power of WT, ESS units, and EV parking lots is considered. In
addition, the power passing through the network lines is limited
according to the network configuration (Lotfi, 2020; Lotfi et al., 2020;
Lotfi and Ghazi, 2021; Lotfi, 2022).

PUps i, t( ) + PWT i, t( ) + PPV i, t( ) + PLSH i, t( ) + Pdch
EES i, t( ) − PD i, t( )

− Pch
EES i, t( ) +∑NEV

v�1 NumEV v( ) × Pdch
EV i, v, t( ) − Pch

EV i, v, t( )( )
�∑

i,j∈Nbus
Lr i, j( ) × PLine i, j, t( ),

(15)
QUps i, t( ) + QWT i, t( ) + tan

PD i, t( )
QD i, t( )( ) × PLSH i, t( ) − QD i, t( )

�∑
i,j∈Nbus

Lr i, j( ) × QLine i, j, t( ),
(16)

PLine i,j, t( )�V2 i, t( )×G i,j( )−V i,t( )×V j,t( )
× G i,j( )× cos δ i,j, t( )( )+B i,j( )× sin δ i, j, t( )( )( ),

(17)
QLine i,j, t( )�−V2 i, t( )×B i,j( )−V i,t( )×V j,t( )

× G i,j( )× sin δ i,j, t( )( )−B i,j( )× cos δ i, j, t( )( )( ).
(18)

Equations 15, 16 show active and reactive power balance
relationships, respectively. Equation 17, 18 show the power flow
in the grid lines. In Eqs 15, 16, the binary variable Lr (i,j) determines
the disconnection and connection state of the lines and influences
the power flow. Here, B (i,j) and G (i,j) are, respectively, the
conductance and susceptance of the line between buses i and j.

According to Eqs 19, 20, 21, to comply with the limit of voltage
and power passing through the lines, the apparent power passing
through the lines must be within the specified range and the voltage
of the buses must be within its permitted range. Furthermore,
according to Eq. 22, the amount of interrupted load of each bus
is determined according to the maximum bus load (Lotfi, 2020; Lotfi
et al., 2020; Lotfi and Ghazi, 2021; Lotfi, 2022).

SLine i, j, t( )≤ SLinemax i, j, t( ), (19)
Sline i, j, t( ) � ��������������������������

PLine i, j, t( )( )2 + QLine i, j, t( )( )2,√
(20)

Vmin ≤V i, t( )≤Vmax, (21)
0≤PLSH i, t( )≤PD i, t( ). (22)

DG resources have generation limitations that are considered in
this research. Eqs 23, 24 show the limit of active and reactive power
ofWT and Eq. 26 the limit of the active power of PV according to the
available power of these sources every hour. In these relationships,
the binary variables LWT (i) and LPV (i) determine the installation
location of WT and PV units, respectively. According to Eqs 25, 26,
27, the number ofWT and PV units that can be installed in the entire

network is limited to a certain number, and this number can be
affected by various factors. Here, eWT (t) and ePV (t) are the available
power coefficients of WT and PV, respectively (Lotfi, 2020; Lotfi
et al., 2020; Lotfi and Ghazi, 2021; Lotfi, 2022).

PWT
min i( ) × LWT i( )≤PWT i, t( )≤PWT

max i( ) × eWT t( ) × LWT i( ), (23)
QWT

min i( ) × LWT i( )≤QWT i, t( )≤QWT
max i( ) × LWT i( ), (24)∑

i∈Nbus
LWT i( )≤MNWT, (25)

Pmin
PV i( ) × LPV i( )≤PPV i, t( )≤Pmax

PV i( ) × ePV t( ) × LPV i( ), (26)∑
i∈Nbus

LPV i( )≤MNPV. (27)

Eqs 28, 29 show the maximum charging and discharging power
of ESS, respectively. In these relationships, the binary variables αESS

ch

(i,t) and αESS
dCh (i,t), respectively, determine the charge or discharge

state of the battery, and according to Eq. 30, only one of them can be
one in a specific hour. The number of ESSs that can be installed in the
network is limited according to Eq. 31. In Eq. 32, SOCESS (i,t)
represents the state of charge of ESS. Here, ηESS

ch (i,t) and ηESS
dCh

(i,t) are the charging and discharging efficiency of ESS and LESS(i),
respectively, which determine the installation location of ESSs (Lotfi,
2020; Lotfi et al., 2020; Lotfi and Ghazi, 2021; Lotfi, 2022).

0≤Pch
ESS i, t( )≤ αchESS i, t( ) × Pchmax

ESS i, t( ) × LESS i( ) ∀i ∈NESS

0 Otherwise
{ ,

(28)
0≤Pdch

ESS i, t( )≤ αdchESS i, t( ) × Pdchmax

ESS i, t( ) × LESS i( ) ∀i ∈NESS

0 Otherwise
{ ,

(29)
αchESS i, t( ) + αdchESS i, t( )≤ 1, αchESS i, t( ), αdchESS i, t( ) ∈ 0, 1{ }( ), (30)

∑
i∈Nbus

LESS i( )≤MNESS, (31)
SOCESS i, t( ) � SOCESS i, t−1( )

+ Δt· Pch
ESS i, t( ) × ηchESS i, t( ) − Pdch

ESS i, t( )
ηdchESS i, t( )( ). (32)

The limitations of the EV battery are modeled as the ESS battery.
In addition to considering the charging and discharging state of the
EV battery, the distance traveled by each EV is one of the elements of
the energy function stored in the EVs (Lotfi, 2020; Lotfi et al., 2020;
Lotfi and Ghazi, 2021; Lotfi, 2022).

SOCEV i, v, t( ) � EEV
0 + Δt· Pch

EV i, v, t( ) × ηchEV i, v, t( ) − Pdch
EV i, v, t( )

ηdchEV i, v, t( )( )
− PTR

EV i, v, t( ),
(33)

0≤Pch
EV i, v, t( )≤ αchEV i, v, t( ) × Pchmax

EV i, v, t( ) × LPL i( ) ∀i ∈NPL

0 Otherwise
{ ,

(34)
0≤Pdch

EV i, v, t( )≤ αdchEV i, v, t( ) × Pdchmax

EV i, v, t( ) × LPL i( ) ∀i ∈NPL

0 Otherwise
{ ,

(35)
αchEV i, t( ) + αdchEV i, t( )≤ 1, αchEV i, t( ), αdchEV i, t( ) ∈ 0, 1{ }( ), (36)

PTR
EV i, v, t( ) � ΔD v, t( ) × δEV v( ), (37)

NumEV
min v( )≤NumEV v( )≤NumEV

max v( ), (38)
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∑
v∈NEV

NumEV v( )≤EVmax, (39)

∑
i∈Nbus

LPL i( )≤MNPL. (40)

Equation 33 shows the amount of energy of each EV. It should
be noted that in this paper, it is assumed that there is a public
parking lot in the network where EVs can be charged and
discharged. The location of this parking lot is determined like
other devices of the network. According to Eq. 36, the charging
and discharging mode of an EV battery is defined according to
binary variables αEV

ch (i,t) and αEV
dch (i,t). In addition, PEV

TR (i,v,t) is
the power used to move the EV in the transportation system, which
is obtained according to Eq. 37. δEV (v) is the consumption factor of
EVs, and Eqs 38, 39 limit the type of each EV and the total number of
EVs in the network, respectively. Here, LPL(i) determines the
installation location of the EV charging station, and E0

EV is the
initial energy value of the EV.

3 The presented method for solving the
problem based on a hybrid GA–SFLA
multi-objective algorithm

One of the requirements in every reconfiguration problem is
power flow. Irrespective of whether the reconfiguration problem is
solved by mathematical methods or meta-heuristic methods, since
restrictions such as the voltage of the nodes and the current of the

branches must be observed, it needs power flow. Therefore, it is
necessary to pay special attention to power flow in the distribution
network. Another requirement of the reconfiguration problem is
their solution method. Since almost all the mathematical methods
that have been used so far in solving the reconfiguration problem are
single-objective and used only to minimize the losses, and since in
this article, the reconfiguration is supposed to be carried out
simultaneously with the placement of the DG, and we also want

FIGURE 6
Sample distribution network for topology detection.

TABLE 1 Information about buses connected to lines.

RB Line number

L1 L2 L3 L4 L5

The beginning bus B1 B2 B3 B4 B3

Bus at the end B2 B3 B4 B5 B6

TABLE 2 The first step is to evaluate the lines.

RB Line number

L2 L3 L4 L5

The beginning bus B2 B3 B4 B3

Bus at the end B3 B4 B5 B6

TABLE 3 The second step is to evaluate the lines.

RB Line number

L3 L4 L5

The beginning bus B3 B4 B3

Bus at the end B4 B5 B6

TABLE 4 The second step is to evaluate the lines.

RB Line number

L3 L4

The beginning bus B3 B4

Bus at the end B4 B5
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to improve the losses and the voltage and operating cost, so
mathematical modeling will be a complex issue. In this article,
the hybrid GA–SFLA multi-objective algorithm is used in three
stages based on answers in the form of a Pareto front to solve the
problem.

3.1 Power flow in the distribution network

The power flows that are used in the reconfiguration issue
should be written in a general way; that is, it should be effective
for different configurations. Therefore, the algorithmmust first have
the ability to recognize the topology of the network, in such a way
that it knows about all the branches of the network separately, from
the slack bus to the end bus related to that branch. For example, if
the network has four branches, two parameters must be defined, one
of which shows the number of lines related to each branch, from the
first line to the last line of the desired branch, and the other shows
the number of buses in each branch, from the slack bus to the last
bus of the subject branch. Before the topology detection algorithm is
explained, it should be said that in any configuration that is given to
the power flow program, all the information related to that
configuration that is used in the power flow, including the active
and reactive power of buses, the number of lines, the number of
buses at both ends of each line, and the resistance and reactance of
each line is given to the power flow. Suppose we want to get the

network topology of Figure 6. According to the numbering of each
line in Figure 6, Table 1 shows the beginning and end buses of
each line.

The topology detection algorithm is as follows (Abul’Wafa,
2011):

• First, we need to know how many branches there are in each
configuration. For this, we put all the beginning and end buses
in the S vector. According to Table 1, the S vector will be as
follows:

S � B6,B5,B4,B3,B2︸�������︷︷�������︸
End

,B3,B4,B3,B2,B1︸�������︷︷�������︸
Beginning

⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭. (41)

Buses that are repeated more than twice in the S vector show that
a branch is coming out of those buses. The number of output
branches is equal to the number of repetitions minus 2. For example,
bus 3 (B3) was repeated three times, so one branch has been coming
out from it. Here, the variable RB is defined, which represents the
number of branches and is initially equal to 1.

• In this step, the RB variable is checked for each bus.
Therefore, for each bus, the previous condition is checked
and added to RB. As shown in Figure 6, only bus 3 is
repeated more than twice, so the number of branches is
equal to 2.

• The following process should now be carried out for as many
as RBs:

(a) We start from the slack bus and set the desired variable B
equal to 1.

(b) Then, we check from Table 1 that B contains the bus of the
beginning or end of which line. If the bus was the beginning of
the line, we set BB = B and B equal to the end bus, and if the bus
was the end of the line, we again set BB = B and B equal to the
first bus, and then, we store the number of the line in vector R
and BB and B in vector N, and finally, we delete the column
corresponding to that line.

(c) We continue the previous step until no line is found when
checking B. It should be noted that if, during checking, we found
that B was present in more than one line (that is, we reached
nodes with several branches coming out of it, which is B3 here),
we will choose one line at will; however, we must note that when
we want to find the number of lines and buses of the next
branches when we reach B3, the line selected in the previous
step among the lines connected to B3 should not be chosen. The
process of topology detection is as follows.

According to Table 2, after step (b) and checking line L1, column
L1 is removed from Table 1 and the vectors R1 = [L1] and N1 = [B1,
B2] are formed. Now, B = B2, and among the lines in Figure 6, only
B2 exists in L2. After checking the L2 line, as shown in Table 3,
vector R1 = [L1, L2] and N1 = [B1, B2, B2, B3] can be formed again.

Next is B = B3, and this bus is in lines L3 and L5. Therefore, a
line, for example, line L5, is selected at will. After checking the
L5 line, as shown in Table 4, vector R1 = [L1, L2, L5] and N1 = [B1,
B2, B2, B3, B3, B6] can be formed again.

B6 does not exist in any other line; thus, a branch is specified,
and for the next branch, the same process starts from the beginning,

FIGURE 7
Flowchart of the power flow algorithm.
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with the difference that when it reaches bus B3, previously selected
line L5 is no longer selected. Finally, the vectors R and N for all two
branches become R1 = [L1, L2, L5], R2 = [L1, L2, L3, L4], N1 = [B1,
B2, B3, B6], and N2 = [B1, B2, B3, B4, B5]. Therefore, by using the
presented method, we can obtain the branches of any network
configuration. As a result, by having branches, power flow
calculations, including the calculation of TV and TI matrices
(based on KVL and KCL), are implemented more easily.

According to Figure 6, the injected current in each bus can be
obtained from Eq. 42, whereQi, Pi, andVi are the reactive and active
power of the load and the voltage of the ith bus, respectively. The
negative sign is because the load is consumed in each bus, while this
sign will be positive for the buses that DG is connected to.

Ii � − Pi + jQi( )
Vi

( )*. (42)

The relationship between the injection current and branch
current can be expressed as Eq. 43 based on the KCL law.
These relationships can be defined based on the TI matrix as
Eq. 44.

i1 � I2 + I3 + I4 + I5 + I6
i3 � I4 + I5
i5 � I6

, (43)

ii[ ] � TI[ ] Ii[ ],
i1
i2
i3
i4
i5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 1 1 1 1
0 1 1 1 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

I2
I3
I4
I5
I6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (44)

Similar to the previous case, the relationship between the branch
current and bus voltage can be defined based on the KVL law, this

time with the TVmatrix. In Eq. 45, the method of calculating the bus
voltage is defined, and in Eq. 46, the relationship between the voltage
difference to the slack bus and the branch current is defined.

V2 � V1 − i1Z12,
V3 � V2 − i2Z23,

V4 � V3 − i3Z34 � V1 − i1Z12 − i2Z23 − i3Z34,
(45)

ΔV � TV[ ] ii[ ] � TV[ ] TI[ ] Ii[ ] � DLF[ ] Ii[ ]. (46)
After calculating the DLF, first, all the buses are given an initial

value of one. Then, the following process continues until the error is
less than the desired value:

• According to the voltage and power of loads, the injection
current of each bus is calculated.

• Using DLF, ΔV is calculated, and according to Eq. 47, the
voltage of each bus is calculated:

Vi � V1 + ΔV. (47)

• The amount of error in each step is calculated as follows:

error � max Vk+1
i − Vk

i

∣∣∣∣ ∣∣∣∣( ). (48)

Finally, the above algorithm is converged, and the voltages are
calculated. Figure 7 summarizes the stages of the power flow algorithm.

3.2 Hybrid GA–SFLA multi-objective
algorithm

Although in the research conducted in the field of hybrid algorithms,
GA is usually used as the basic algorithm, in this research, the concept of
the SFLA is used as the basic algorithm. SFLA has a very good speed and

FIGURE 8
Optimization of the problem space based on the Pareto front.
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also due to the grouping of the chromosomes, it will be possible to check
all the chromosomes more easily during the execution of the program.
However, the accuracy of the answers obtained in this algorithm is not
enough, and this accuracy will decrease significantly in problems with a
larger search space. GA is themost well-knownmeta-heuristic algorithm
that has completely normal calculations and also has a high capability for
changes in its operators. Therefore, it can be considered a suitable option
for the auxiliary algorithm. In addition to using this algorithm, it is
necessary to make changes to the operator of this algorithm to improve
its efficiency of this algorithm. As shown in Figure 8, considering the
multi-objective space of the problem, the hybrid GA–SFLA multi-
objective algorithm based on the Pareto front is used to optimize the
problem. Generating a complete Pareto front is one of the key
components in various stages of multi-objective optimization. One of
the most important features of the Pareto front is that one solution
cannot be preferred over the other among the solutions, between two
different solutions. A complete Pareto front gives the decisionmakers the
authority to make the right choice according to the conditions of the
project in terms of the project completion time, the costs of each activity,
and finally, the minimum required. Considering that this research aims
to optimize F1, F2, and F3 at the same time, therefore, we need to present
a series of solutions with the same desirability among all the available
solutions. For this, we use the Pareto front. As shown in Eq. 49, if any of
the following conditions are met, the answer u will prevail over the
answer v.

Au <Av&Bu ≤Bv‖Au ≤Av&Bu <Bv. (49)

Here, A and B mean F1 and F2, respectively. This comparison
will be made for two factors, F1 and F3, as well as F2 and F3, to
finally achieve a three-dimensional Pareto front. In the following
discussion, the structure of the proposed algorithm will be
presented. First, the structure of the improved SFLA will be
introduced, and then, the method of combining it with GA will
be presented in three steps.

3.2.1 Structure of the improved SFLA
Each frog in the SFLA technique indicates a potential solution to

the problem. The initial population is separated into multiple
independent groups using the assumed procedure with an equal
number of frogs in each group. This algorithm employs two

strategies for exploration based on this classification. The first
strategy is called local search. As a result, by exchanging
information, the frogs in each group increase their food position.
The second technique involves information exchange between
groups, in which the information gathered after each local search
is compared between groups. To execute the algorithm, first, the
algorithm’s initial parameters are specified, and then a random
population with member POP is formed. The merit of each member
is computed, and the population is divided into m groups, each of
which has n members, after sorting the population in descending
order. This classification should be made in such a way that
members with the highest merit are represented in all groups.
Then, a local search is performed for the mutation of the frogs
with the lowest merit toward the frogs with the highest merit. This
mutation is according to the following equation (Zhang et al., 2019):

D � r Xb −Xw( ),
Xw new( ) � Xw +D,

D| |<Dmax,
(50)

where Xb and Xw denote the frogs with the best and worst solutions,
respectively, D is the mutation value of the weakest frog toward the
best member of the group, Dmax is the highest permissible limit for

the frog mutation, and r is a random number between [0,1]. Based

on Eq. 50, the direction of movement of the weakest frog toward the

best frog is shown in Figure 9A. After applying the above changes, if

the new frog has a better solution than the worst frog in the set, it will

be replaced; otherwise, the same actions will be repeated by replacing

Xg with Xb. If a more suitable solution cannot be found by applying

the above changes, a solution will be generated randomly and will be

replaced by the worst member of the group. This procedure is

repeated for a set number of iterations until the algorithm’s

completion conditions are finally met.

Here, two techniques are used to improve the performance of
SFLA. In the first technique, by changing the mutation relation, the
speed of the algorithm can be improved. In the second technique, by
defining subgroups, the possibility of stopping the algorithm in local
optima can be reduced. As mentioned previously, the position of the
worst frog in each group is improved according to the position of the
best frog in that group or the best frog in the whole population of
frogs using Eq. 50. Using these relationships, the new position of the

FIGURE 9
Mutation of the weakest frog to the best member of the group, (A) in the SFLA and (B) in the improved SFLA.
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FIGURE 10
Structure flowchart of the proposed hybrid algorithm.

FIGURE 11
Structure of each chromosome.
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worst frog is located along the line between Xw and Xb, and the new
position of the worst frog cannot be around this line. The existence
of this limitation can reduce the convergence speed of the algorithm
or converge the algorithm to the wrong solutions. Figure 9B shows
this change in the algorithm. Based on this distribution, the frog with
the lowest merit will have the least probability, and the frog with the
strongest merit will have the highest probability. In the following
section, the method of using improved SFLA in combination with
GA is described. Figure 10 shows the structure of the proposed
hybrid algorithm. As can be seen, the implementation process of this
algorithm is divided into three general steps. In the following
section, these three steps are introduced separately and in order.

3.2.2 Step 1: generation of the initial population
At this stage of the model, an initial population will be created

with a certain number of possible solutions that are randomly selected.
In this step, there is a function that prevents the creation of duplicate
solutions to have the maximum number of distinct solutions. Since in
this problem, the goal is simultaneous placement and reconfiguration,
according to Figure 11, each chromosome is composed of the state of
several network switches, the size of units, and the location of units.
The status of the switches is defined as open and closed by considering

the constraint of Eq. 14, and the location and size of the units
represent the power capacity of each unit that is installed in a
specific bus and since each unit will a different capacity depending
on the installation location, Eqs 1–5 should be considered in
determining the location and size. Therefore, according to the
probability of producing DG units in different time intervals, Eqs
1–5 are used.

3.2.3 Step 2: generation evaluation (fitness)
In this step, voltage deviations, losses, and operating costs are

calculated for all the produced solutions, and these values are used to
calculate the fitness function of each chromosome. The values
obtained for each solution provide the conditions for sorting the
solutions as well as selecting the appropriate solutions in the next
step. It should be noted that at this stage, the information obtained
from the power flow algorithm is used to calculate the functions F1,
F2, and F3.

3.2.4 Step 3: improving generation
In this stage of the model, according to the operators in the

improved SFLA as well as the improved operators of GA, the new
generation population is created. The improved mutation function,

FIGURE 12
(A) Single-line diagram of the 33-bus distribution network, (B) total network load profile, and (C) network energy price (Soroudi et al., 2015).
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which has a substantial effect on raising the quality of solutions, is
one of the most essential components of this stage. The mutation
function in the normal genetic algorithm works in such a way that it
randomly selects one or more genes from the chromosome and
changes its value. However, by doing such work, the value of the
fitness function of the chromosome may decrease and, thus, deviate
from the optimal solution. Therefore, in the first part, it is necessary
to prevent such a problem, the mutation function works in such a
way that it does not reduce the value of the fitness function of the
chromosome. For this purpose, in the improved mutation function,
it is assumed that if the mutation causes a decrease in the value of the
fitness function, changes on the chromosome should be omitted.
Furthermore, because the selection of genes is carried out randomly
and the change in the number of genes is made randomly, it is
possible that in successive mutations during generations, due to the
repetition of the selection of genes or the selection of inappropriate
genes consecutively, the performance of the mutation function is
greatly reduced and may not have a significant impact on the
solutions. To increase the effect of the mutation function, the
random selection of this function should undergo minor changes
so that the nature of its randomness is not lost. For this purpose,
each chromosome is assigned an array of suitable gene numbers for
mutation. Furthermore, for each gene, an array of suitable options is
assigned to select the value in the mutation function. The process of
running the program is such that in each chromosome, the mutation
function randomly selects the appropriate option from among the

remaining available options, and if this gene change does not have a
positive effect on the fitness function, it is selected from the arrays of
appropriate options and the appropriate amount of each gene will be
deleted. In this way, if there is no change in the best available
chromosome in one generation, in the next generation, and when
the mutation function is applied, the selection is still carried out
randomly but in a more limited range. In this way, in addition to
preventing a significant increase in calculation time, the accuracy
and quality of optimal solutions will also increase. It should be noted
that here, the mutation used in the improved SFLA is used instead of
the mutation of GA.

4 Simulation results and discussion

The proposed method is implemented on the 33-bus
distribution network in MATLAB software. The single-line
diagram of the network is shown in Figure 12A, and the
network includes 37 transmission lines of which lines
33–37 are open. To observe the effect of different devices on
the network, the network load at peak time is 4.365 MW. The
network load will change according to the pattern outlined by
Soroudi et al. (2015) over 24 h, as shown in Figure 12B. Moreover,
Figure 12C shows the network energy price in $/kW. In this
research, it is assumed that two WT units with a capacity of
800 kW and two PV units with a capacity of 500 kW, whose

FIGURE 13
Level of power changes in network units in scenario 1.
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output will be changed according to Hooshmand and Rabiee
(2019), can be installed. Furthermore, an ESS unit with a capacity
of 500 kWh, whose information is provided in the work of
Carpinelli et al. (2013), can be installed in the network. In this

study, similar to the work of Ghahramani et al. (2018), five types
of EV units are used, and the type of vehicle is determined based
on the driving pattern. In addition, one charging station for EVs
is considered in the network. The maximum and minimum of

FIGURE 14
Pareto front obtained by the proposed hybrid algorithm.

FIGURE 15
Power flow in network lines based on the average transmission value for scenario 1.

Frontiers in Energy Research frontiersin.org16

Ghadi et al. 10.3389/fenrg.2023.1304055

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1304055


each type of EV are 30 and 5, respectively. The total number of
charging station EVs is 100. Information about EVs and the
distance traveled by each type of EV in 24 h is provided in the
work of Parvania et al. (2013). The factor δEV (v) in Eq. 37 is
considered equal to 1/6 (kW/km). The cost that the distribution
company pays in 24 h to buy electricity from the power injection
units to the grid is determined according to the work of Parvania
et al. (2013). Furthermore, the cost of lost energy VOLL is
considered to be 1,000 $/MW in this research.

In this section, to evaluate the proposedmethod, its performance
is examined in four scenarios:

• Scenario 1: Reconfiguration and simultaneous placement in
the network with the presence of all units (WT, PV, ESS, and
charging station)

• Scenario 2: Simultaneous reconfiguration and placement in
the network without considering ESSs and EVs

• Scenario 3: Placement in the network with all units and
without considering reconfiguration

• Scenario 4: Network in a critical state

In this research, the goal is to optimize three objective functions
F1, F2, and F3 using a hybrid GA-SFLA multi-objective algorithm
based on obtaining the Pareto front of optimal solutions that have
minimum voltage deviations, losses, and operating cost. In the
following discussion, the results of its performance will be shown
for different scenarios. In scenario 1, all units including WT, PV,

EVs, and EV parking are present, and the network will have
reconfiguration capability. In scenario 1, the cost of 24 h of
operation is 3,094.75 $, the optimal location for installing WT is
on buses 18 and 30, the optimal location for installing PV is on buses
10 and 16, and the optimal location for installing ESS and charging
stations for EVs is on buses 16 and 32, respectively. Furthermore, the
losses and voltage deviations during 24 h in scenario 1 are
729.84 kW and 3.624 p. u., respectively. In this scenario, lines
with numbers 7, 9, 14, 15, and 24 are open. Figure 13 shows the
level of power changes of network units along with the ESS charge
level in scenario 1. It can be seen that the changes in charging and
discharging states of the ESS can be defined according to the load
pattern and energy price in such a way that the ESS is charged during
off-peak load hours and discharged during peak load hours.

Figure 14 shows the 3D Pareto front obtained from the final
developed model for scenario 1. In this figure, the solutions of the
first-generation hybrid GA–SFLA algorithm (orange dots) and the
optimized solutions of the last generation (blue dots) are shown with
different symbols. As shown in the figure, the minimum voltage
deviations, losses, and operating costs in the first population are
equal to 5.272 p. u., 745.73 kW, and 3,100.78 $, respectively. After
running the program for 50 consecutive generations, the minimum
voltage deviations, losses, and operating costs are equal to 3.624 p. u.,
729.84 kW, and 3,094.75 $, respectively. These outputs indicate that
the desired variables have been optimized during the progress of the
generation. It can be pointed out that the population points of the
last generation have improved significantly. In this way, the

FIGURE 16
Generation power of WTs in scenarios 1 and 2.

TABLE 5 Comparison of the results in two scenarios 1 and 2 with and without ESS and EVs with WT 800 kW.

Network with WT
800 kW

WT
location

PV
location

ESS
location

EV station
location

Open lines of the
network

F1 (p.u.) F2
(kW)

F3 ($)

Scenario 1 18–30 10–16 16 32 7–9–14–15–24 3.624 729.84 3,094.75

Scenario 2 18–30 15–31 — — 4–7–11–13–16 8.783 1,263.33 3,142.71
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objective functions of F1, F2, and F3 of this generation have
decreased compared to the first generation. In addition, the
performance of the hybrid GA–SFLA algorithm is compared with
the basic GA, which is shown in Figure 14 of the latest generation
GA with a green symbol. In this algorithm, the best solutions are
obtained as 9.041 p. u., 1803.36 kW, and 7,739.05 $ , which means
that the hybrid GA–SFLA algorithm has a better performance of
2.5% than the basic GA in problem optimization. Finally, Figure 15
shows the average power flow from each network line during 24 h
for scenario 1. For example, the power flow changes in lines 13, 17,
and 18 are shown during 24 h, and it should be noted that the
negative bars indicate the reverse direction of the power flow
between the two buses.

In scenario 2, there are no ESS and EV units, so the effect of the
ESS and EVs on the network configuration, injected power from the
upstream network, and DG power amount can be investigated. In this
scenario, the 24-h operating cost of the network is 3,142.71 $, which
has increased compared to scenario 1. The optimal installation
location of WTs is on buses 18 and 30 and PVs on buses 15 and
31. Network losses and voltage deviations are equal to 1,263.33 kW

and 8.783 p. u, respectively, which shows the effect of the ESS and EVs
on reducing the three objective functions F1, F2, and F3. In scenario 2,
lines with numbers 4, 7, 11, 13, and 16 are open.

Due to the low capacity of DG sources (500 kW) in both
scenarios 1 and 2, with and without ESSs, DG sources generate
their maximum possible power. Here, to observe the effect of the ESS
and EVs on DG, it is assumed that the network with WTs with a
capacity of 800 kW is investigated in two separate scenarios with and
without ESSs and EVs. According to Figure 16, the presence of ESSs
and EVs increases the generation capacity of DG resources. The
comparison of the results of these two scenarios, where the capacity
of WTs is 800 kW, is shown in Table 5.

In scenario 3, the network is evaluated in the initial configuration
without considering the reconfiguration capability. The value of the
F3 function in this scenario is 3,113.17 $. It can be said that network
reconfiguration reduces the cost of operation, compared to scenario 2,
it can be said that the effect of reconfiguration is less than that of the
presence of ESSs and EVs. In this scenario, losses are equal to
1,105.12 kW and voltage deviations are equal to 7.211 p. u. In
addition, in this scenario, WTs are installed on buses 14 and 32,

FIGURE 17
(A) ESS charge level changes in scenarios 1 and 3, (B) EV station charge level changes in scenarios 1 and 3, (C) travel patterns of EVs in scenario 1, and
(D) travel patterns of EVs in scenario 3.
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PVs on buses 15 and 30, and EV charging stations and ESSs are
installed on buses 14 and 32, respectively. The network is in its initial
configuration, so lines with numbers 33 to 37 are open. As shown in
Figure 17, the ESS and EV station charge level installed in this scenario
is compared with scenario 1, which shows that the ESS and EV station
charge level is affected by reconfiguration. Although both devices have
the function of energy storage, ESSs can be used to support the
network load and store the production power of the units, while the
charging stations help to transport EVs and transfer energy to distant

places. To better understand the issue, the performance of the ESS and
EVs with different power levels is shown in Figure 17A. As shown in
Figure 17B, due to the difference in the installation location of the EV
station and the changes in the charge and discharge level of the station
at different hours, the travel patterns in EVs have changed in scenarios
1 and 3, as shown in Figures 17C, D.

In scenario 4, according to Figure 12, it is assumed that the
connection between the distribution network and the substation will
be cut off between 8 and 10 o’clock, as well as lines 6 and 22. Here, to

FIGURE 18
(A) Load shedding in scenario 4 with and without reconfiguration, (B) difference in the cost of load shedding between the two modes with and
without reconfiguration, and (C) voltage profile in bus 18 in two cases with and without reconfiguration.

TABLE 6 Comparison of different scenarios of the network.

Scenarios WT location PV
location

ESS
location

EV station
location

Open lines of
the network

F1 (p.u.) F2
(kW)

F3 ($)

Scenario 1 18–30 10–16 16 32 7–9–14–15–24 3.624 729.84 3,094.75

Scenario 2 18–30 15–31 — — 4–7–11–13–16 8.783 1,263.33 3,142.71

Scenario 3 14–32 15–30 32 14 — 7.211 1,105.12 3,113.17

Scenario 4 with
reconfiguration

30–32 18–23 22 3 9–13–22–6–36 9.812 1,434.23 6,116.1

Scenario 4 without
reconfiguration

14–25 7–11 6 3 6–22 28.01 5,648.96 23,913.1
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evaluate the effect of reconfiguration, the network is examined with
and without considering the reconfiguration capability. In the case
that the network has the capability of reconfiguration, the cost of
operating the network in 24 h is 6,116.1 $, and in the case that the

network does not have the capability of reconfiguration, this cost
increases to 23,913.1 $, which is due to the number of lost loads in
this case. As an example, bus 18 lost only 134 kW of load in the case
with reconfiguration capability, while in the case without

FIGURE 19
Comparison results of the proposed algorithms and NSGA-II based on (A) Diversity, (B) MID, (C) NPS and (D) Spacing criterion.

FIGURE 20
Box plot comparing the confidence interval based on the standard criteria of multi-objective algorithms.
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reconfiguration capability, the amount of load cut in this bus was
1,742 kW. Figure 18A shows the amount of load shedding in two
modes with and without reconfiguration, and Figure 18B shows the
cost difference between these two modes. As can be seen, with
reconfiguration, we have been able to reduce the cost of load
shedding in the entire network buses from 15,782 $ to 1,214 $,
which has saved approximately 14,568 $. It can be said that
reconfiguration will reduce the cost of the distribution company
and also reduce the amount of interrupted load, which itself leads to
the improvement of network resilience. In the case with
reconfiguration capability, the optimal location to install WTs is
on buses 30 and 32, PVs on buses 18 and 23, the ESS on bus 22, and
the EV charging station on bus 3. Furthermore, lines numbered 9,
13, and 36 are assumed to be open and lines 6 and 22 are assumed to
be disconnected. In the case without reconfiguration, the optimal
location to install WTs is on buses 14 and 25, PVs on buses 7 and 11,
the ESS on bus 6, and the EV charging station on bus 3. In addition,
lines 6 and 22 are disconnected. In Figure 18C, the voltage profile in
bus 18 is shown; as can be seen in the case without reconfiguration,
the voltage of this bus is collapsing and exceeding the high voltage
limit, which shows the effect of reconfiguration on network security
from the point of view of voltage stability in critical times. Finally, to
better compare the effect of network reconfiguration and the ESS on
model outputs, the results of different scenarios are summarized in
Table 6.

4.1 Performance evaluation of the hybrid
GA–SFLA algorithm based on standard
indicators

In this section, the performance of the hybrid GA–SFLA
algorithm is compared with a non-dominated sorting genetic
algorithm (NSGA-II) (Verma et al., 2021) based on standard
indicators such as mean ideal distance (MID), maximum spread
or diversity, spacing, and a number of Pareto solution (NPS), to
evaluate the proposed algorithm. At first, these indicators are
defined, and then, the results of the algorithms are presented. In
general, unlike single-objective optimization, two main criteria
including maintaining diversity among Pareto solutions and
convergence to a set of Pareto solutions can be considered for
multi-objective optimization. One of these criteria is maximum
spread or diversity, which measures the length of the diameter of

the space cube used by the end values of the objectives for the set of
non-dominant solutions. Equation 51 shows the calculation
procedure of this index. In our three-objective model, this
criterion is equal to the Euclidean distance between three
boundary solutions in the objective space. The bigger this
criterion, the better the performance.

D �
���������������������∑m

j�1 max if
j
i −min if

j
i( )2√

. (51)

Using Eq. 52, the spacing criteria find the relative space of
consecutive solutions. Here, the measured space is equal to the
lowest value of the sum of the absolute values of the difference in the
values of the objective functions between the ith solution and the
solutions located in the final non-dominated group. It should be
noted that this spacing criterion differs from the Euclidean
minimum distance criterion between solutions.
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Here, the NPS criterion presents the number of Pareto optimal
solutions that can be found in each algorithm. In multi-objective
discussions based on the Pareto approach, one of the objectives is
to keep the fronts as close as possible to the origin of the
coordinates; the MID criterion determines the distance of the
fronts from the best value of the population. After defining the
standard criteria, as shown in Figure 19, the performance of the
proposed algorithm based on the four criteria is graphically
compared with the NSGA-II. Then, based on the outputs, the
algorithms have been studied and evaluated statistically with the
help of variance analysis.

Figure 19 shows the performance results of the proposed
algorithms and NSGA-II under the same conditions for scenario
1 within 13 h based on four defined standard criteria. As can be seen,
the total value of MID, diversity, NPS, and spacing criteria in the
proposed algorithm is better than NSGA-II. To evaluate and
compare more accurately, we have used statistical analysis. As
mentioned, in this section, we used variance analysis, the results
of which are shown in Figure 20.

Finally, a comparison was made between the proposed
algorithm and other algorithms under the same conditions

TABLE 7 Comparison between the results of different algorithms for scenario 1.

Algorithm WT
location

PV
location

ESS
location

EV station
location

Open lines of the
network

F1
(p.u.)

F2
(kW)

F3 ($)

GA (Saonerkar et al.,
2016)

18–30 10–16 16 32 7, 9, 14, 32, 37 9.041 1,803.36 7,739.05

PSO (Nasir et al., 2014) 18–30 10–16 16 32 7, 14, 9, 31, 28 10.12 2,201.43 7,853.12

ISFLA (Siahbalaee et al.,
2019)

18–30 10–16 16 32 7, 14, 9, 31, 28 6.745 1,341.65 5,891.34

ACO (Tolabi et al.,
2014)

18–30 10–16 16 32 9, 14, 27, 33, 36 5.758 1,287.24 4,867.45

Hybrid GA–SFLA 18–30 10–16 16 32 7, 9,14,15, 24 3.624 729.84 3,094.75
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(assuming the same installation location of the units in the network)
for scenario 1, and its results are shown in Table 7. As can be seen,
the proposed algorithm has performed better in optimizing three
objective functions.

5 Conclusion

In this article, various economic and technical objectives on
the distribution network are investigated by presenting a multi-
objective method and using the hybrid GA–SFLA algorithm. In
this regard, three important tools are analyzed, which are
reconfiguration, DG and ESS units, and EVs. The objective
functions include voltage deviations, losses, and operating
costs, the improvement of which leads to an increase in the
technical quality of the system as well as an increase in the
economic efficiency of the network. Here, a comprehensive
model for distribution network reconfiguration based on the
placement of ESS units, EVs, and DGs is presented, in which
the effect of ESS units on the penetration of DGs and the network
reconfiguration is evaluated. In addition, to show the effect of
network reconfiguration on improving network resilience, the
problem model is solved in a critical state. To solve the problem
in different scenarios, an improved algorithm combining GA and
ISFLA was used, and the results show that after increasing the
number of generations, a significant improvement has occurred
in the obtained solutions. Finally, a three-dimensional Pareto
front is obtained to provide superior solutions, which indicates
that the solutions improve significantly during the generations of
algorithm execution. The simulation results show that
simultaneous placement with reconfiguration with the
proposed strategy has improved 1.98 times in the objective
function of voltage deviations, reduced network losses by
375.28 kW, and reduced operating costs by 47.96$.
Furthermore, under the same conditions, the proposed hybrid
algorithm compared to the PSO, ISFLA, and ACO algorithms
improved 6.496, 3.121, and 2.134 p. u., respectively, for objective
function F1 and improved 1,471.59, 611.81, and 557.4 kW for
objective function F2 and improved 4,758.37, 2,796.59, and
1772.7 $ for objective function F3. The evaluations of the
proposed algorithm with other algorithms show its better
performance, resulting in a 2.5% improvement compared to
the basic GA. Finally, the obtained results can be expressed as
follows:

• The distribution network configuration is affected by
the presence of energy storage devices such as ESSs and EVs

• The optimal location of operation of DGs, ESSs, and EV
charging stations is affected by network reconfiguration

• ESSs and EVs increase the penetration of DGs in the network
• Network reconfiguration is a suitable method to improve
network resilience

• The reconfiguration of the distribution network can affect
charging and discharging strategies

• Energy storage devices and network reconfiguration can
reduce power losses individually or jointly

• The reconfiguration of the distribution network can improve
the security of the network from the point of view of voltage
stability in critical times

• Reconfiguration of the distribution network and energy storage
devices plays a prominent role in reducing operating costs

• A hybrid GA–SFLA algorithm has a significant effect
in optimizing three objective functions compared to similar
algorithms such as GA and NSGA-II, resulting in performance
improvement ranging between 1% and 2.5%

The findings of this study have several implications for future
research in the field of distribution network optimization. The
following areas can be explored:

1. Investigating the optimal integration of other renewable energy
sources, such as solar and wind, into the distribution network
along with DGs, ESS units, and EVs

2. Evaluating the impact of different load profiles and demand
patterns on the optimal reconfiguration and placement of
network components

3. Considering the uncertainties and variability associated with
renewable energy sources and load demand in the
optimization model

4. Exploring the potential benefits and challenges of implementing
smart grid technologies and advanced control strategies in the
distribution network

5. Assessing the environmental impacts and sustainability aspects
of the proposed optimization strategies

Although this study has contributed significantly to the field, it is
essential to acknowledge its limitations and challenges. Some
potential areas of improvement and future research are as follows:

1. Enhancing the computational efficiency of the hybrid GA–SFLA
algorithm to handle larger-scale distribution networks and more
complex optimization problems

2. Incorporating more realistic and detailed models for the devices
used in the network, such as considering the aging and
degradation of DGs, ESS units, and EVs over time

3. Addressing the potential cybersecurity risks associated with the
integration of advanced technologies and communication
systems in the distribution network

In conclusion, the present study demonstrated the effectiveness
of the hybrid GA–SFLA algorithm in optimizing multiple objective
functions for distribution network reconfiguration and placement of
DGs, ESS units, and EVs. The findings contribute to the existing
body of knowledge and open up opportunities for future research in
this field.
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Glossary

ESSs Energy storage systems

EVs Electric vehicles

DG Distributed generation

GA Genetic algorithm

SFLA Shuffled frog leaping algorithm

AENS Average Energy Not Supplied

SAIFI System Average Interruption Frequency Index

SAIDI System Average Interruption Duration Index

ASUI Average Service Unavailability Index

3D-GSO Three-dimensional group search optimization

PSO Particle swarm optimization

ABC Artificial bee colony

PV Photovoltaic

WT Wind turbine

VD Voltage deviations

KVL Kirchhoff’s voltage law

KCL Kirchhoff’s current law

NSGA-II Non-dominated sorting genetic algorithm

MID Mean ideal distance

NPS Number of Pareto solution

ACO Ant Colony Optimization

ISFLA Improved shuffled frog leaping algorithm

List of symbols

PPV PV power generation

GSTC Amount of solar radiation

PSTC Power generated by GSTC

Tr Ambient temperature

Tc Temperature around the cell

kα Temperature coefficient

X Weibull distribution

λ Scale parameter

K Shape parameter

c and h Scale and shape parameters

v Wind speed

PWT WT power generation

vco Cut-out speed

vr Rated speed

vci Cut-in speed

EP(t) Electricity price at time t

ESS(t) The energy available in the ESS at time t

Δt The smallest part of the time

ch_rate and
disch_rate

Charging and discharging rates of the ESS

F1 First objective function

Vit The voltage of the ith bus at time t

Vide A desired voltage of the ith bus

F2 Second objective function

Il
t The current of the lth line at time t

Rl Resistance of the lth line

F3 Third objective function

FRES Cost of purchasing electrical energy from RES

FEES Costs of charging and discharging the ESS

FEV Parking costs of EV

FVOLL Cost of load shedding

VOLL Cost of the value of lost load

NumEV Number of each type of EV

Pk, Qk Active and reactive power of bus k

Ploss,k, Qloss,k Loss of active and reactive power of bus k

PLk+1, QLk+1 Active and reactive power consumption of bus k+1

Rk, Xk Resistance and reactance of the communication line between
buses k and k+1

Yk Parallel admittance of bus k

Vk Voltage amplitude of bus k

Nbus Number of network buses

Lr(i,j) Binary variable of the lines

B(i,j), G(i,j) Conductance and susceptance of the line between buses i and j

LWT(i), LPV(i) Binary variable of WT and PV units

eWT(t), ePV(t) Available power coefficients of WT and PV

αESS
ch(i,t),

αESS
dCh(i,t)

Binary variables of the charge or discharge state of the battery

SOCESS(i,t) State of charge of the ESS

ηESS
ch(i,t),

ηESS
dCh(i,t)

Charging and discharging efficiency of the ESS

LESS(i) Installation location of the ESS

αEV
ch(i,t),

αEV
dCh(i,t)

Binary variables of charge or discharge state of the EVs

PEVTR(i,v,t) Power used to move the EVs

δEV(v) Consumption factor of EVs

LPL(i) Charging station location of the EVs

E0EV Initial energy value of the EV

I Injection current of each bus

i The current of the line

R Branches of the network

B Network bus
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L Network line

RB Branches connected to bus B

S Vector that shows a branch

N Vector that shows a bus

Au, Bu or Av, Bv Answers of functions F1, F2, and F3

Xb and Xw Frogs with the best and worst solutions

D Mutation value of the weakest frog

Dmax The highest permissible limit for the frog mutation

r Random number
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