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As a clean energy source, solar power plays an important role in reducing the high
carbon emissions of China’s electricity system. However, the intermittent nature
of the system limits the effective use of photovoltaic power generation. This paper
addresses the problem of low accuracy of ultra-short-term prediction of
distributed PV power, compares various deep learning models, and innovatively
selects the Informer model with multi-head probability sparse self-attention
mechanism for prediction. The results show that the CEEMDAN-Informer
model proposed in this paper has better prediction accuracy, and the error
index is improved by 30.88% on average compared with the single Informer
model; the Informer model is superior to other deep learning models LSTM and
RNN models in medium series prediction, and its prediction accuracy is
significantly better than the two. The power prediction model proposed in this
study improves the accuracy of PV ultra-short-term power prediction and proves
the feasibility and superiority of the deep learning model in PV power prediction.
Meanwhile, the results of this study can provide some reference for the power
prediction of other renewable energy sources, such as wind power.
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1 Introduction

Photovoltaic power generation can be divided into centralized photovoltaic power
generation and distributed photovoltaic power generation. Distributed photovoltaic
refers to the photovoltaic power generation technology that is built near the user side,
and the user is self-sufficient and connects the excess electricity to the grid (Pazouki et al.,
2020). Distributed photovoltaic power generation can be absorbed locally, reduce
transportation losses, have strong flexibility and disaster prevention ability, and can also
alleviate the problem of residential power shortage to a certain extent (Guermoui et al.,
2020). With the rise of the “carbon neutral” concept, the development of distributed PV is
gaining momentum.

China’s distributed PV power generation developed rapidly. From 2002 to 2006, China’s
distributed photovoltaic power generation is in the initial pilot stage. In 2013, the state clearly
put forward the subsidy policy for distributed power generation to further promote its
development. The period 2016–2020 is the rapid development stage, with the installed
capacity increasing rapidly. In 2021, the capacity of distributed photovoltaic power
generation exceeds that of centralized power generation for the first time (Wang et al.,
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2023). In 2022, the state issued the 14th Five-Year Plan for the
Modern Energy System, which clearly proposed to comprehensively
promote solar power generation, give priority to local development
and utilization, and accelerate the construction of distributed
photovoltaic (Commission, 2022).

Although distributed photovoltaic power generation has many
advantages, such as clean, green, low-carbon and flexible, it also has
intermittent limitations that constrain its large-scale grid-connected
power generation (Sabo et al., 2017; Xu et al., 2018). Therefore,
accurate prediction of photovoltaic power generation is of great
significance in alleviating the energy crisis, optimizing power
dispatch and other aspects, which can improve the efficiency of
photovoltaic power generation, maintain the stability of the power
grid, alleviate the energy crisis and ensure the national energy
security (Yang et al., 2023).

At present, there are many photovoltaic power generation
prediction technologies for China. According to the time scale, it
can be divided into ultra-short-term, short-term, medium-term and
long-term prediction. Among them, ultra-short-term prediction is
to predict the power generation of the photovoltaic power station in
the next 0–4 h, and the time resolution is not less than 15 min, which
is suitable for power system frequency modulation optimization,
economic load scheduling and rotating standby regulation, etc.
Short-term prediction is to predict the power of the photovoltaic
station within 3 days from zero to the next day, and the time
resolution is 15 min. It is suitable for formulation of pre-
generation plan and reasonable dispatching of power grid
resources. Medium- and long-term prediction is to predict the
power generation of the photovoltaic station in the next few
months or even years, which is suitable for the planning of the
photovoltaic station, the maintenance of power transmission and
transformation equipment, and the energy storage of power plants
(Zheng et al., 2017).

For the study of ultra-short-term prediction, scholars mainly focus
on the treatment of meteorological conditions. Tang et al. (2021)
proposed a two-layer collaborative real-time correction ultra-short-
termphotovoltaic predictionmodel based onXGBoost, comparingwith
common prediction models, which effectively improved the prediction
accuracy of sudden weather in ultra-short-term prediction. Li et al.
(2023) proposed an Attention-LSTM model, solved the problem of
missing meteorological data for distributed photovoltaic ultra-short-
term prediction. Ding et al. (2023) also studied the improvement of the
accuracy of the attention mechanism, and proposed two deep
deterministic strategy gradient (DDPG) and cyclic deterministic
strategy gradient (RDPG). Compared with the model without
attention mechanism, the prediction error RMSE was reduced by
24.24% and 31.34%, which were 26.89% and 18.76% lower than the
Attention-LSTMmodel, respectively (Ding et al., 2023). Comparedwith
Li X et al.’s study, it further improved the accuracy of ultra-short-term
prediction. It can be seen that the use of the attention mechanism can
effectively improve the prediction accuracy of models.

Short-term prediction has been studied a lot. Among these
studies, most of the models focus on improving the prediction
accuracy. Liu et al. (2022) constructed the MIV-PSO-BPNN
model to make a single-field prediction of the T2-2 photovoltaic
power plant at Pudong International Airport, which proved that the
model fits better in sunny days and can cope with the PV output
mutation better than the BPNN model and SVM model in cloudy

and rainy days (Liu et al., 2022). Wang and Deng (2023) proposed a
comprehensive BPNN based on prediction-correction. Compared
with traditional BPNN, based on the consideration of deterministic
prediction, it took into account the uncertainty of short-term
prediction and improved the accuracy of point prediction (Wang
and Deng, 2023). Moreover, part of the research, in addition to
improving the prediction accuracy, also sought to improve the
operation speed and generalization ability of the model. Cang
et al. (2023) used optimization LSTM model for the whole
county distributed photovoltaic power interval prediction,
reduced the model training time and reduced the demand of
force, implemented the 48 h, 192 power only 2.32% average
absolute error. More importantly, the model was universal and
can be copied to other large power plants for prediction and use.

In terms of medium- and long-term prediction, scholars are not
as regular as short-term prediction, which mostly adopt the idea of
classification according to meteorological characteristics. Zhao et al.
(2019) proposed a photovoltaic power prediction method based on
the clustering method. For the medium- and long-term prediction
according to the seasonal characteristics and weather characteristics
of photovoltaic power, and the mean absolute percentage error ratio
(MAPE) of the prediction results was 12.55% (Zhao et al., 2019).
Babbar et al. (2021) combined the Adaboost algorithm with the
LSTM algorithm to classify and predict the photovoltaic power
under different weather types. The results showed that the
combination of various techniques performed better than a single
model and had a high degree of accuracy (Babbar et al., 2021).
However, the prediction accuracy of the above two methods was not
high, while Fang et al. (2022) used the LSTM model to solve the
“long-term cycle dependence problem”. Compared with the actual
value, the monthly error MAPE fluctuated around 3.5%, and the
annual error MAPE fluctuated around 1.1%, indicating excellent
prediction results of the model.

For a given photovoltaic system, the tilt angle of the photovoltaic
module and the efficiency of the inverter remain essentially
unchanged, and the corresponding meteorological conditions are
the main factors affecting the output power. Many scholars at home
and abroad have also studied this issue. Zhang et al. (2022) modeled
the photovoltaic cell and selected five parameters: irradiation
intensity, surface temperature of the photovoltaic cell,
temperature coefficient, equivalent series resistance and
equivalent parallel resistance. The effects of these parameters on
the output power and conversion efficiency of the PV cell were
investigated using a global sensitivity analysis method based on
fuzzy theory (Zhang et al., 2022). However, Yuan et al. (2022) used
dynamic time-bending algorithm to calculate that total irradiance
and ambient temperature are more related than relative humidity,
air pressure and component temperature.

In previous studies, combined methods are increasingly used
because of their strong generalization ability and higher accuracy
than single prediction methods (Kim et al., 2021). In addition, as far
as current research is concerned, the research of domestic and
foreign scholars on photovoltaic prediction mainly focuses on
short-term research, and there are relatively few studies on ultra-
short-term prediction, while the field of medium- and long-term
prediction is almost empty (Wang et al., 2023).

In this paper, we compared various deep learning models and
innovatively selected the Informer model with multi-head probability
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sparse self-attention mechanism for prediction, and then used three
error indicators of root mean square error, mean absolute percentage
error and mean absolute error to evaluate the accuracy of prediction
results. For the problem that PV power supply capacity was greatly
affected by meteorological factors, the influence of several weather
indicators, such as irradiance, temperature and wind speed, on the
prediction accuracy was investigated. In addition, considering the
seasonal characteristics of PV power supply capacity, this study
classified and predicted PV time series data according to seasons; for
the characteristics of non-linear and non-smooth PV power data,
CEEMDAN technique was used to decompose PV power data into
multiple IMF and residual terms, and then each component was
predicted together with meteorological factors using the prediction
model to obtain the final prediction results. The technology roadmap
for this paper is shown in Figure 1.

This paper is organized as follows. Section 2 introduces the main
theories and technologies: the basic model Transformer, the main
model Informer of this paper, the decomposition technology
CEEEMDAN, and the Pearson correlation coefficient used in this
paper. Section 3 pre-processes the selected data. Section 4 describes
the experimental component. Finally, we draw our conclusions in
Section 5.

2 Key theories and techniques

2.1 Deep learning models

The current mainstream prediction methods can be roughly
divided into statistical analysis method and artificial intelligence

FIGURE 1
Technology roadmap.
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method. Statistical analysis includes regression analysis, time
series method, etc., which is based on the analysis of historical
data by statistical rules. It is suitable for linear and stable

prediction, and has poor fit for non-linear and complex power
prediction. Artificial intelligence method mainly includes
traditional machine learning, deep learning, etc. Among them,
deep learning is often used for power prediction due to its ability
to process nonlinear, high-dimensional data independently
(Wang et al., 2019; Peng et al., 2023).

2.1.1 Transformer
Transformer (Figure 2) is relatively easy to train in parallel

compared to traditional RNN models. Its core is the self-attention
mechanism, which enables the model to better capture dependencies,
remote contexts and global semantics when processing sequential data,
making the model more flexible and efficient. It has excellent
performance in processing large data and long sequences, but also
suffers from the difficulty of secondary processing, large memory
consumption, and local limitations of the encoder-decoder
architecture (Vaswani et al., 2017; Xiao et al., 2023).

The delivery patterns of many competitive neuron adopt an
encoder-decoder architecture, whereby an input sequence
combining elements such as (x1, . . . , xn) is delivered to an
output sequence combining z � (z1, . . . , xn). Given z, the
decoder generates the output sequence (y1, . . . , ym), one
element at a time. The process uses a self-cycling approach,
where when new symbols need to be created, new information
is extracted from the existing data for further processing.

The Transformer adopts a complex architecture that organically
combines the connection layer between the self-attention layer and
the points, and realizes the functions on the left and right sides of

FIGURE 2
Structural diagram of the Transformer model.

FIGURE 3
Structure diagram of the Informer model.

TABLE 1 Descriptive statistics of the power data.

Sample number Mean Median Crest value Least value Standard error Variance

Power 104285 151.43 0.18 801.54 −0.24 203.73 41506.88
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Figure 2 through the cooperative work of the encoder and the
decoder.

2.1.2 Information extractor model
Zhou et al. (2021) have invented a new LSTF model, Informer

(Figure 3), which addresses the difficulty mentioned above.
The Informer model adopts an “encoding-decoding” structure.

As shown in Figure 3, the encoder on the left receives a long
sequence of inputs and obtains feature mappings through the
ProbSparse self-attention module. On the right is the decoder,

which receives a long sequence of inputs with the target part of
the prediction set to 0, interacts with the encoded features through
multi-attention, and finally directly predicts the output target part
(the orange part) at once.

Informer has three main advantages (Gong et al., 2022; Wei
et al., 2023; Zou et al., 2023):

• It employs the ProbSparse self-attention mechanism that
effectively reduces time complexity and memory usage.

• It highlights the dominant factor in the self-attention
mechanism by halving the cascade layer inputs, effectively
handling excessively long input sequences.

• It performs one-time prediction for long time series instead of
stepwise prediction, which greatly improves the inference
speed of long series prediction.

2.2 The empirical mode decomposition of
fully adaptive noise sets

Due to the intermittent characteristics of photovoltaic power
generation, the signal decomposition technology can be used to
decompose the power time series to improve the accuracy and
reliability of the prediction.

Empirical Mode Decomposition (EMD) is a form that can
effectively convert complex data into a residual (RES) and multiple
eigenmode functions (IMF), so as to better understand and deal with
complex digital properties. Each IMF represents a frequency and
amplitude component of the signal and satisfies two conditions:

FIGURE 5
Pearson correlation of features.

FIGURE 4
The prediction flow diagram of the CEEMDAN-Informer model.
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(1) Over the entire length of the signal, the number of IMF extreme
points is either equal or differs by no more than 1.

(2) At each extreme point, the mean value of the upper and lower
envelope of the IMF should be zero.

The advantage of EMD is that it can decompose signals adaptively,
and does not require any prior knowledge, without predicting the
amplitude and frequency. It can also handle both nonlinear and non-
stationary signals because it is a local decomposition method. However,
EMD is sensitive to noise and has high computational complexity when
processing high-dimensional data.

Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) is an improved model of EMD. It
addresses the problem of modal aliasing and over decomposition
present in EMD by introducing adaptive noise. Specifically,
CEEMDAN adds some adaptive noise to the original signal and

then decomposes it into multiple IMFs and a RES using EMD. The
procedure is then repeated separately for each IMF and residual
term until the stopping criterion is satisfied.

2.3 The Pearson correlation coefficient
method

The Pearson correlation coefficient is used to measure the linear
correlation between variables X and Y, and the value is
between −1 and 1 (Schober et al., 2018). The formula is:

r � ∑n
i�1 Xi − �X( ) Yi − �Y( )������������∑n

i�1 Xi − �X( )2√ ������������∑n
i�1 Yi − �Y( )2√

The larger its absolute value, the stronger the degree of correlation.

3 Data preprocessing and modeling

3.1 Data preprocessing

The Yulara Solar System was selected for this study. It was
1.8 MW distributed solar photovoltaic power plant located in Uluru,

FIGURE 6
Power decomposition diagram of photovoltaic power generation in the spring of 2020.

TABLE 2 Results of the CEEMDAN-Informer model prediction.

Spring Summer Autumn Winter

MAPE 0.334 0.231 0.231 0.267

MAE 3.283 2.252 2.241 2.601

RMSE 3.841 2.845 2.791 3.238
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Central Australia. In this study, one of the stationary polysilicon
power plants was used for data analysis and modelling at the 5-min
level for the whole year 2020. Descriptive statistics of the data used
were presented below (Table 1):

According to the data analysis in the table, there should be
105,408 pieces of actual power data and more than 2,000 missing
data, requiring missing values. The maximum power could reach
800 kW and the minimum power was −0.24 kW. The minimum
power was negative because the photovoltaic modules not only had
no output power at night, but also needed to consume part of the

power to maintain their own operation. The standard deviation and
variance of the actual power were large, indicating that the volatility
of the photovoltaic power sequence was high, which also made
prediction difficult. According to the literature review, unnecessary
factors for predicting photovoltaic power in the original data set had
been excluded, and seven indices of irradiance, air temperature, air
pressure, wind speed, maximum wind speed, wind direction and
rainfall had been retained.

At the same time, there were still some outliers in rainfall and
other indicators. Since both missing values and outliers could affect
the predictive power, the data with missing values and outliers were
treated first.

Outlier handling: some outliers existed in the dataset for a variety of
reasons, such as system malfunctions and unusual events. The
anomalies were detected by using the interquartile range (IQR)
(Rostami et al., 2022). We considered the values outside the “lower
quartile−1.5 × IQR” and the “upper quartile + 1.5 × IQR” as outliers.
After testing using this method, there were still a small number of
outliers, so the data were located through the image and classified as
outliers. Replaced the outlier value with the zero value.

Missing value processing: After outlier processing, there were
still a large number of missing values in the data. These missing
values fell into two categories. One was a small number of linear
missing values, which were treated directly by linear interpolation;
the other was multi-line continuous missing values. In the case of
direct interpolation, it did not follow the fluctuation law and was still
an outlier, so data from the same time on the previous day were used
for replacement.

Normalization treatment: In order to reduce the effect of the
index measurement unit on the predictive effect, the index needed to
be normalized. This paper adopted the maximum and minimum
normalization (Polat and Nour, 2020):

x′ � x −min x( )
max x( ) −min x( )

where x′ was the normalized data value and x was the non-
normalized data value. The max(x) and min(x) represented the
maximum and minimum values in the sequence, respectively.

FIGURE 7
Trend chart of the annual temperature in Australia in 2020.

TABLE 3 Prediction results of RNN, LSTM, and Informer models.

Metric Spring Summer Autumn Winter

RNN MAPE 12.080 7.696 10.697 7.943

MAE 10.793 5.115 11.838 16.201

RMSE 27.213 12.324 24.574 32.592

LSTM MAPE 8.618 7.321 8.117 7.434

MAE 11.282 5.178 10.131 16.477

RMSE 24.284 12.192 27.058 32.491

Informer MAPE 0.443 0.382 0.368 0.368

MAE 4.332 3.763 3.646 3.646

RMSE 4.887 4.264 4.169 4.169

TABLE 4 Results of the EMD-Informer prediction.

MAPE MAE RMSE

Spring 0.369 3.647 4.252

Summer 0.341 3.357 3.910

Autumn 0.294 2.879 3.492

Winter 0.302 2.981 3.602
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Dataset division: Due to the seasonality of photovoltaic power
(Raza et al., 2017), the dataset for 2020 was divided into four seasons:
spring, summer, autumn and winter for the prediction. Divided
January–March as spring, and so on for the rest of the season.

3.2 The CEEMDAN-Informer model

The CEEMDAN-Informer model was constructed as follows:
First, the photovoltaic power data sets of different seasons were
CEEMDAN-decomposed in the form of an IMF and a residual RES.
Second, the Informer model parameters were adjusted to select the
optimal training times, sequence length, prediction length, batch_
size and learning rate. Finally, each IMF component, RES
component and selected meteorological factors were input into
the Informer model with adjusted parameters for training to

obtain the final prediction results. The model framework was
shown in Figure 4.

3.3 Contrast model selection

To further validate the conclusions of this paper, the following
models were used for comparison:

(1) Single deep learning model: A single RNN model, LSTM model
and Informer model were used for comparison to verify the
superiority of the Informer model over other deep learning
models. At the same time, we could compare a single Informer
model with the CEEMDAN-Informer model constructed in this
paper to verify the improvement of the prediction accuracy of
the model constructed in this paper.

FIGURE 8
Comparison of prediction accuracy between different signal decomposition techniques and Informer combined models.
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(2) Combination of EMD decomposition technology and Informer
model: EMD-Informer model was used as a comparison model
to verify the superiority of the CEEMDAN model.

4 Discussion

4.1 Correlation analysis

The seven selected factors were first analyzed for correlation
using the Pearson correlation coefficient method. As shown in
Figure 5, through the Pearson correlation coefficient diagram, it
could be found that the photovoltaic power had a strong positive
linear correlation with irradiance, indicating that the power was
most affected by irradiance. Second, the photovoltaic power had a
moderate positive linear correlation with maximum wind speed,
wind speed and air temperature. Of these, due to the high
correlation between maximum wind speed and wind speed,
only wind speed was retained in the prediction. Wind
direction, pressure and precipitation were not linearly
correlated with power.

4.2 Analysis of mode decomposition and
power prediction results

First, CEEMDAN decomposed the photovoltaic power data sets
in the form of multiple IMF and a residual RES. The decomposition
results in spring were shown in Figure 6. The sequence in the first
line in red was the trend diagram of the original photovoltaic power
data, and the green part was the decomposed sequence. It could be
seen that the original sequence was decomposed into 13 IMFs,
ordered by their frequency from high to low, with no obvious modal
aliasing phenomenon.

Second, each IMF component was trained separately along with
the RES component using the Informer model. In the Informer
model prediction, the training set, test set and validation set were
split 8:1:1, with training times epochs = 15, batch_size = 32, early
stop mechanism patience = 3, learning rate learning_rate = 0.001,
sequence length = 36, predict length = 9. The data time step was
5 min, which meant that the power data of the future 45 min was
predicted for 9 time points with 36 historical time steps. Then the
meteorological factor data set (NWP) was added, and the irradiance,
wind speed and temperature were selected as the meteorological
factor data and input into the model for training, and the final
prediction results were obtained.

Using CEEMDAN-Informer model for the four data sets of
spring, summer, autumn and winter. The results obtained were
shown in Table 2:

The prediction errors of the four datasets were within acceptable
limits and the prediction effect was better in summer and autumn.
This was due to the fact that the temperature in Australian summer
and autumn (April–September) was appropriate, with less
fluctuation (Figure 7). In spring and winter, the temperature
fluctuated a lot, even more than 40°C in part of the time, which
greatly reduced the photoelectric conversion efficiency of
photovoltaic panels and thus affected their power output.

4.3 Comparative analysis of the model
prediction accuracy

4.3.1 Single-model prediction contrast
The RNN, LSTM and Informer models were used to compare

the performance of the prediction model. The settings for the
Informer model were the same as above. For LSTM, we built a
three-layer LSTM model with the number of hidden layers of 128,
64, 32 respectively, set the training times epochs = 150, and batch_
size = 128, sequence length = 36, prediction length = 9, which meant
the photovoltaic power of 45 min in the future. The RNNmodel was
set in the same way as the LSTM model. The prediction results were
shown in Table 3:

The results showed that the RNN and LSTM models predicted
almost as well, but overall the LSTM model predicted slightly
better than the RNN. This was because the LSTM model was a
modified version of the RNN model that added a gating
mechanism and was better at capturing long-term memory.
However, they only focus on the current state input and the
state input at the previous moment, whereas the Informer
model employed the multi-head self-attention mechanism,
which could focus on multiple positions in the input sequence
simultaneously, and the effect on long-term sequence prediction
would be more significant. The average MAPE, MAE and RMSE
values of the four seasons were only 0.39, 3.84 and 4.37, and the
prediction accuracy was much higher than the traditional deep
learning model, which proved that the Informer model had a good
prediction effect in multi-step prediction.

However, comparing the prediction effect of CEEMDAN Informer
model and single Informermodel, themodel proposed in this paper had
better prediction effect, and the error index was reduced by 30.88% on
average, which proved that the use of signal decomposition technology
was helpful to improve the prediction accuracy.

4.3.2 EMD-Informer model prediction
According to the above analysis of the prediction results, we

found that using the decomposition technique could reduce the
prediction error, so we built the EMD Informer model for prediction
and explored the effect of the decomposition technique on the
accuracy of the model. The prediction process and parameter
settings of Informer remained unchanged. The prediction results
were shown in Table 4.

As shown in Figure 8, when the prediction accuracy of different
signal decomposition techniques was compared with the combined
model composed of the Informer model, the prediction results of the
Informer model, the EMD-Informer model and the CEEMDAN-
Informer model were all relatively ideal. The prediction accuracy of
each model using the signal decomposition technology was improved
compared to a single Informer model, which proved that the signal
decomposition technology could effectively improve the prediction
accuracy of the model. In addition, the CEEMDAN Informer model
had higher accuracy than the EMD Informer model. Among them, the
improvement effect of summer prediction accuracy was the most
obvious, the MAPE, MAE and RMSE values increased by 32.13%,
32.91% and 27.23% respectively; the improvement effect in spring was
the worst, but the three indicators still increased by 9.49%, 9.97% and
9.71% respectively. The results showed that the CEEMDAN
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decomposition technology could improve the performance prediction
effect better than the EMD technology.

5 Conclusion

In this paper, we made point prediction for ultra-short-term
photovoltaic power prediction based on CEEMDAN-Informer
model and considered the meteorological influencing factors of
photovoltaic power generation. Meanwhile, in the present study,
the prediction results of CEEMDAN-Informer model were
compared with other commonly used deep learning models.
The research conclusions of this paper were summarized as
follows:

(1) The relationship between the influencing factors of photovoltaic
power generation and power generation was analyzed. First,
through literature review, a number of indicators such as
irradiance, wind speed and wind direction were possible
factors; second, relevant meteorological data and photovoltaic
power generation data were collected, and then analyzed using
the Pearson correlation coefficient method to find that among
the seven indicators selected in this paper, irradiance, wind
speed, maximum wind speed and air temperature had a strong
linear correlation with them; finally, the data were divided into
different data sets and input into the prediction model, and the
influence of season on the prediction accuracy was further
investigated.

(2) The results showed that the CEEMDAN-Informer model had
significant advantages over the traditional deep learning model
in photovoltaic power prediction. Due to the intermittent nature
of photovoltaic prediction, improving the prediction accuracy of
the model had become the focus of ultra-short-term research.
While many studies had proved that models using attention
mechanisms could effectively improve the prediction accuracy.
Therefore, in this paper, we selected the Informer model with
the multi-head sparse self-attention mechanism as the
prediction model, and combined with the CEEMDAN
solution technology to build the CEEMDAN-Informer model
as the main model for photovoltaic power prediction. A series of
models including RNN, LSTM, Informer and EMD-Informer
were used as comparison models. The results showed that the
prediction accuracy of the CEEMDAN-Informer model was
significantly higher than the other models.
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