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With the modernization and intelligent development of agriculture, the energy
demand in rural areas continues to increase, which leads to an increased
operational burden on the existing rural distribution network. Integrated energy
stations (IESs), in rural areas, use renewable energy sources such as biogas, wind
power, and photovoltaic as energy inputs, which can fully improve energy
efficiency and help reduce the operating load and peak valley difference of
rural distribution networks. In this paper, a multistage planning model is
proposed for rural distribution networks with IESs based on the robust
optimization method. Firstly, a rural distribution network operation framework
with IESs is proposed, and a mathematical model of rural IESs is built based on the
energy hub (EH). Then, the multistage robust planning model of rural distribution
net-works with IESs is developed and typical scenarios of stochastic source and
load are generated based on improved k-means. An iterative solutionmethod for a
two-stage robust optimization method is proposed based on the nested column
constraint generation (NC&CG) algorithm. Finally, the effectiveness of the
presented model and solution approach is assessed through case studies on a
modified IEEE 33-node distribution network and a real 152-node
distribution network.
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1 Introduction

With the continuous construction of modern agriculture in rural areas, the demand for
electricity among residents has increased rapidly (Han, Zhang and Li, 2022). The air
conditioning load is one of the primary causes of the constant rise in power
consumption. Additionally, because of the air-conditioning load’s focused energy
demand, the power grid’s peak and valley differences are becoming more significant
(International Energy Agency, 2015). In this context, the development and construction
of the distribution network framework are facing new challenges. Therefore, it is crucial to
help rural distribution network planning and construction through the multi-energy
complementary advantages of integrated energy stations.

In response to the increasing load growth, conventional distribution network planning
usually determines what type of lines to build, the capacity and location of transformer
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substation (TS) based on the peak value of load forecast. As
proposed in reference (Heidari and Fotuhi-Firuzabad, 2019), a
distribution network planning model suitable for multiple power
sources is proposed. The objective of minimizing the investment
cost and operation cost is to determine the conventional lines of the
distribution network. Ref (Dong et al., 2022). considers the
correlation and timing of the outputs of distributed power
sources in the distribution network, and conducts collaborative
planning between the distribution network structure and
distributed power sources, taking into account load growth. Ref
(Li, Wang and Xia, 2017). proposes an active distribution network
collaborative planning method considering energy storage devices
and distributed power sources. Although the implementation of
these planning approaches has the potential to enhance the
operational adaptability of the distribution network, their
practical application is hindered by the issue of substantial
investment expenses. Additionally, it is worth noting that the
majority of the aforementioned research focuses on urban
distribution network planning, leaving the exploration of rural
distribution networks in its nascent stage.

The concept of IES has been pioneered in Europe and the
United States in order to address the challenges posed by the
energy transition. By coordinating and integrating various energy
systems, such as cooling, electricity, heat, and gas, through
collaborative planning and synergistic operations, the aim is to
overcome the current limitations of separate operations and
enhance the overall efficiency and utilization of energy systems
(Wu et al., 2016). Ref (Wu et al., 2017). utilizes the time-delay
characteristics of heat networks and the thermal inertia of buildings
in different regions to promote the optimal operation of multi-
region electricity-heat. A multistage planning approach for IES for
converged distribution networks is proposed in (Li et al., 2022a) to
minimize the total costs. Ref (Ge, Liu and Ge, 2018). considered the
participation of electricity, heat, and cold storage in interaction in
IES planning, and compared the differences in planning capacity
among the three under different objectives such as economy and
energy conversion efficiency. In contrast to power storage devices,
cold and heat storage devices have achieved a higher level of
development and are more cost-effective, rendering them more
viable for the implementation of energy storage in rural areas.
However, most of the above references focuses on IES as the
main body and distribution networks and other energy networks
as the component elements to achieve the overall system planning.
Less attention has been paid to the application value of IES as an
energy coupling node for distribution network planning.

IES also faces uncertainty in the operation of multi-energy loads
and renewable energy output. The different methods of handling
random variable prediction errors, it is mainly divided into scenario
method (Li et al., 2022b), chance-constrained programming (Huo
et al., 2021), robust optimization (Gan et al., 2021), etc. A scenario-
generation based approach for integrated regional energy expansion
planning was proposed in (Lei et al., 2020). The method considers
the temporal, autocorrelation and inter-correlation properties of
renewable energy sources and multi-energy loads. Based on the
spatial and temporal correlation of PV output, ref (Koutsoukis and
Georgilakis, 2019). established a multi-objective distributed power
grid-connected planning model by utilizing opportunity constraint
planning, taking into account the total cost of PV and the cost of grid

operation. A robust return on investment oriented optimal
allocation method is proposed in (Jiang et al., 2020) to address
the uncertainty of wind power output and multi-energy load. In
which, the planning method based on robust optimization fully
considers the possible worst scenarios of random variables in the
planning stage, which can ensure the robustness of the planning
scheme and has a wide range of application scenarios. The typical
scenarios in existing scenario methods and the basic scenarios in
robust planning methods are usually obtained by clustering
algorithms such as k-means. However, the clustering number of
existing k-means is artificially given and has a certain degree of
subjectivity.

In summary, existing research on urban distribution network
planning is relatively rich, but rural distribution network planning is
still in its early stages. There exist notable disparities in terms of
source and load characteristics between rural and urban regions, and
existing plans for urban distribution networks do not apply to rural
areas. In addition, it is also necessary to conduct research on
distribution network planning with the distribution network as
the main body and IES as the means of distribution network
regulation. Therefore, the main contributions of this article are as
shown below.

1) A multistage planning model for rural distribution network
with integrated energy stations is proposed. The primary
focus of the model is the distribution network, with the IES
serving as a regulatory entity to address the increasing
demand in rural areas and mitigate fluctuations in load
levels. The model implements a multistage rolling plan that
encompasses various aspects such as distribution line
management, TS expansion, and investment and
construction of the IES.

2) Utilizing an enhanced k-means clustering algorithm to derive
multiple representative daily load patterns from projected annual
load data. The method aims to improve clustering efficiency by
calculating clustering performance evaluation indicators to
ascertain the most suitable number of clusters, thereby solving
the problem of traditional k-means algorithms being unable to
determine the optimal number of clusters.

The subsequent organization of this article is outlined as follows.
Section 2 provides an introduction to the operational framework of
rural distribution networks incorporating integrated energy stations.
In section 3, a multistage robust planning model for rural
distribution networks with integrated energy stations is proposed.
Section 4 elaborates on the solution methods for robust
programming models. Section 5 presents the simulation results.
Section 6 summarizes the entire text.

2 Operational framework for rural
distribution networks with IES

2.1 Structure of the rural distribution
network with IES

In this paper, we consider the current situation that in the
development of biogas in rural, biogas projects with a variety of
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feedstock substrates are gradually formed, and the gas production
capacity increases year after year (Yan et al., 2021). Therefore, biogas
is used as the gas input for IES in the IES configuration. In addition,
the main focus of this article is on the planning method of rural
distribution networks. Therefore, non-distribution network
structures such as gas networks have been weakened and set to
have gas source points at the construction site of IES to meet the gas
demand of IES.

The structure of the rural distribution network with IES is
depicted in Figure 1. The voltage level of the rural distribution
network shown in Figure 1 is 10kV, with IES built on some network
nodes. The Integrated Energy System comprises a diverse range of
equipment, encompassing combined heat and power (CHP), gas
boilers (GB), electric refrigeration (ER), absorption refrigeration
(AR), cold energy storage (CES), and thermal energy storage (TES).
The specific direction of energy flow is shown in Figure 1, where the
CHP consumes biogas to generate electricity and purchases
electricity from the distribution network to transmit to the load

and ER. The thermal load and AR are sup-plied by TES heat release,
CHP, and GB consumption of biogas, while the excess thermal
energy is stored in TES. The cooling load is jointly supplied by CES
cooling, ER, and AR cooling, and the excess cold energy is
stored in CES.

2.2 Modeling of rural integrated energy
stations based on EH

After the IES is connected to the rural distribution system,
there are multiple energy coupling relationships within the
system. Considering the energy supply perspective, the rural
integrated energy station (RIES) generally includes energy
supply means such as TS, GB, CHP, and ER. The EH-based
model, as depicted in Figure 2, is commonly employed to describe
the multi-energy attributes of RIES (Moazeni, Miragha and
Defourny, 2018).

FIGURE 1
Energy flow structure of rural distribution network with integrated energy stations.

FIGURE 2
Typical EH-based RIES.
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EH takes into account various forms of energy input and output,
and represents its energy conversion relationship through a set of
linear equations.

L �
L1

L2

..

.

Ln

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pα

pβ

..

.

pζ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � UI (1)

where L � [L1, L2,/, Ln]T represents the output part of EH, and
subscript 1, 2,/, n represents different forms of energy demand on
the load side, such as electrical load, heating load, cooling load, etc.;
I � [pα, pβ,/, pζ ]T represents the input part of EH, where
subscript α, β,/, ζ represents different types of energy input
forms, such as electricity, heat, biogas, etc.; U is the energy
conversion coefficient matrix, where Rα,1,Rβ,1,/,Rζ ,1 is the
conversion coefficient.

In general, EH is used to summarize the overall “energy” input
and output of RIES. However, because since most devices in RIES
have input and output characteristics. Therefore, this article will use
the EH model to model each type of equipment separately, to
construct a planning model for RIES. Unless otherwise specified
in the following text, the subscripts p, s, and t respectively represent
the corresponding parameters for the current planning stage,
scenario, and period time; i and j represent nodes i and j
respectively, and their corresponding sets are labeled in the
following formulas.

The constraints of the RIES internal model based on EH for
modeling various multi-functional devices are as follows.

1) Constraints for Multi-energy Load Balancing

Assuming that the type set of energy conversion
equipment contained in RIES is m and the set of energy
storage equipment is denoted as n, then the multi-energy
load balance is

Li,t,p,s � ∑
m∈Ω

UmImi,t,p,s + ∑
n∈Ψ

Wn
i,t,p,s (2)

where Li,t,p,s represents the overall multi-energy load demand of
RIES at stage p, time t, and node i in operating scenario s; Um

indicates the conversion coefficient matrix of the mth energy
conversion device; Imi,t,p,s represents the energy input matrix of
the mth energy conversion device; Wn

i,t,p,s represents the energy
storage power of the nth type of energy storage device.

2) Constraints for Energy Conversion Equipment

The energy conversion equipment considered in this article
includes CHP, GB, ER, and AR, which are represented by the
following general models.

P
�m

i,t,p,s � ∑
m∈Ω

UmImi,t,p,s (3)

where P
�m

i,t,p,s is the output matrix of the mth energy
conversion device.

Taking CHP as an example, its energy conversion coefficient
matrix is

UCHP �
RCHP

G−E RCHP
E−E RCHP

H−E
RCHP

G−C RCHP
E−C RCHP

H−C
RCHP

G−H RCHP
E−H RCHP

H−H

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ (4)

The energy input matrix is

ICHP
i,t,p,s �

PCHP,G
i,t,p,s

PCHP,E
i,t,p,s

PCHP,H
i,t,p,s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

The energy output matrix is

P
�CHP

i,t,p,s �
P
�CHP,E

i,t,p,s

P
�CHP,C

i,t,p,s

P
�CHP,H

i,t,p,s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

whereG − E,G − C andG −H respectively represent the conversion
coefficients of gas-to-electricity, gas-to-cooling, and gas-to-heat, and
the meanings of the other parameters are analogous; CHP consumes
biogas to produce heat and electricity, then only RCHP

G−E and RCHP
G−H

are non-zero elements in the matrix, and all the other elements are
zero; PCHP,G

i,t,p,s , PCHP,E
i,t,p,s and PCHP,H

i,t,p,s respectively indicate the biogas,
electricity, and heat inputs to the CHP, and only PCHP,G

i,t,p,s is a non-

zero element, and all the other elements are zero; P
�CHP,G

i,t,p,s , P
�CHP,E

i,t,p,s and

P
�CHP,H

i,t,p,s respectively represent the biogas, electricity and heat outputs

of the CHP, and only P
�CHP,E

i,t,p,s and P
�CHP,H

i,t,p,s are non-zero elements, and
all the other elements are zero.

Similarly, similar models can be established for GB, ER, and AR.
Other related constraints of energy conversion equipment can be
expressed as

0≤UmImi,t,p,s ≤Z
RIES
i,t,p,sP

m
rated (7)

where ZRIES
i,t,p,s denotes a binary variable that represents the

construction status of RIES. When set to 1, it indicates
construction at node i, and when set to 0, it indicates no
construction at node i; Pm

rated represents the rated operating
power of the mth type of energy transformation equipment.

3) Constraints for Energy Storage Device

The energy storage devices considered are CES and TES in this
paper. In the case of CES, its energy storage properties can be
described in the following manner.

Wn
i,t,p,s � 0, t � t0

Wn
i,t,p,s � μnWn

i,t−1,p,s + Pn,ch
i,t,p,su

n
ch − Pn,dis

i,t,p,s/un
dis i ∈ ΩRIES

0≤Wn
i,t,p,s ≤ZRIES

i,t,p,sW
n
rated

(8)

0≤Pn,ch
i,t,p,s ≤ZRIES

i,t,p,sP
n
ratedX

n

0≤Pn,dis
i,t,p,s ≤ZRIES

i,t,p,sP
n
ratedY

n i ∈ ΩRIES

Xn + Yn ≤ 1
(9)

where t0 denotes the initial moment of the energy storage charging
and discharging cycle, and the cycle set in this paper is 24h; μn is the
energy dissipation coefficient; Pn,ch

i,t,p,s and P
n,dis
i,t,p,s mean the storing and

discharging power, respectively; unch and u
n
dis respectively indicate the

storing efficiency and discharging efficiency; Pn
rated and Wn

rated

respectively indicate the rated operating power and installed
capacity; The variables Xn and Yn are binary variables that are
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employed to impose constraints on the upper and lower boundary of
the power for charging and discharging. Additionally, they serve to
restrict the occurrence of simultaneous charging and discharging
operations; ΩRIES is the set of installation candidate nodes for RIES;
The bivariate nonlinear term in Eq. 9 can be treated using the big-M
method in reference (Kou and Li, 2018).

3 Multistage robust planning model for
rural distribution network with IES

The model proposed in this article takes the rural medium and
low voltage distribution network as the planning object, to respond to
load growth and alleviate load peak valley differences. The planning
content considers the upgrading and renovation of grid lines, the
increase of TS main transformer capacity, and the construction of
RIES. The overall planning is divided into multiple stages and rolling.

3.1 Objective function

To achieve the above goals and fully consider the actual operation
situation, this paper proposes a two-layer multistage planning model
for distribution network planning and operation. The planning
strategy of the distribution network is determined by the
upper-level problem, as depicted in Eq. 10.

minf Zinv
p( ) � γ FINV + FOPE( )

s.t.G Zinv
p( )≤ 0

γ � 1 + κ( )−Y

⎧⎪⎪⎨⎪⎪⎩ (10)

The lower-level model solves the optimal operational mode of
the distribution network based on the planning strategy of the
upper-level model, as depicted in formula (11).

minf Zinv
p , Xope

p,s( ) � FOPE
p

s.t.
g1 Zinv

p , Xope
p,s( )≤ 0

g2 Zinv
p , Xope

p,s( )≤ 0

⎧⎨⎩
⎧⎪⎪⎨⎪⎪⎩ (11)

where FINV denotes the investment planning cost; Zinv
p represents

the planning decision variable for stage p; Xope
p,s is the operating

variable under scenario s of stage p; FOPE
p represents the operating

cost of stage p; γ denotes the present value coefficient; ω indicate the
Bank rate, which is 5% in this paper; Y denote the total number of
years of investment period; G and g1、g2 are constraints for the
upper and lower models, respectively.

1) Investment Planning Cost

The planned investment cost includes the investment cost of line
expansion, TS investment cost, and RIES construction investment
cost, as shown in Eqs. 12–16.

FINV � ∑
p∈D

FL
p + Fsub

p + FRIES
p( ) (12)

FL
p � ∑

l∈ΩL

cLl z
L
l,phlϖL (13)

Fsub
p � ∑

i∈ΩSUB

csubi zsubi,p ϖsub (14)

FRIES
p � ∑

i∈ΩRIES

zRIESi,d ϖRIES cERi PER
rated + cARi PAR

rated + cCHP
i PCHP

rated(
+ cGBi PGB

rated + cCESi PCES
rated + cTESi PTES

rated

+ cCESi WCES
rated + cTESi WTES

rated) (15)

ϖ � κ 1 + κ( )L
1 + κ( )L − 1

 � L, sub (16)

where ϖ represents the investment recovery coefficient of
equipment ; L denotes the life cycle of equipment ; PER

rated,
PAR
rated, P

CHP
rated, P

GB
rated, P

CES
rated and PTES

rated respectively represent the
rated operating power of ER, AR, CHP, GB, CES, TES
equipment; WCES

rated and WTES
rated respectively represent the

Nameplate capacity of CES and TES equipment; cLl and csubi

respectively represent the unit construction cost of the line and
TS; cERi , cARi , cCHP

i , cGBi , cCESi , cTESi respectively represent the unit
power construction costs of ER, AR, CHP, GB, CES, TES equipment;
cCESi and cTESi respectively represent the unit capacity construction
cost of CES and TES equipment; zLl,p, z

sub
i,p and zRIESi,p are binary

variables, indicating the construction status of the line, TS, and RIES;
hl represents the length of line l;ΩL is the set of candidate lines;ΩSUB

represent the set of installation candidate nodes for TS.

2) Operating Cost

The operating cost includes the benefits of RIES flexible
regulation, the expenses associated with purchasing energy, and
the operating cost of RIES, as indicated in equations Eqs. 17–20.

FOPE � ∑
p∈D

∑
s∈S

∑
t∈T

FE
p,s + Fpur

t,p,s + fRIES
t,p,s( ) (17)

FE
p,s �

1
24
τp ∑

t∈T
∑

i ∈ ΩEL

PE
i,t,p,t + ∑

i ∈ ΩRIES

PEC,E
i,t,p,s − P

�CHP,E

i,t,p,s( ) − Pav⎡⎢⎣ ⎤⎥⎦2 (18)

Fpur
t,p,s � ∑

i∈ΩSUB

Psub
i,t,p,sρ

e
i,t,p,s + ∑

i∈ΩRIES

Pbio
i,t,p,sρ

g
i,t,p,s (19)

fRIES
t,p,s � ∑

i∈ΩRIES

⎡⎢⎣τci,t,p,s 1 − μc( )WCES
i,t,p,s/uCES

ch +

τhi,t,p,s 1 − μh( )WTES
i,t,p,s/uTES

ch ]
(20)

wherePE
i,t,p,s is the active load;P

�CHP,E

i,t,p,s denotes the active output of CHP;
PEC,E
i,t,p,s represents the power consumption of ER; Pav is the daily average

electrical load; τp indicates the penalty factor for peak valley load
difference;Psub

i,t,p,s andP
bio
i,t,p,s respectively denote the electricity and biogas

purchased; ρei,t,p,s and ρgi,t,p,s indicate real-time electricity prices and
biogas prices, respectively; τci,t,p,s and τhi,t,p,s mean the penalty costs per
unit loss of cold energy and thermal energy, respectively; μc and μh are
the energy loss coefficients of CES and TES, respectively; WCES

i,t,p,s and
WTES

i,t,p,s respectively represent the energy storage of CES and TES; uCESch

and uTESch respectively represent the charging efficiency of CES and TES;
ΩEL is the set of electrical load nodes.

3.2 Constraints

1) Planning and Construction Constraints

zLl,p ≤ z
L
l,p+1l ∈ ΩL (21)
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0≤ zsubi,p i ∈ ΩSUB (22)
zRIESi,p ≤ zRIESi,p+1i ∈ ΩRIES (23)

In the above formula, RIES and routes can only be made based
on the previous stage planning, and TS depends on the needs of
each stage.

2) Power Flow Constraints in Distribution Networks

∑
i∈ΩEL

PE
i,t,p,s � ∑

i∈ΩSUB

Psub
i,t,p,s + ∑

i∈ΩRIES

P
�CHP,E

i,t,p,s − PER,E
i,t,p,s( )−

∑
l∈Ls i( )

Pl,t,p,s + ∑
l∈Le i( )

Pl,t,p,s − rlI2l,t,p,s( ) (24)

∑
i∈ΩEL

QE
i,t,p,s � ∑

i∈ΩSUB

Qsub
i,t,p,s + ∑

i∈ΩRIES

Q
�CHP,E

i,t,p,s −
∑

l∈Ls i( )
Ql,t,p,s + ∑

l∈Le i( )
Ql,t,p,s − xlI2l,t,p,s( ) (25)

U2
e l( ),t,p,s � U2

s l( ),t,p,s − 2 rlPl,t,p,s + xlQl,t,p,s( )
+ I2l,t,p,s r2l + x2

l( ) l ∈ ΩL (26)

U2
e l′( ),t,p,s +M αl′,t,p,s − 1( )#U2

s l′( ),t,p,s − 2 rl′Pl′,t,p,s + xl′Ql′,t,p,s( )
+ I2l′,t,p,s r2l′ + x2

l′( )#U2
e l′( ),t,p,s +M 1 − αl′,t,p,s( )l′ ∈ Ωsw

(27)
where rl and xl mean the resistance and reactance of line l,
respectively; Pl,t,p,s and Ql,t,p,s respectively represent the active
and reactive power of line l; Qsub

i,t,p,s denotes the reactive power of

transformer station; QE
i,t,p,s is the reactive load;Q

�CHP,E

i,t,p,s represents the
reactive output of the CHP; Ls(i) and Le(i) respectively represent
the set of lines starting and ending with node i; s(l) and e(l)
respectively indicate the start and end nodes of line l; Il,t,p,s
indicates the current flowing through line l; Ui,t,p,s means the
voltage of node i; αl′,t,p,s represents a binary variable that
indicates the switching state of the switching branch l′. When
0 or 1 is taken, it indicates that the branch is disconnected or
connected; Ωsw is the set of switch branches; M is a large number.

Since the inclusion of nonlinear terms U2
i,t,p,s and I2l,t,p,s in Eqs.

24–27, the solver cannot directly solve. Firstly, phase angle
relaxation is used to ignore the phase angles of voltage and
current, making them Usq

i,t,p,s and Isql,t,p,s, respectively.

Isql,t,p,s �
P2
l,t,p,s + Q2

l,t,p,s

Usq
s l( ),t,p,s

l ∈ ΩL ∪ Ωsw (28)

Then the second-order cone relaxation is used to convert the
above nonconvex quadratic equation constraints to second-order
cone constraints.

2Pl,t,p,s

2Ql,t,p,s

Isql,t,p,s − Usq
s l( ),t,p,s

�����������
�����������
2

≤ Isql,t,p,s + Usq
s l( ),t,p,sl ∈ ΩL ∪ Ωsw (29)

3) Network Operation Security Constraints

The node voltage constraint is

U
i
≤Ui,t,p,s ≤ �Uii ∈ ΩEL (30)

The non-switching branch current constraint is

Il,t,p,s
∣∣∣∣ ∣∣∣∣≤ 1 − zLl,t,p,s( )�Il + zLl,t,p,s�I

′
l l ∈ ΩL (31)

The switch branch current constraint is

Il,t,p,s
∣∣∣∣ ∣∣∣∣≤ αl′,t,p,s�Ill′ ∈ Ωsw (32)

where �Ui and U
i
respectively denote the maximum and minimum

bounds of the node i voltage; �Il indicates the upper limit of the
original distribution grid branch current; �I′l represents the
maximum value of the current flowing through the
upgraded branch.

4) Network Reconstruction Constraints

∑
l′∈Ωsw

αl′,t,p,s � Nnod −Nsub −NL (33)

where Nnod indicates the total number of nodes present within the
network;Nsub denotes the aggregate quantity of TS;NL denotes the
total number of branches without contact switches in the network;
Due to the presence of CHP in RIES, even under the constraints of
Eq. 31, the distribution network may experience isolated operation
(Li et al., 2023). Therefore, assuming that a node that is not TS has a
very small power P*

i,t,p,s with a value of I, the connectivity between
the non-TS node and the TS node is ensured through the following
power flow constraints Eqs 34–36.

∑
l∈Ls i( )

P*
l,t,p,s − ∑

l∈Le i( )
P*
l,t,p,s � P*

i,t,p,s � Ii ∈ ΩL ∪ Ωsw (34)

−αl′,t,p,s �Pl,t,p,s#P*
l,t,p,s#αl′,t,p,s �Pl,t,p,sl′ ∈ Ωsw , l ∈ ΩL (35)

−�Pl,t,p,s#P*
l,t,p,s#�Pl,t,p,sl ∈ ΩL (36)

where �Pl,t,p,s indicates the maximum value of the active power of line
l; P*

l,t,p,s denotes the auxiliary power flow active power of line l, rather
than the actual transmitted active power.

5) RIES Load Balance Constraints and Operational Constraints

For detailed constraints, please refer to Eqs. 2–9 above.

6) TS Operational Constraints

Psub
i,t,p,s( )2 + Qsub

i,t,p,s( )2 ≤ zsubi,t,p,sS
sub
i( )2i ∈ ΩSUB (37)

where Ssubi indicates the Nameplate capacity of TS. Since Eq. 37 is
still nonlinear, the second-order cone relaxation method is also used
to process it, and it will not be repeated here.

Therefore, the multistage planning model for rural distribution
networks with IES can be expressed as

minFINV Z( ) + FOPE X( )
s.t. 2( ) − 9( ), 12( ) − 37( ) (38)

3.3 Multistage robust planning of rural
distribution network with IES

Considering the uncertainty of multi-energy loads in
operational scenarios, this paper proposes to establish a robust
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programming model for the original problem model Eq. 38. By
incorporating adjustable robust measures to characterize the
variations of uncertain parameters, decision-makers in planning
can modify these measures according to their risk preferences. A
higher value indicates a more cautious planning approach, while a
lower value signifies a riskier strategy. The uncertain parameter set is
denoted as Φ, and its specific form is outlined below.

Φ � L̂s,t − ΔLs,t
max, L̂s,t + ΔLs,t

max[ ]
Ls,t � L̂s,t + Bs,tΔLs,t

max

∑
s∈S

∑
t∈T

Bs,t ≤ Γ

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (39)

where L̂s,t indicates the representative daily load for multiple energy
loads; ΔLs,t max is the maximum fluctuation deviation of multi-
energy load; Bs,t represents a binary variable that takes on a
value of 1 when the multi-energy load of the corresponding
period is brought to the boundary of the interval; Γ is an
uncertainty adjustment parameter, with values ranging from 0 to
T as integers.

Correspondingly, the multistage robust planningmodel for rural
distribution networks with IES considering the uncertainty of multi-
energy loads is

min
Zp

FINV +max
Lp∈Φ

min
Xp∈Ω Zp,Lp( )F

OPE

s.t. 2( ) − 9( ), 12( ) − 37( )
(40)

where the minimization on the left-hand side represents the first-
stage issue, with the optimization variables denoted as Zp. On the
other hand, the maximum-minimization on the right-hand side
corresponds to the second-stage issue, with the optimization
variables L and Xp.

3.4 Scenarios generation based on
improved k-means

It aims at the characteristics of large amounts of data and high
similarity between data in the joint scenario of cooling/heating/
electrical loads. This section proposes an improved k-means
clustering algorithm to improve clustering efficiency. By
calculating clustering performance evaluation indicators, the most
suitable number of clusters is determined, thereby solving the
limitation of traditional k-means algorithms in determining the
most suitable number of clusters.

Assuming the total number of samples in the dataset is m, the
most suitable number of clusters is usually defined as an integer
within the range [2, ��

m
√ ] (Kim and Ramakrishna, 2005). The

optimal number of clusters is determined by the Calinski-
Harabasz (CH) (Feng et al., 2023) index, and the definition
formula is as follows.

CH k( ) � tr Rk( ) × m − k( )
tr Zk( ) × k − 1( ) (41)

where tr represents the trace of the matrix; k denote the number of
categories; Rk denote the Covariance matrix between different
categories; Zk indicates the Covariance matrix of internal data of
the same category. As the k value increases, tr(Zk) decreases and

tr(Rk) increases. If there is a k value that maximizes the value of CH
(k), this value is the most suitable number of clusters.

Assuming a group sample group N � N1, N2, . . . , Nm{ }, in the
case of high sample density, the higher density area is usually
selected as the initial clustering center. The density coefficient d
of the sample group can be expressed as:

d Nm, dave( ) � ∑m
m1�1

ϑ dave − dE Nm,Nm1( )( ) (42)

where dave denotes the average distance of the sample; ϑ represents a
Sign function; dE is a Euclidean distance function. The density
coefficient d refers to the number of samples with an average
distance dave in an area centered on Nm. When the density
coefficients of multiple samples are equal, select the sample with
higher cohesion as the clustering center.

Therefore, the improved k-means algorithm flow is explained
as follows:

Step 1: Input the sample dataset based on historical data.
Step 2: Generate the optimal initial clustering center based on

the sample dataset.
Step 3: Set k = 2 and call the traditional k-means algorithm

subroutine to cluster the dataset.
Step 4: Determine if k is less than int. If so, make k = k+1 and

skip back to step 3; If not, then call the traditional k-means algorithm
subroutine again to cluster the dataset.

Step 5: Calculate the CH (k) based on the clustering results to
obtain typical scenarios of cooling/heating/electrical loads.

4 Planning model solution

This paper uses the NCCG algorithm (Zeng and Zhao, 2013;
Yan et al., 2019) to solve the robust optimization model Eq. 40
established earlier. The algorithm includes an inner loop and an
outer loop. Considering that this article is multistage planning, we
will use stage p as an example when introducing the NCCG
algorithm. To facilitate the description of the solution process,
first, write Eq. 40 in the following compact form.

min
Zp

cT · Zp +max
Lp∈Φ

min
Xp∈Ω Zp,Lp( ) b

T ·Xp

s.t. φ · Zp ≤ h
κ · Zp + σ · Up + υ ·Xp ≤ e

J ·Xp

���� ����2≤H ·Xp + w

(43)

where Zp represents the upper-level model’s decision variable in
stage p; Xp indicates the lower-level model’s operational variable in
stage p; φZp ≤ h represents the constraint of the upper-level issue;
κZp + σUp + υXp ≤ e is the linear constraint of the lower-level
problem; Up is the binary variable in the lower-level problem;
‖J ·Xp‖2≤H ·Xp + w indicates the second-order cone constraint
in the lower-level model; e is a variable that reflects uncertainty.

Decompose Eq. 43 into the master problem and subproblem,
represented as Eqs. 44, 45 respectively.

MP: min
Zp

cT · Zp + ϕ

s.t. φ · Zp ≤ h
ϕ≥ 0

(44)

Frontiers in Energy Research frontiersin.org07

Yang et al. 10.3389/fenrg.2023.1298365

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1298365


SP: max
Lp∈Φ

min
Xp∈Ω Z*

p,Lp( ) b
T ·Xp

s.t. κ · Z*
p + σ · Up + υ ·Xp ≤ e

J ·Xp

���� ����2≤H ·Xp + w

(45)

where ϕ means the auxiliary variable; Z*
p indicates the optimal

solution get by solving the master problem Eq. 44.

1) Outer Circulation
i: Set the maximum limit UBMP

p � +∞ and minimum limit
LBMP

p � −∞ of the master problem, with initial iteration k = 0.
ii: Address Eq. 44 to getZ*

p and ϕ, and set the lower limit LBMP
p �

ϕ of the master problem.
iii: Use the inner loop to solve the subproblem and obtain the
bottom scenario e* and the upper limit UBMP

p of the
master problem.
iv: Assuming k = k+1, determine whether UBMP

p and LBMP
p

satisfy Eq. 46. If not, add constraints Eqs 44–47 and start a new
cycle; If satisfied, break the cycle and obtain the most suitable
solution of the planning model.

UBMP
p − LBMP

p

∣∣∣∣∣ ∣∣∣∣∣≤ o (46)
κ · Z*

p + σ · Uk
p + υ ·Xk

p ≤ e*
ϕ≥ bT ·Xp

(47)

2) Inner Circulation
i: Set the maximum limit UBSP

p � +∞ and minimum limit
LBSP

p � −∞ of the subproblem, with initial iteration a = 0 and
initial binary variable Up � Ua*

p .
ii: Solve Eq. 48 to obtain the upper limit of the subproblem and
the bottom scenario e*.

max
Φ

θ

s.t. θ ≤ e − κ · Z*
p − σ · Ua*

p( )Tκa
υTκa + JTπa � b, πa‖ ‖2 ≤ χa

θ ≥ 0

(48)

where a is the current number of iterations; κ represents the dual
variable introduced regarding the linear constraints of the lower-
level model; χ and π are dual variables introduced regarding second-
order cone constraints. Update the upper bound UBSP

p � θ of the
subproblem.

min
Xp,Up

bT ·Xp

s.t. κ · Z*
p + σ · Up + υ ·Xp ≤ e*

J ·Xp

���� ����2 ≤H ·Xp

(49)

iii: Solve Eq. 49 to get the lower limit of the subproblem.

By solving Eq. 49, the optimal solution X*
p can be obtained and

the lower bound LBSP
p � max bT ·X*

p, LB
SP
p{ } of the subproblem can

be updated.

UBSP
p − LBSP

p

∣∣∣∣∣ ∣∣∣∣∣≤ o (50)
θ ≤ e − κ · Z*

p − σ · Ua*
p( )Tκa

υT · κa + JT · πa � b, πa‖ ‖2 ≤ χa
ϕ≥ bT ·Xa

p

(51)

iv: Let a = a+1 to get a new binary variable Ua*
p , and determine

whether UBSP
p and LBSP

p satisfy Eq. 50. If so, break the inner
loop, let UBMP

p � UBSP
p , and return e* as the bottom scenario

for the master problem; If not, add Eqs. 48–51 and return
to step ii.

There is a nonlinear term e · κa in Eq. 51, and the big-M
method is also used for linearization, which will not be
repeated here.

The NCCG algorithm’s flowchart is displayed in Figure 3.
Firstly, solve the master problem of the external loop and
determine the investment decision Z*

p. In an iterative
manner, Eqs 48, 49 are solved, subsequently, e* and U*

p are
updated. The bottom scenario is determined by considering
the convergence of the inner loop and e* is set accordingly.
Then, the bottom scenario is returned to the master problem.
When the outer loop satisfies convergence, the algorithm
terminates.

5 Case study

5.1 Parameter settings

In this article, it is first tested in a modified IEEE 33-node
distribution system (Zhou et al., 2019) and then further applied
in a 152-node 10 kV distribution system in a region. The example
grid structure is shown in Figure 4 and Figure 5. The planning
period is set to three stages, each lasting for 3a. The initial
capacity of TS in the modified IEEE 33-node distribution

FIGURE 3
NCCG algorithm flowchart.

Frontiers in Energy Research frontiersin.org08

Yang et al. 10.3389/fenrg.2023.1298365

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1298365


system is 3.15 MVA, and the candidate main transformer
capacities are 3.15MVA, 6.3 MVA, and 10 MVA; The initial
capacity of TS in the 152-node distribution system is 10 MVA,
and the candidate main transformer capacities are 6.3 MVA,
10 MVA, and 20 MVA; The cost of TS capacity increase is
500,000$/(MVA). The parameters of RIES candidate nodes
and candidate equipment (Ehsan and Yang, 2019) can be
found in Table 1 and Table 2. There are already biogas supply
points built at the candidate nodes. The candidate lines and the
parameters of the selected models are shown in Table 3 and
Table 4, with a lifespan of 25a. Procurement of electricity from
the power grid through the utilization of time-of-use tariffs can
be observed in detail in Table 5 (Subramanian and Das, 2019) The
constant price of biogas is set at 0.193 $/(kWh).

5.2 Scenario generation results

The setting of load parameters needs to take into account the
impact of load development, seasonal factors, and other factors at
each planning stage. Firstly, obtain the 8760h cold/hot/electrical
load of a certain region through DesT software (DeST introduction,
2023). Then, a total of 1000 sets of data are generated through the
implementation of Monte Carlo simulation. Subsequently, the
enhanced k-means clustering methodology is employed to get the
cooling, heating, and electricity loads for four representative days.
The curves are depicted in Figure 6. Where Figure 6B and Figure 6D
show significant changes in cold and heat loads, with high peaks and
load-saving characteristics in summer and winter, respectively; The
changes in cooling and heating loads in Figure 6A and Figure 6C are

FIGURE 4
Modified IEEE 33-node system network structure.

FIGURE 5
152-node system network structure.
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relatively gentle, with characteristics of spring and autumn loads. In
terms of describing load uncertainty, this article considers that the
maximum deviation of various load fluctuations is 10%, and the
parameter Γ is set to 6.

5.3 Planning results

5.3.1 Modified IEEE 33-node example
This article sets up two comparative schemes based on whether

to consider RIES or not. Among them, without considering RIES,
the cooling and heating loads are converted into electrical loads
using a thermoelectric energy efficiency coefficient of 2.5; When
considering RIES, the optimized configuration combination of RIES

devices is shown in Table 6. Based on four typical daily load
scenarios, the proposed rural distribution network planning
method with RIES was first tested in the modified IEEE 33-node
system. The planning and operation outcomes of each stage are
presented in Table 7. Where the numbers inside and outside the
parentheses of the RIES column represent the configuration
combination number and installation location of the RIES

TABLE 1 Parameters of energy conversion equipment in RIES.

Device Type Rated capacity (MW) Energy efficiency coefficient Unit cost (M$)

CHP Ⅰ 1.0 Electricity:0.28 Heat:0.55 0.4936

Ⅱ 0.85 Electricity:0.24 Heat:0.52 0.4420

Ⅲ 0.66 Electricity:0.22 Heat:0.48 0.4031

Ⅳ 0.42 Electricity:0.20 Heat:0.45 0.3425

GB Ⅰ 1.7 0.88 0.2108

Ⅱ 1.5 0.72 0.1824

Ⅲ 0.84 0.75 0.1680

Ⅳ 0.6 0.69 0.1425

ER Ⅰ 3 3.5 0.5027

Ⅱ 2 3.1 0.4025

Ⅲ 1.5 2.7 0.3745

Ⅳ 0.8 2.4 0.3256

AR Ⅰ 2 1.45 0.1546

Ⅱ 1.75 1.44 0.1229

Ⅲ 1 1.40 0.0987

Ⅳ 0.85 1.41 0.0824

RIES, Candidate nodes: 2、6、25、43、55、74、109、124、142.

TABLE 2 Parameter of energy storage equipment in RIES.

Device type CES TES

Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ

Rated power (MW) 1.0 0.75 0.5 1.0 0.75 0.5

Rated capacity (MWh) 16 12 8 4.5 3.0 2.0

Loss coefficient 0.002 0.0015 0.001 0.005 0.004 0.003

Charging efficiency 0.65 0.65 0.65 0.65 0.65 0.65

Discharging efficiency 0.65 0.65 0.65 0.65 0.65 0.65

Unit power construction cost (M$) 0.067 0.043 0.0306 0.0104 0.009 0.0074

Unit capacity construction cost (M$) 0.067 0.043 0.0306 0.0104 0.009 0.0074

TABLE 3 Information of candidate lines.

Candidate line number 1 2 3 4 5 6

Starting node 1 1 1 2 54 100

End node 2 54 100 12 55 103
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equipment; The numbers inside and outside the parentheses of the
line represent the combination number and installation position of
the line configuration; /represents no investment, the same
applies later.

When considering RIES, there is no need to expand or renovate
the line and TS, and only two RIES were invested in planning phase
1; Without considering RIES, TS was increased by 3.15MVA in
planning stage 1, and both the line and TS were upgraded and
renovated in planning stage 3. After considering RIES, the total
annualized planning cost has slightly decreased by approximately

13.2%. In terms of operational efficiency, considering RIES, the
annual operating costs of each planning stage have decreased by
approximately 35.35% compared to not considering RIES.

5.3.2 152-Node system calculation example
Based on four typical scenarios, further application is

carried out in a 152-node system. The distribution network
planning and operation results of each planning stage are
depicted in Table 8.

TABLE 4 Parameter of a line candidate model.

Type Unit length cost (M$·km-1) Impedance/(Ω·km-1) Maximum current (A)

1 0.1753 0.8 + j0.4 150

2 0.2491 0.65 + j0.4 170

3 0.2825 0.45 + j0.4 215

TABLE 5 Peak Valley electricity prices.

Time periods(h) Electricity price ($)

01:00–06:00 0.41

07:00–20:00 1.33

21:00–24:00 0.41

FIGURE 6
(A) Typical scenario 1; (B) Typical scenario 2; (C) Typical scenario 3; (D) Typical scenario 4.

TABLE 6 Planning results of RIES equipment combination configuration.

Type Configure capacity (MW)

CHP GB AR ER CES TES

1 1 1.5 1.2 2.8 1 1

2 0.66 0.84 1 2 0.75 0.75

3 0.42 0.6 0.85 1.5 0.5 0.5
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TABLE 7 Comparison of planning results for modified IEEE 33-node system.

Program Stage Planning results Annualized planning
cost (M$)

Annualized operating
cost (M$)

Total
cost (M$)

RIES Line TS
expansion

Consider RIES 1 2(1),6(2) — — 0.2556 3.9799 4.2355

2 — — — 0 5.2449 5.2449

3 — — — 0 7.1855 7.1855

Not considering
RIES

1 — — 3.15MVA 0.1102 6.3477 6.4579

2 — — — 0 8.0407 8.0407

3 — 1 (2) 6.3MVA 0.2478 10.8821 11.1299

TABLE 8 Comparison of planning results for the 152-node system.

Program Stage Planning results Annualized
planning cost (M$)

Annualized
operating cost (M$)

Total
cost (M$)

RIES Line TS
expansion

Consider RIES 1 2(1),6(1),25(1),55(1),109(1),142(2) — — 0.9088 21.2285 22.1373

2 — — — 0 27.6814 27.6814

3 43(2),73(3) — — 0.1529 36.1457 36.2986

Not considering
RIES

1 — 2(2),4(1) 10MVA 0.4048 39.2517 39.6565

2 — 3 (1) 10MVA 0.3217 46.1826 46.5043

3 — 1 (3) 6.3MVA 0.2852 57.8327 58.1179

FIGURE 7
(A) Scenario 1 load comparison results in a 152-node system; (B) Scenario 3 load comparison results in a 152-node system.
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As can be seen from the planning results in Table 8, when
considering RIES, it is only planned in stages 1 and 3, and the
investment is mainly in stage 1, accounting for 85.59%; Without
considering RIES, there are investments in line and TS expansion
at all stages. The total annualized planning cost when considering
RIES is approximately 1.05 times that when not considering
RIES. The annualized cost during the initial planning stage
(stage 1) is approximately 2.245 times that without
considering RIES. In the sub-sequent planning stages
(planning stages 2 and 3), under the same load growth rate,
the annualized planning cost is about 25.2% of that without
considering RIES, and the in-vestment period is delayed by one
stage. It can be seen that when considering RIES, there is only a
significant investment in the initial stage, and the subsequent
investment reduction effect is significant. There are two main
reasons for this. 1) Before the construction of RIES, the cooling
and heating loads in rural areas were mainly supplied by

electricity, and the absence of energy storage devices was
observed in the system. Therefore, after considering the
construction of RIES, the initial investment is large, but it also
effectively transfers some of the power supply pressure of the
distribution net-work; Without considering RIES, the initial
stage is based on the planning of the existing power grid, so
the investment is relatively low; 2) After the distribution network
planning, due to the regulatory role of RIES, the energy supply
curve has been effectively smoothed. And the supply pressure of
various loads was allocated to corresponding equipment,
alleviating the pressure of electricity load growth.

As can be noticed from the operational results in Table 8, the
distribution network operation economy after considering RIES
has shown good results. The total annualized operating cost
decreased by approximately 41.16% compared to when RIES
was not considered. RIES can store energy during electricity
price valleys and release energy during peak hours while using

FIGURE 8
(A) Scenario 2 load comparison results in a 152-node system; (B) Scenario 4 load comparison results in a 152-node system.

FIGURE 9
The cooling output of RIES after planning.

FIGURE 10
Heating output of RIES after planning.
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biogas to replace a portion of electricity during peak hours can
further reduce operating costs; When not taking into account the
RIES, the operating cost of the system is solely dependent on the
load and electricity price, resulting in reduced
economic efficiency.

Furthermore, with regard to the regulation of the
disparity between peak and valley levels in the power grid, a
comparison is made between the electricity load curves before
and after the planning. The results are shown in Figure 7 and
Figure 8. The peak-to-valley ratio of Scenarios 1 and 3 has
increased from 66.67% to 65.80% before planning to 83.07%
and 83.51% after planning; The peak to valley ratio of
scenarios 2 and 4 has increased from 64.98% to 64.85% before
planning to 84.14% and 80.87% after planning. The peak-to-
valley ratio of four typical scenarios has been improved to
varying degrees.

Take Scenario 1 as an example to conduct a detailed analysis
of the operating mechanism of RIES. Figure 9 and Figure 10
depict the cooling and heating output of RIES subsequent to the
implementation of the planning phase. From Figure 9, it can be
seen that 01:00 to 05:00 are the low periods of cooling load,
during which AR is not activated and ER output is relatively
high; Starting from 06:00, CES stops cold storage and ER output
decreases to cooperate with AR cooling; CES starts cooling from
07:00, and after reaching a peak at 19:00, the cooling load begins
to decrease. At 22:00, CES stops cooling and starts cooling
storage again, resulting in a decrease in AR output and an
increase in ER output.

As can be noticed from Figure 10, the heat load curve is relatively
flat, and due to the fixed price of biogas. Therefore, there is almost no
significant fluctuation in the output of GB and CHP. TES stores heat
from 01:00 to 06:00 and 21:00 to 24:00 and begin to release heat from
07:00 to 20:00 to cooperate with GB, CHP for heating load, and
AR heating.

5.4 Comparison with traditional solutions

Table 9 presents a comparison of the results between the robust
planning scheme considering RIES and the traditional planning scheme
in the IEEE 33-node scenario. From Table 9, it can be seen that: 1) The
robust model incurs higher investment and operational costs in
comparison to the deterministic model. This is because the robust
model takes into account the uncertainty of the cooling/heating/
electricity loads in the planning process and the planning decisions
made are more conservative than the deterministic model. Similarly,
there is an increase in operational expenses. The increase in operating
cost is mainly in the area of energy purchase; 2) The robust model
reduces the cost of regulation of the distribution network compared to
the deterministic model. This is because there are more RIES inputs,
and the operational cost of the grid can be effectively reduced by energy
storage and peak shifting, and energy substitution. Therefore, the robust
planning model presented in this article can not only play a good effect
on peak and valley difference regulation but also has a certain resistance
to fluctuation risk.

5.5 Impact of uncertain parameters

To evaluate the flexibility of the proposed approach in relation to
the cautiousness of planning schemes, five different sets of uncertain
adjustment parameters were chosen for comparative simulation. The
specific configurations of these parameters and the corresponding
outcomes of the simulations are displayed in Table 10.

The data presented in Table 10 demonstrates that when the
uncertainty adjustment parameter is set to 0, the robust
planning model is equal to the Deterministic system. As the
uncertainty parameters increase, the corresponding planning
and operating costs increase. That is to say, when formulating
the planning plan, more uncertainty is taken into account,
resulting in a more conservative plan. With the increase of
RIES in the planning scheme, the corresponding operating costs
are also increasing.

TABLE 9 Comparison of results between robust planning schemes considering
RIES and traditional planning schemes.

Category Robust model Deterministic model

TS expansion — —

line — —

RIES 2(1),6(2) 2 (1)

Energy purchasing (M$) 9.8791 6.8393

RIES operating cost (M$) 1.8872 0.9945

RIES flexible regulation (M$) 4.8996 6.3118

Total investment cost (M$) 0.2556 0.1632

Total operating cost (M$) 16.6659 14.1456

TABLE 10 Comparison of planning scheme results under different uncertainty adjustment parameters.

Uncertainty adjustment parameters Planning cost (M$) Operating cost (M$)

Γ � 0 0.1632 14.1456

Γ � 6 0.2556 16.6659

Γ � 12 0.3162 18.6271

Γ � 18 0.3769 21.7882

Γ � 24 0.4402 24.4814
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6 Conclusion

In this article, a multistage robust planning approach is
introduced for rural distribution networks that incorporate
integrated energy stations. The method takes the distribution
network as the main body, and the integrated energy station
plays the role of regulation to alleviate the pressure of power
supply in rural areas; the improved k-means clustering algorithm
is employed to obtain multiple typical scenarios to improve the
clustering efficiency. The method’s feasibility and effectiveness were
evaluated using a modified version of the IEEE 33-node system, and
then further based on a 152-node distribution system in a local area
for practical application, the following conclusions are obtained.

1) The distribution network planning method proposed in this
article, which takes into account RIES, has the advantage of
reducing investment cycle and planning costs, although it has a
relatively large investment in the initial planning stage. And as
the planning period increases, its investment economy will also
become more apparent. In terms of load regulation, RIES can
effectively improve the peak-to-valley ratio of loads through the
strategy of energy storage equipment storing energy during
valley hours and releasing energy during peak hours.

2) The proposed model incorporates the consideration of load
uncertainty. By continuously changing uncertainty parameters,
the conservatism of the entire planning scheme can be flexibly
adjusted. It is beneficial for planners to make a reasonable choice
between operating costs and operational risks.
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