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Due to increasing environmental concerns and demand for clean energy
resources, photovoltaic (PV) systems are becoming more prevalent.
Considering that in several instances, customers pay for both energy and
power, PV installations not only must reduce the customers’ energy purchases
but also lower their peak demand for maximum financial benefits. However, in
many cases, the peak demand does not coincide with the peak of photovoltaic
generation. To address this issue, excess energy generated during low-demand
periods can be stored in a battery, which can then be used to meet peak demand.
Determining the optimal size of photovoltaic and battery components while
ensuring system performance and financial benefits is significantly challenging.
This study proposes a novel statistical methodology for optimizing PV-battery
system size. In the proposed method, the PV-battery system must meet peak
demand thresholds with a specific probability. Further, cost and benefit functions
are used for financial evaluation. Finally, Monte Carlo simulations, developed using
time series clustering and a Bayesian model are utilized to assess system
performance and financial feasibility.
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1 Introduction

Photovoltaic (PV) systems have been widely used to generate electricity in recent years
due to their advantages over traditional power resources (Mirzapour and Arpanahi, 2018).
Based on the U.S. Department of Energy Solar Energy Technologies Office (SETO) and the
National Renewable Energy Laboratory (NREL) PV vision, solar energy can supply
40 percent of the nation’s electricity by 2035 (Solar Futures Study, 2023). PV systems
play an important role in power systems because they are able to generate clean and
environmentally friendly energy from solar irradiance (Thirunavukkarasu and Sawle, 2021).
Stand-alone, grid-connected PV, hybrid PV systems, and building-integrated PV systems,
are among the most functional types of PV systems (Verma et al., 2011). From an economic
point of view, the utilization of PV systems must be beneficial both for utilities and
customers. In several instances, customers pay for both energy and peak demand.
Consequently, PV system installation not only must reduce electrical energy purchase
but also must reduce peak demand. Electricity energy reduction can be done by PV systems
at any time of PV operations, but peak demand reduction needs more analysis. Because the
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PV generation in many cases does not coincide with peak demand
hours. For example, during winter and partially in spring and fall the
peak demand may occur in the early morning hours when PV
generation is infinitesimal or zero. To tackle this problem, batteries
can be used to store excess energy generated during low-demand
periods, which can then be used to meet peak demand
(Nkuriyingoma et al., 2022). Nevertheless, one of the main
challenges is finding the appropriate size for PV systems and
associated batteries that can meet a specific peak with high
probability, resulting in peak demand reduction while
considering the stochastic nature of both the system peak
demand and solar irradiance. The literature review on PV-battery
systems indicates a few studies focused on PV-battery systems sizing
with consideration of risk analysis for peak demand reduction.

Several studies have been conducted to optimize PV-battery
systems for residential load applications. These studies use various
methodologies and objectives to achieve optimal PV-battery system
performance and financial benefits. Among the most common
optimization methodologies are deterministic optimization,
stochastic optimization, robust optimization, and multi-objective
optimization.

Deterministic optimization approaches involve using
predetermined parameters and mathematical modeling to
determine the optimal size of the PV and battery components
(Okoye and Solyalı, 2017). proposes a deterministic optimization
model to minimize the total cost of PV-battery systems while
satisfying load demand and system constraints. The deterministic
methodology described in (Belfkira et al., 2011) aims to optimize PV
systems by utilizing long-term data. The goal of this methodology is
to determine the optimal component numbers of the system while
minimizing the total cost and ensuring the availability of energy.

Stochastic optimization approaches incorporate uncertainty in
PV generation and other parameters to optimize the sizing of PV
battery systems (Ensslen et al., 2018). presents a stochastic
optimization model for determining the optimal size of a Solar
System with battery storage. The sensitivity analysis shows that the
PV size significantly relates to labor cost and demand, while the
battery size is influenced by battery cost and demand. Further
(Bagheri et al., 2022), presents a two-stage stochastic
programming model that incorporates a conditional generative
adversarial network to generate scenarios for generated PV power
and demand. It aims to minimize costs and highlights the efficiency
of PV-battery systems.

Robust optimization is a new technique in PV-battery sizing that
considers the inherent uncertainty associated with parameters, such
as solar irradiance, ambient temperature, demand, etc. By modeling
the uncertain parameters by specific intervals, robust optimization
seeks to find the optimal solution (Carli et al., 2022). Few studies in
the literature incorporate the robust counterpart in their PV-battery
optimal sizing problems. For example (Aghamohamadi et al., 2021),
proposes an adaptive robust optimization to determine the optimal
size of PV and battery while minimizing operating costs under the
worst-case realization of uncertainties in a residential area. The
10 percent perturbation is considered for the uncertain parameters
around their nominal values. A multi-objective robust optimization
is proposed by (Rodríguez-Gallegos et al., 2018) to minimize the
CO2 emissions, cost of energy, and voltage deviations under the
worst-case scenarios.

Finally, multi-objective optimization approaches in PV-battery
optimization aim to simultaneously optimize multiple conflicting
objectives such as cost, PV-battery size, environmental impact, etc.
(Khezri et al., 2020) proposes a multi-objective optimization scheme
for grid-connected households, where the cost of energy and grid
dependency are considered as the objectives (Emrani et al., 2021).
presents a multi-objective methodology to choose the optimal size of
the PV-battery system using load and solar irradiance profiles. That
study aims to minimize the total cost of the PV-battery system
investment. A multi-objective function is developed in (Kelepouris
et al., 2022) to find the optimal size of a PV-battery system and the
impact of different energy costs and load profiles on the objective
functions are discussed. Authors in (Celik et al., 2020) propose a
multi-objective problem in a grid-connected PV-battery system
where energy autonomy, power autonomy, payback period, and
lifetime capital cost are considered as the objective functions. The
goal of the study in (Alramlawi and Li, 2020) is to minimize energy
costs by using lead-acid batteries and PV panels, maximize battery
depth-of-discharge, and maximize solar panel tilt angle. That study
aims to improve system reliability by accounting for annual power
supply losses and providing accurate battery lifespan estimations for
economic analysis.

Although valuable studies are conducted in terms of long-term
optimal planning of PV-battery system sizing, the robustness to
withstand unpredictable conditions and risks of not meeting their
proposed schemes are not evaluated adequately in most of them.
Since the design of a PV-battery system is based on historical data, it
is necessary to evaluate the capability and robustness of the designed
PV-battery system for the expected load and solar irradiance profiles
in the future.

Once the optimal PV-battery sizing methodologies have been
established, evaluating the performance of the model becomes
crucial. The robustness and risk of the system are critical aspects
to consider when evaluating the performance of the optimized PV-
battery system. Assessing the system behavior under various
scenarios and uncertainties helps determine its ability to
withstand unpredictable conditions and ensure reliable operation.
Monte Carlo simulation, forecasting, historical data analysis, and
stochastic analysis are among the most popular tools for assessing
PV-battery systems. Stochastic approaches, such as stochastic
optimization, often rely on assumptions about probability
distributions or use simplified models to approximate system
behavior. In (Cheng et al., 2018), the authors use clustering
techniques to group wind energy generation and load data into
different sets. This clustering approach helps identify distinct
patterns and characteristics within the data. Monte Carlo
simulation is used to generate various scenarios for planning
purposes. In (Fu, 2022) a statistical machine learning technique
is utilized to generate multi-scenarios in a distribution network.
Besides, forecasting techniques can be used to generate various
demand scenarios (Gonzalez-Briones et al., 2019). For example, a
new method using the clustering technique and the autoregressive
integrated moving average is proposed in (Nepal et al., 2020) to
forecast the load demand for planning. Further (Berriel et al., 2017),
proposes a modified long-short-term memory to forecast the energy
consumption at a residential site. In addition (Morteza et al., 2023),
explores the use of deep neural networks for medium and long-term
energy demand prediction.
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While several studies have been conducted on the long-term
optimal sizing of PV-battery systems, certain gaps still remain. Many
existing studies focus on deterministic approaches, which do not
consider uncertainties in PV generation, load demand, and other
parameters. In addition, some studies utilize stochastic approaches,
but they often rely on simplified models, which may not accurately
capture the complex behavior of PV-battery systems. Similarly, a
robust optimization could be over-conservative since in most cases it
deals with the worst-case scenarios (Aghamohamadi et al., 2021).
Further, several studies are based on synthetic data and they do not
explicitly address the trade-off between peak demand and energy
consumption reduction.

An important problem in power system planning is to reduce
peak demand and flatten demand profiles (Mahmud et al., 2018).
This study aims to introduce a novel methodology for installing PV-
battery systems that explicitly considers peak demand reduction as a
key factor in determining the optimal solution to maximize the
benefits over the life cycle of the project. The methodology is suitable
for those residential, commercial, and industrial customers who pay
for peak demand charges for electricity. Since the problem
formulation has both continuous and discrete variables along
with a search of thresholds with 95% probability of not
exceeding the peak load, it is difficult and complex to use a
conventional optimization approach to solve this problem. To
address these issues, we have proposed a search approach, which
is simple and easy to implement with the capability to integrate
various aspects of the proposed problem. It also has low
computation burden. A case study of a small municipal utility in
the United States is considered in this paper for illustration of the
methodology. Real system data of 3 years is used for cost and benefit
computations over the project lifetime.

The main contributions of this paper can be summarized as
follows:

1) The study recognizes the importance of reducing peak demand
in PV-battery systems and incorporates it as a key objective in the
optimization process. By considering the technical and economic
requirements, the study aims to find the optimal size of the PV-
battery system that can effectively reduce peak demand.

2) The paper introduces a new statistical methodology specifically
designed to address the optimization of PV-battery sizing. This
methodology offers a systematic approach to assess and determine
the optimal size of the PV-battery systemwhile considering the peak
demand reduction effectively. This is a novel contribution as it
provides alternative approaches to be utilized in decision-making.

3) Build a risk-based robust model to determine the optimal PV-
battery system by incorporating advanced techniques including
time series clustering and Monte Carlo simulation based on a
Bayesian model. These techniques are used to generate a large
number of realistic demand and solar irradiance data scenarios,
allowing for a comprehensive evaluation of the system
performance under different conditions.

2 Methodology

This section outlines the techniques employed to achieve the
optimal size of a PV-battery system.

2.1 PV-battery system component model

The system under this study consists of PV panels, battery
storage, and inverters. PV panels directly convert solar irradiance
into electrical DC power. If the size of the PV system is X kW, the
overall output power of the PV system can be obtained as follows
(Yan et al., 2019):

PV h( ) � X

G
× I h( ) (1)

where, PV(h) indicates DC output power of the PV system in kW at
hour h, G is the solar constant equal to 1000 W/m2, and I(h)
represents solar irradiance in W/m2. DC to AC inverter model can
be expressed as follows (Yan et al., 2019):

Pinv h( ) � PV h( ).ηinv.K (2)

where, Pinv(h) indicates the output power of the inverter, K is the
oversize coefficient, and ηinv presents the efficiency of the inverter.

2.2 System costs

2.2.1 Investment costs
The investment costs refer to the initial capital cost required to

install the PV-battery system, including PV modules cost (Ndwali
et al., 2020):

Cini
pv�X.Cpv (3)

where, Cini
pv is the total installation cost for the PV modules ($) and

Cpv is the module cost (/W).
Inverter cost (Ndwali et al., 2020):

Cini
inv�X.ηinv.K.Cinv (4)

where, Cini
inv is total installation cost for the inverters ($) and Cinv is

the capital cost of the inverters ($/W).
Labor costs:

Cini
labor�X.Clabor (5)

where,Cini
labor is the total initial human and labor cost ($) andClabor is

the cost of labor ($/W). The total equipment costs including wiring,
racking, and switchgear for installing a photovoltaic system are as
follows:

Cini
eq�X.Ceq (6)

where,Cini
eq is the total initial equipment cost ($) andCeq is the capital

cost of equipment ($/W).
Additionally, PV system installation has overhead costs as

follows:

Cini
over�X.Cover (7)

where, Cini
over is the total initial overhead cost ($) and Cover is cost of

overhead ($/W). Batteries are installed initially and they need to be
replaced after a certain amount of time because they typically last
less than the project lifetime. It should be noted that according to
rapidly growing battery technologies, the cost of the replaced battery
is expected to be less than the current value (Berckmans et al., 2017).
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Accordingly, if the cost of the initial battery is C1
bat, cost of the

secondary battery would be C2
bat. WithM as the lifetime of the initial

batteries, the present worth of battery investment cost is as follows
(Disney et al., 2013):

Cini
bat � C2

bat

1

1 + i( )M[ ] + C1
bat (8)

where i is the discount rate used to compute the present worth of
replacement batteries. C1

bat (similarly C2
bat) can be expressed as

follows:

C1
bat � Y.Cbat (9)

where, Cbat is capital cost of battery ($/kWh) and Y is size of the
battery in kWh.

With Cini
trans as the cost of the transformer needed to connect the

system to the grid, the total installation cost of the PV-battery system
Cini
total can be expressed as follows:

Cini
total�Cini

pv+Cini
inv+Cini

labor+Cini
eq+Cini

over+Cini
trans + Cini

bat (10)

2.2.2 Operation, maintenance, and insurance costs
The total annual operation and maintenance costs of a PV-

battery system are an annuity and they need to be converted to the
present worth as follows (Disney et al., 2013):

Cpresent
O&M � X.Cyear

O&M

1 − 1 + i( )−N
i

[ ] (11)

where, Cyear
O&M is the yearly operation and maintenance costs, Cpresent

O&M

present worth of the operation and maintenance costs over the
project lifetime, and N is the project lifetime. It should be noted that
the yearly insurance cost is included in the operation and
maintenance costs.

2.2.3 Peak demand charge
The peak demand charge is calculated based on the highest level

of power demand typically over a month. Here the peak demand
charge is calculated before and after PV-battery installation. The
present worth of peak demand charges for year n before PV-battery
installation can be expressed as follows (Risbeck and Rawlings,
2020):

PDCHpresent
origianl� ∑Ppeak

m .Cpeak( ). 1
1 + i( )n[ ] (12)

Where, PDCHpresent
origianl represents the present worth of peak demand

charge cost without PV-battery, Ppeak
m indicates the peak demand in

each month (kW), And Cpeak states the peak demand rate ($/W).
However, when the PV-battery system is installed, the present worth
of the yearly peak demand charge for year n can be expressed as
follows (Risbeck and Rawlings, 2020):

PDCHpresent
pv−Bat� ∑max Poriginal

d h( ) − PPV−Bat
d h( ){ }.Cpeak.

1
1 + i( )n[ ]

(13)
Where PDCHpresent

pv−Bat is the present value of peak demand charge with
PV-battery, Poriginal

d (h) is the original demand, and PPV−Bat
d (h) is

demand reduction by PV-battery system.

2.2.4 Energy cost
The present worth of energy cost before PV-battery installation

COEpresent
original and after them COEpresent

PV−Bat for year n can be expressed as
Eqs. 14, 15, respectively (Ndwali et al., 2020).

COEpresent
original � (∑Poriginal

d h( ).Cgrid) 1
1 + i( )n[ ] (14)

COEpresent
PV−Bat � (∑ Poriginal

d h( ) − PPV−Bat
d h( )( ).Cgrid). 1

1 + i( )n[ ] (15)

Where, Cgrid is the energy cost ($/kWh). It is assumed that the
electrical grid Pgrid(h) is used to meet the energy required beyond
that provided by the PV-battery system. Therefore,

0≤Pgrid h( )≤+ ∞ (16)

2.2.5 Benefit
The total benefit over the project lifetime can be expressed as the

difference between the total cost of the system with and without the
installation of the PV-battery system, which can be expressed as
follows:

Benefit � PDCHpresent
original+COEpresent

original{ }
− Cini

total+Cpresent
O&M +PDCHpresent

PV−Bat+COEpresent
PV−Bat{ } (17)

2.3 Battery operation and updated peaks

In this section, a new simple but efficient algorithm is proposed
to determine daily battery operation. For an X kW PV size, Eq. 1
gives the output power of the PV. Then, an updated daily load
profile, named modified load is generated by subtracting the original
load profiles from the PV generation for all days. The needed battery
size for each day to flatten the load curve is determined by drawing a
horizontal line such that the upper area between the modified load
and the horizontal line is equal to the roundtrip efficiency multiplied
by the lower area between the horizontal line and the modified load
below this line as expressed by:

FIGURE 1
Modified load curve and equalization of areas for the needed
battery.
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Aupper � Alower×ηR (18)

where Aupper and Alower represent the upper and lower areas
between the modified load and the horizontal line, respectively,
and ηR is the battery roundtrip efficiency. For example, in Figure 1,
the modified load curve for a random day is shown, and a horizontal
line has been placed to cut the curve in such a way that the dashed
area above the line is equal to the roundtrip efficiency multiplied by
the gray area below the line. Positioning the horizontal line in this
way ensures that the battery can be charged when the modified load
is below the horizontal line and it is discharged when the modified
load is above the horizontal line while limiting the peak load for the
day at the value corresponding to the horizontal line. These
calculations can be modified to include battery efficiencies during
charging and discharging. The calculated lower area, which
corresponds to energy going to the battery from the grid, is
multiplied by battery charging efficiency and divided by the
battery utilization factor to give the needed battery sizes for the
specific day as follows:

Bneeded � Alower × ηB
UB

(19)

Where Bneeded represents the daily needed battery capacity to flatten
the load curve, ηB represents the battery charging efficiency, and UB

represents the battery utilization factor. Utilization factor is defined
as the range from the minimum recommended charge to the
maximum recommended charge levels for the battery (typically
20%–90%, which gives a utilization factor of 0.7).

Since each day will need a different battery size to flatten the load
curve, the largest needed battery size would be able to flatten the load
curve for all the days. However, choosing the largest battery size is
not prudent because the cost will be prohibitive. Hence, determining
an optimal size for flattening the load curve on most of days while
having the risk of not being able to flatten the load curve on a few
days is important. For these days, a new horizontal line is drawn
such that the upper area between the modified load and the new
horizontal line corresponds to the battery capacity while considering
the battery efficiency and utilization factor. In other words, this is the
maximum peak load reduction that can be obtained by the selected
battery size. It should be noted that considering roundtrip efficiency
in the battery sizing algorithm simulates battery loss. That means
although battery installation is expected to reduce peak demands,
battery operational losses increase the energy purchase from
the grid.

2.4 Statistical modeling

With prior knowledge of daily energy and peak load, a range of
battery sizes from Y1 to Yn can be defined for a given X PV size.
Further, the updated daily peak loads are calculated for battery sizes
Y1 to Yn. Subsequently, for each battery size, a histogram can be
drawn for the daily peak loads. Based on the scaled histogram, an
appropriate probability distribution function (PDF) is fitted for each
histogram. To accomplish this, Gamma and Lognormal
distributions are considered. The general PDF of the Gamma
distribution is as follows (Schellenberg et al., 2005):

f x( ) �
x − μ

β
( )

α−1
exp −x − μ

β
( )

β Γ α( )
where, x≥ α; β, α> 0

(20)

and μ, α, and β are location, shape, and scale parameters,
respectively. The Γ(α) is the Gamma function as follows
(Schellenberg et al., 2005):

Γ α( ) � ∫
∞

0

tα−1 exp −t( )dt (21)

And PDF of the Lognormal is as follows (Chen et al., 2019):

f x( ) � 1
xσ

���
2π

√ exp −1
2

ln x( ) − μ

σ
( )(

2

) (22)

where μ is the mean, and σ indicates the standard deviation. Further,
to evaluate the goodness-of-fit of the fitted PDFs, the Kolmogorov-
Smirnov (KS) statistic test is used that compares the empirical
cumulative distribution function (CDF) of daily peak data with
the CDF of the fitted PDF. Lower KS statistic values indicate better
fits, while higher p-values suggest better fits (Ghatak et al., 2022).
After finding the most suitable PDFs for the daily peak histograms,
the next step involves determining peak demand thresholds with
0.95 probability for all fitted PDFs. For example, for a given X and Y,
the peak demand threshold T associated with the 95% probability for
a fitted PDF can be calculated as follows:

F−1 P� 0.95( )�T (23)
where F−1 is the inverse of the CDF of a fitted PDF. This threshold
indicates the ability of the designed PV-battery system to meet peak
demand from zero to T with a 95% probability. This procedure is
used for all the fitted PDFs and the peak demand thresholds
associated with the 95% probability for each battery size are
calculated.

2.5 Optimal PV-battery sizing

In the proposed heuristic method, the unique demand
thresholds associated with the 95% probability for each battery
size for the given PV size are utilized. Determination of the
optimal battery size for a given X PV size involves identifying a
point where the 95% threshold exhibits a significant change
compared to the other thresholds associated with different
battery sizes. This approach is based on the fact that increasing
battery size leads to reduction in the 95% threshold, but after a
certain size the reduction becomes smaller. Hence, to determine the
optimal battery size, an elbow point in the 95% peak load threshold
versus battery size curve is sought. The elbow point represents a
battery size where the reduction in the 95% threshold is significantly
greater than neighboring points. This indicates a significant
improvement in the ability of the system to meet peak demand.
Besides, this enhances the system performance in meeting peak
demand while maintaining a desired probability. By repeating this
methodology for a range of PV sizes from X1 to Xn, the optimal
battery size for each PV size can be determined.
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The proposed methodology determines multiple combinations
of optimal PV-battery sizes. The optimal PV-battery system size is
chosen based on financial benefit analysis. Besides, it is crucial to test
the system under multiple scenarios to ensure its performance and
effectiveness under various conditions. By subjecting the system to
different scenarios, such as varying solar irradiance and demand its
robustness and risk can be evaluated. For this purpose, time series
clustering, and the Monte Carlo simulation technique is developed
in the following sections.

2.6 Monte Carlo simulation

Monte Carlo simulation is a computational technique used to
model and generate a large number of random scenarios. It relies on
random sampling and repeated experiments to estimate and
understand the range of possible outcomes for a given problem
(Raychaudhuri, 2008). By clustering demand and solar irradiance
data, more realistic scenarios can be created. Additionally, clustering
allows Monte Carlo simulations to take into account the
interdependencies between demand and irradiance, leading to
more meaningful and effective scenarios.

2.6.1 Time series clustering
Time series clustering is a technique that groups similar time

series data into distinct clusters based on their patterns, trends, or
behaviors over time. Electricity demand and solar irradiance are
time series data that include time intervals indicating the timesteps
and corresponding demand and solar irradiance values. Time series
clustering is a complex technique in data analysis and includes data
preprocessing, similarity measures, cluster prototypes, clustering
algorithms, and evaluation metrics (Ali et al., 2019). The
preprocessing may include working with missing data or outliers,
and normalization. This study uses Min-Max normalization to
normalize the time series data (Petegrosso et al., 2020). A
similarity measure quantifies the similarity between time series
datasets. Dynamic time warping (DTW) is utilized in this study
as a similarity measure and its efficiency is proven in several time
series clustering (Aghabozorgi et al., 2015). A prototype is a time
series that represents the characteristics of a cluster. This study
utilized the medoid prototype that is proper for the DTW similarity
measure (Ma and Angryk, 2017). Further, two types of most
practical time series clustering methods including K-medoid and
agglomerative hierarchical clustering algorithms are used. The
K-medoid clustering method is a partitioning clustering
algorithm suitable for building energy analysis. K-medoid
clustering can handle non-Euclidean distance measures,
resistance to outliers, and offers a superior level of computational
efficiency over other partitioning-based clustering methods (Cui
et al., 2023). The K-medoid algorithm utilizes medoids as prototypes
of clusters. It selects medoids by minimizing the dissimilarity or
distance between data points within each cluster. However,
K-medoid requires that the number of clusters must be specified
in advance (Gupta et al., 2021). Agglomerative hierarchical
clustering is a specific type of hierarchical clustering, which offers
a distinct advantage in building energy analysis. This method
eliminates the need to predetermine the number of clusters. This
approach generates a tree-like structure known as a dendrogram,

which serves as a visual representation and helps in determining the
optimal number of clusters (Li et al., 2018). Time series agglomerative
hierarchical clustering organizes time series data into a hierarchy of
clusters using a cumulative approach. It merges clusters based on
similarity measures (Ali et al., 2019). Finally, the quality of time series
clustering algorithms should be evaluated to figure out if the clustering
algorithms are able to capture patterns and trends in the time series
datasets. In this study, the Silhouette coefficient and gap statistic are
used for the evaluation of K-medoid, and dendrogram plot for
hierarchical clustering (Aghabozorgi et al., 2015). It should be
noted that a combination of different time series clustering
algorithms provides robust and reliable results and provides deeper
insights into the underlying patterns.

2.6.2 Bayesian model
By considering the clustering results of the previous section,

conditional probabilities are calculated to assess the relationship
between demand and solar irradiance patterns for a
computationally efficient implementation of Monte Carlo
simulation. These conditional probabilities quantify the likelihood
of a specific demand pattern occurring given a certain solar irradiance
pattern. Figure 2 illustrates the process of determining these
conditional probabilities for a month. C � C1,C2, . . .,CN{ } indicates
the set of solar irradiance clusters and L � L1,L2, . . .,LM{ } is the set of
demand clusters. The simulation starts by randomly selecting the solar
irradiance cluster using the probabilities of each cluster and uniform
distribution. In the next step, a load cluster is randomly selected based
on conditional probabilities of load clusters conditioned on the
selected irradiance cluster using a uniform distribution. Since the
selected irradiance and load clusters may have multiple days, one
irradiance profile and one load profile from these clusters are selected
randomly with equal probability for each profile with the respective
clusters. The selected irradiance profile and load profile represent a
day in the selected month. This process is repeated for each day of all
the months to generate profiles for solar irradiance and demand for a
large number of instances to generate a wide range of scenarios.
Besides, the organizational flowchart of the simulation procedure in
this study is shown in Figure 3.

FIGURE 2
Process of determining the conditional probabilities.
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3 Results and discussion

3.1 Data collection and assumption

In this study, the hourly demand and actual solar irradiance data
of Greensburg, Kansas, United States of America, from 1 January
2019, to 31 December 2021, are collected. The values of different
parameters used in this study are provided in Table 1. Further, the
study is conducted with the assumption that the battery operates on
a daily cycle, which means that the battery is charged and discharged
fully within the same day. A tax credit of 30% for the initial cost of
PV and batteries including the transformer, racking, switchgear, and

wiring is considered. Tax credit is not considered for the
replacement batteries that will be acquired 10 years later.

3.2 Statistical modeling

3.2.1 Proposed methodology
The load demand and PV generation profile of the peak demand day

of January 2019 are shown in Figure 4. The peak demand occurs early in
the day when there is no solar irradiance. Therefore, PV installation does
not help in peak demand reduction, but batteries can be used as a
complement to PV systems. For example, on this day, a battery can be
discharged at the beginning of the day to reduce the peak and be charged
duringmid-day for possible use late in the day.Modified load profiles are
calculated for the entire data of 3 years for PV sizes ranging from200 kW
to 10000 kW in steps of 100 kW. Subsequently, for each PV size,
corresponding battery sizes are selected from 1000 kWh to
10000 kWh in steps of 100 kWh. Next, updated daily peak demand
values for each combination of battery and PV sizes are calculated for the
3-year period. Then, the scaled histograms of peak demands are created,
considering the frequencies of occurrence of different peak demands
over the 3-year period. After fitting the PDFs (lognormal and Gamma)
to the generated histograms, the goodness-of-fit is evaluated using the KS
statistic test. KS statistic test results show the p-values for the Gamma
PDFs are significantly greater than the typical significance level of 0.05,
indicating a good fit for the data. However, for the Lognormal PDFs,
some p-values aremuch less than 0.05, suggesting poor fits. For example,
for PV size of 2000 kWand battery size of 2000 kWh and 3000 kWh, the
p-values are 0.0053 and 0.027, respectively. Furthermore, both PDFs
exhibit relatively small KS statistic test scores. Consequently, the KS
statistic test indicates that the Gamma distribution fits the observed data
better than the Lognormal PDF. These fitted Gamma PDFs for various
combinations of PV and battery size are used in the proposed
methodology to determine optimal PV and battery sizes.

Based on the calculated fitted PDFs, the 95% peak thresholds are
determined for all fitted Gamma PDFs. For example, Figure 5 shows
the 95% peak threshold for a battery size of 4000 kWh and a PV size
of 2000 kW for the corresponding fitted Gamma PDF. The peak
demand threshold with a 95% probability for the given case is

FIGURE 3
Organizational flowchart of the simulation procedure in this study.

TABLE 1 Quantity values used in this study.

PV module ($/W) Inverter ($/W) Equipment ($/W)

0.35 0.04 0.18

Overhead ($/W) O&M ($/kW) Transformer ($)

0.1 15 150,000

Energy cost ($/kWh) Power
cost ($/kW)

Tax credit (%)

0.025 22 30

Initial battery
($/kWh)

Replacement
battery ($/kWh)

Project lifetime

150 100 20 years

Labor ($/W) Discount rate Battery roundtrip
efficiency

0.1 0.08 0.9025

Inverter coefficient Battery efficiency Battery utilization

1.2 0.95 0.7

Inverter efficiency

0.9
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1985 kW. This means that with 95% probability, the PV-battery
system is expected to meet peak demand ranging from 0 kW to
1985 kW. Figure 6 displays the peak load thresholds with a 95%
probability for the PV size of 2000 kW and various battery sizes. It
can be observed that the thresholds for meeting peak demand with
a 95% probability decrease as the battery size increases. This trend
is particularly significant up to a battery size of 4400–4800 kWh,
indicating that increasing the battery size within this range leads to
a substantial reduction in the thresholds. But further increasing
the battery size does not provide significant additional benefits in
terms of improving the system ability to meet peak demand with a
95% probability. Therefore, to determine the optimal battery size
for a PV size of 2000 kW, an elbow point in the 95% peak
threshold versus the battery size curve is sought. The elbow
point represents the size of the battery at which the 95%
threshold is reduced significantly more than its neighboring
points. Figure 7 illustrates the elbow curve (Antunes et al.,
2018) derived from the data presented in Figure 6. By
examining the elbow curve, the point with the highest value

represents the optimal battery size for the given PV size of
2000 kW. Based on the elbow curve depicted in Figure 7, the
maximum value occurs at a battery size of 4600 kWh for the given
PV size of 2000 kW with a peak load threshold of 1971 kW. If this
analysis is repeated for different PV sizes, the optimal battery size
corresponding to each PV size can be obtained. Table 2 provides
selected optimal combinations of PV and battery size with
consideration for the 95% probability. For example, a PV size
of 3600 kW with a battery size of 4400 kWh can meet peak
demand ranging from 0 kW to 1931 kW with 95% probability,
indicating the best combination in terms of peak reduction.
However, the PV size 400 kW can meet the 2167 kW peak with
specified probability with battery size 6200 kWh, indicating a poor
combination. However, to determine the best PV and battery size,
a benefit analysis must be conducted over all the optimal
combinations of PV and battery sizes. The final size of the PV-
battery system is the combination of PV and battery sizes that
yield the highest overall benefit for the system over 20 years.

FIGURE 4
Original load and PV generation on the peak day of January 2019.

FIGURE 5
The 95% peak threshold for a fitted Gamma PDF with a battery
size of 4000 kWh and a PV size of 2000 kW.

FIGURE 6
Thresholds with the 95% probability for the PV size of 2000 kW
vs. various battery sizes.

FIGURE 7
Elbow curve associated with thresholds with the 95% probability
for the PV size of 2000 kW.
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3.3 Benefit analysis

The benefit analysis is conducted to evaluate the financial
profitability of PV and battery size combinations over 20 years.
Data from 3 years, including both demand and solar irradiance, are
grouped on a monthly basis. Energy and peak demand costs are
calculated individually for each month over the 3-year period and
subsequently averaged to obtain the monthly average costs. Table 3
presents the financial benefits associated with each combination of
optimal PV and battery sizes. Figure 8 illustrates the financial benefit
of each optimal PV and battery size combinations. It should be noted
due to the limitation of the plotting, the optimal battery sizes
associated with each PV size are not explicitly shown in the
figure. The best PV and battery size combination among all the
combinations is a PV size of 1200 kW, battery size of 3200 kWh,
peak threshold of 2078 kW, and the financial benefit associated with
this combination is $820,373 over 20 years. Table 4 provides a
detailed financial analysis of the optimal PV-battery system
considering the energy and peak demand costs before and after
PV-battery installation over a 20-year period for this case. The
original energy and peak demand costs (before PV and battery
installation) are $3,788,907 and $6,913,926.51, respectively over the
20-year period. Peak demand charges are approximately twice the
energy cost, indicating the importance of peak demand in reducing
overall costs. The PV installation results in a reduction of 12.9% in
energy costs and 5.58% in peak demand costs. These reductions
indicate that PV installation is more successful at reducing energy
costs than peak demand costs. However, the total cost of PV
installation, in this case, amounts to $1,093,847. The calculated
net benefit, which is -$190,366, indicates that PV installation does
not yield a positive economic outcome. So, although PV reduces

energy and peak demand charges, the high total installation cost
outweighs the cost savings achieved. Therefore, from an economic
perspective, PV installation alone is not profitable. Despite adding
additional costs to the system, the installation of a battery results in a
notable 25.28% reduction in peak demand costs compared to the
original peak demand costs. Furthermore, the difference of
$27,647 in energy costs between PV-only and PV-battery system
is the cost of losses associated with charging and discharging of the
battery. However, incorporating the battery system increases the
overall benefit of the PV-battery system, which indicates that the
combined effect of battery and PV is more advantageous than
relying solely on PV installation. Finally, in order to assess the
performance and effectiveness of the PV-battery system based on
the proposed method, it is necessary to test the designed PV-battery
system under different scenarios and conditions. To generate
multiple scenarios with Monte Carlo simulation, the demand and
solar irradiance profiles must be clustered.

3.4 Monte Carlo simulation

3.4.1 Time series clustering
The first step in the time series clustering is to prepare the

datasets. To achieve this goal, the data is grouped monthly. For
instance, the demand and solar irradiance data for all Januarys in the
3 years are combined, resulting in 93 time series datasets in which,
each time series contains 24 hourly data points. Then, all datasets are
normalized based on Min-Max normalization. Subsequently,

TABLE 2 Selected optimal combinations of PV and battery sizes.

PV size (kW) 400 800 1200 1600 2000 2400 2800 3200 3600

Battery size (kWh) 6200 5000 3200 4400 4600 5400 4600 4200 4400

Threshold (kW) 2167 2090 2078 1995 1971 1952 1958 1955 1931

TABLE 3 Financial benefits for optimal combinations of PV and battery sizes.

PV size
(kW)

400 600 800 1000 1200 1400

Battery
size (kWh)

6200 5500 5000 4800 3200 4200

Benefit ($) 579,970 538,390 563,450 777,510 820,370 783,450

PV size (kW) 1600 1800 2000 2200 2400 2600

Battery
size (kWh)

4400 4600 4600 5000 5400 5000

Benefit ($) 719,810 535,090 719,560 775,570 616,460 647,040

PV size (kW) 2800 3000 3200 3400 3600 3800

Battery
size (kWh)

4600 4400 4200 4800 4400 4400

Benefit ($) 657,760 559,640 600,780 476,670 506,680 426,250

FIGURE 8
Benefit of the various combinations of optimal PV and battery
size.
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K-medoid and agglomerative hierarchical time series clustering
algorithms are utilized to group similar profiles in a cluster using
the DTW similarity measure. Gap statistics and Silhouette scores are
used as evaluation metrics to determine the proper number of
clusters of the K-medoid algorithm. To obtain the gap statistic
and Silhouette scores, the K-medoid algorithm performs clustering
for a range of integer values representing the number of clusters. The
clustering results demonstrate that each cluster represents a group of
similar demand and solar irradiance profiles based on their patterns
allowing for the discovery of distinct monthly variations in
electricity demand and solar irradiance. For example, Figure 9
demonstrates the gap statistic and Silhouette coefficient scores
for different numbers of clusters for July load demand profiles.
Based on Figure 9, the maximum gap statistic score of 0.114 suggests
that 3 clusters are meaningful for July load demand profiles.
Similarly, the Silhouette coefficient peaks at 0.472 with 3 clusters.
These results offer valuable insights into choosing the optimal
number of clusters. These distinct clusters represent high
electricity demand, moderate demand, and relatively low demand
for the month of July. These variations can be attributed to factors
like differences between weekdays, weekends, and weather
conditions.

The agglomerative hierarchical clustering algorithm starts by
treating each individual demand and solar irradiance time series as a
separate cluster. It calculates pairwise distances between these
clusters using the DTW similarity measure. Clusters are then
merged iteratively based on their distances, creating a hierarchy
of clusters. This hierarchy for July load demand profiles is visualized
in Figure 10 as a dendrogram graph. In the dendrogram graph, the
vertical lines indicate clusters at different levels of the hierarchy and
a point where vertical lines merge together demonstrates a cluster
formation. Besides, the height of the vertical lines represents the
dissimilarity or distance between the clusters and longer lines show
significant dissimilarity. Intuitively, if a horizontal line cuts through
the highest vertical lines in a dendrogram, the intersections can
indicate the desired number of clusters. Accordingly, in Figure 10,
the red horizontal line intersects three vertical lines that represent
the largest dissimilarities compared to other clusters. This suggests
that dividing the data into three clusters could be a suitable choice
based on the dendrogram structure. Given that both K-medoid and
hierarchical clustering suggests a similar number of clusters for the
July demand profiles, July load data can be confidently divided into
three distinct clusters. By applying the same clustering methods to
the remaining demand and solar irradiance data, the time series
clustering process is completed for use in the Monte Carlo
simulation.

3.4.2 Bayesian simulation
Based on the mentioned methodology, a Monte Carlo

simulation is performed to generate 10,000 scenarios in which
each scenario contains yearly load and solar irradiance data.
These scenarios are generated based on the conditional
probability between demand and solar irradiance profiles.
Previously selected best PV and battery sizes of 1200 kW and
3200 kWh, respectively, with a peak load threshold of 2078 kW
are used to calculate the benefits for various scenarios. Among the
10,000 scenarios, 20 scenarios are randomly selected to calculate the
benefits over a 20-year period to create one sample benefit in the
Monte Carlo simulation. The process is repeated 500 times to
determine 500 benefit samples without replacement. Figure 11
shows the histogram of these benefit samples. The mean benefit
value is determined to be $822,440, indicating the average benefit
that can be expected from implementing the proposed method with

TABLE 4 Economic analysis of the optimal PV-battery system.

Without PV-
battery

With PV With PV-
battery

Energy cost ($) 3,788,907 3,337,719 3,365,366

Peak cost ($) 6,913,926 6,539,467 5,166,301

Equipment
cost ($)

0 1,016,013 1,350,792

Benefit ($) - −190,366 820,373

FIGURE 9
Gap statistic and Silhouette score for K-medoids algorithm.

FIGURE 10
Dendrogram associated with the hierarchical clustering.
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the determined PV and battery sizes over the 20-year period.
Furthermore, the standard deviation is $7554 indicating the
variability of the benefit around the mean. In this case, the
coefficient of variation (CV), which is the ratio of the standard
deviation to the mean is 0.0092 which is relatively small compared
with the general CV (Chen and Mili, 2013). It suggests that the
benefits obtained from the Monte Carlo simulation are relatively
consistent and close to the mean value. This level of low variability
can be seen as a positive characteristic, indicating a higher level of
predictability and reliability in the benefits obtained from the
simulation. Besides, a Normal PDF is fitted to the histogram. The
KS statistic is calculated to be 0.0235, and the p-value is found to be
0.957. These values indicate a good fit between the Normal PDF and
the benefits data. Moreover, a 95% confidence interval for the mean
of the benefits is computed, resulting in the range [821,773, 823,100].
That means, it is estimated that the average benefit value is likely to
be between $821,773 and $823100 with a 95% confidence. To
perform a risk analysis, three predetermined benefits are
considered as desired benefits to be achieved over the project
lifetime. If the predetermined benefit is less than $821,773, it
suggests that with 95% confidence, the estimated mean benefit is
likely to be higher than the threshold. This indicates a favorable
outcome, as the estimated mean benefit is expected to surpass the
desired threshold. On the other hand, if a predetermined benefit is
higher than $823,100, it indicates with 95% confidence, the
estimated mean benefit may fall below the predetermined
threshold, suggesting a potential failure to meet the desired
benefit. Finally, if the predetermined benefit falls between the
lower and upper bounds of the 95% confidence interval, this
means there is an uncertainty about whether the estimated
average benefit will be higher or lower than the predetermined
threshold. Further, the first and second STDs represent the lower
and upper bounds around the mean benefit value (see Figure 11),
indicating the potential range within which benefits are likely to
occur. Considering the first and second STDs, the benefits will be
within the range of $814,880 to $829,990 and $807,330 to $837,550,

respectively with approximately 68% and 95% confidence. The first
and second standard deviations can provide insight into the range
within which benefits are likely to fluctuate, helping decision-makers
make thorough assessments.

4 Conclusion

This study addresses the significance of peak demand in solar
PV system planning and management. While PV installations
reduce energy flow from the grid, their impact on peak demand
reduction is limited in some cases. Batteries for energy storage are
used to overcome this limitation. An innovative methodology is
proposed for determining the optimal sizes of PV and battery. The
proposed method considers variable peak load thresholds with a
95% probability for all PV and battery sizes and identifies optimal
sizes based on the elbow point. To evaluate various optimal
combinations of PV and battery sizes economically, the total
benefit for these combinations is calculated to identify the best
sizes of the PV and battery for the given system. Finally, a novel
Monte Carlo simulation is used to evaluate the effects of
uncertainties and risk on the results comprehensively by
generating multiple load and solar and irradiance scenarios. Since
many small municipal utilities and rural electric cooperatives buy
electricity from large suppliers for distribution to their customers,
the methodology presented in this paper provides a valuable tool for
them in planning solar PV-battery system installations. However, it
should be noted that the proposed methodology is not suitable for
general sizing of solar PV and batteries, but suitable for only those
utilities with a goal to reduce the peak demand. In future research, an
investigation can be conducted with a fixed peak load threshold for
the PV-battery system. Additionally, various aspects such as demand
response, power system topologies and associated reliability indices
can be included in the analysis.
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