
Leveraging sanitized data for
probabilistic electricity market
prediction: a Singapore case study

Ning Zhou Xu1, Xiang Gao2*, Songjian Chai3, Ming Niu4 and
Jia Xin Yang5

1Energy Research Institute @NTU, Nanyang Technological University, Singapore, Singapore, 2The
Industrial Training Centre, Shenzhen Polytechnic University, Shenzhen, China, 3College of Physics and
Optoelectronic Engineering, Shenzhen University, Shenzhen, China, 4Electric Power Research Institute,
State Grid Liaoning Electric Power Company Ltd., Shenyang, China, 5PacificLight Power Pte Ltd.,
Singapore, Singapore

In deregulated electricity markets, predicting price and load is a common practice.
However, market participants and shareholders often seek deeper insights into
other system statuses associated with price prediction, such as power flow and
market share of generation companies (GenCos). These insights are challenging to
obtain using purely data-driven methods. This paper proposes a physics-based
solution for the probabilistic prediction of market-clearing outcomes, using real
sanitized offer data from the National Electricity Market of Singapore (NEMS). Our
approach begins with approximating the generator offers that have been
historically cleared. Using this pool of offer data, we propose a probabilistic
market-clearing process. This process allows for the probabilistic prediction of
market prices. By considering the power system network and its constraints, we
also naturally obtain probabilistic predictions of power flow andmarket shares. We
validate our approach using actual NEMS data. Our findings show that while the
overall performance of price prediction is comparable to existing methods, our
proposed method can also provide probabilistic predictions of other associated
system operating conditions. Furthermore, our method enables scenario studies,
such as the impact of demand-side participation and the penetration of rooftop
photovoltaic (PV) systems on the Uniform Singapore Energy Price (USEP).
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1 Introduction

The past few decades have witnessed the liberalization of electricity markets all over the
world (Bunn et al., 2021; Yang et al., 2019), including the National Electricity Market of
Singapore (NEMS) (Services, 2021; Energy Market Authority of Singapore, 2018). As a
fundamental aspect of these markets, electricity price prediction has been the subject of
extensive research (Zhao et al., 2008; Abedinia et al., 2017; Wan et al., 2017; Monte et al.,
2018; Nowotarski and Weron, 2018; Brusaferri et al., 2019; Chai et al., 2019; Afrasiabi et al.,
2020; He et al., 2020; Hong et al., 2020; Li et al., 2020; Fraunholz et al., 2021; Taylor, 2021;
Uniejewski and Weron, 2021; Meng et al., 2022; Heidarpanah et al., 2023). However, most
existing tools prioritize price prediction, often overlooking the comprehensive insights that
additional system parameters, such as power flow and market share of generation companies
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(GenCos), can offer. The repercussions of such an oversight can be
manifold. Without these nuanced insights, prediction models could
inadvertently misjudge critical supply–demand imbalances at
specific nodes. This, in turn, can lead to potential inaccuracies in
price forecasts. GenCos, if left uninformed about these pivotal
parameters, might grapple with challenges in streamlining their
offer-making decisions, inadvertently paving the way for market
inefficiencies. Furthermore, the lack of these comprehensive insights
might foster an environment ripe for market volatility, with
speculative bidding amplifying price fluctuations.

Over the past 2 decades, prediction techniques have significantly
advanced (Zhao et al., 2008; Abedinia et al., 2017; Wan et al., 2017;
Monte et al., 2018; Nowotarski and Weron, 2018; Brusaferri et al.,
2019; Chai et al., 2019; Afrasiabi et al., 2020; He et al., 2020; Hong
et al., 2020; Li et al., 2020; Fraunholz et al., 2021; Taylor, 2021;
Uniejewski and Weron, 2021; Meng et al., 2022; Zhou et al., 2022;
Heidarpanah et al., 2023). Point forecasting techniques, for instance,
have been widely adopted in this field (Abedinia et al., 2017;
Fraunholz et al., 2021; Hong et al., 2020; Heidarpanah et al.,
2023). In the NEMS, the market operator publishes point
forecasts for demand and the Uniform Singapore Energy Price
(USEP) (Energy Market Company, 2023). Probabilistic
forecasting, however, goes a step further. It reflects the
probabilistic and heteroscedastic nature of electricity price and
load, providing predictions in the form of intervals (Zhao et al.,
2008; Wan et al., 2017; Taylor, 2021; He et al., 2020), quantiles
(Uniejewski and Weron, 2021), and densities (Chai et al., 2019;
Brusaferri et al., 2019; Li et al., 2020; Afrasiabi et al., 2020). Zhao
et al. (2008) and Wan et al. (2017) construct optimal prediction
intervals. Taylor (2021) proposes expectile-bounded intervals. He
et al. (2020) introduce a method based on a deep neural network
model. To address the vulnerability of quantile regression averaging
(QRA) to low-quality predictors, a regularized variant of QRA is
proposed (Uniejewski and Weron, 2021). Density forecasting, which
provides comprehensive uncertainty information, has its own
advantages. Chai et al. (2019) propose a reliable strategy for
constructing predictive densities oriented toward continuous
ranked probability scores. A Bayesian deep learning-based
technique is developed by Brusaferri et al. (2019). Li et al. (2020)
combine density probabilistic load forecasts to enhance the
performance of the final probabilistic forecasts. Afrasiabi et al.
(2020) construct a deep neural network (DNN) model from
historical data to directly predict the probability density function
(PDF) of residential loads based on past time series.

Many AI-based models inherently focus on identifying patterns in
historical data, often sidelining real-world grid considerations, such as
transmission capacities, voltage limits, and other network-related
constraints. This data-driven approach can lead to predictions that,
while statistically accurate, are operationally infeasible, particularly in
complex scenarios or during events that stress the grid. Furthermore,
these models typically struggle to derive additional system parameters,
such as local marginal price (LMP), power flow, and themarket share of
GenCos, which are crucial for a comprehensive understanding of
market dynamics. The “black-box” nature of these models also
presents challenges in interpretability, making it difficult to
understand the rationale behind certain predictions.

In contrast, simulation-based prediction methods, which
account for the intricacies of the power system network, offer a

way to obtain these additional system parameters. However, there
exists limited literature on this topic. Ji et al. (2017) provide a
forecasting method from the vantage point of a system operator who
has access to system operating conditions. In a short-term
forecasting algorithm proposed by Zhou et al. (2011), supply-
offer behaviors are assumed static. Quadratic cost function and
lossless power flow are also assumed. Bo and Li (2009) investigate
the impact of load uncertainty on LMP forecasting. In these studies,
GenCos’ offers are often assumed or assigned as fuel-cost-based
functions due to the sanitization of generator offer data in a typical
electricity market.

One approach to this challenge is to approximate offers from
accessible historical data. In Durvasulu and Hansen (2018),
generator types are identified and clustered using only publicly
available data in the PJM market. Market-based cost functions
are then fitted and used in optimal power flow (OPF)
calculations to obtain the marginal cost. However, this approach
becomes more complicated due to the variability of available data
across different markets. For instance, in markets such as the NEMS,
the available dataset is more limited. Not only is the generator ID
sanitized, but so is the offer quantity. LMP is also not available, as
detailed in Figure 3, Section 2.

This paper presents a comprehensive solution for probabilistic
market prediction that addresses several key aspects in a single
package:

1. It takes into account the issue of data availability and bases the
modeling on sanitized data.

2. It incorporates network constraints, enabling the prediction of
other system parameters, such as power flow and generator
output, which are associated with price prediction.

3. It offers probabilistic prediction on price and other market-
clearing outcomes.

4. It serves as a platform for studying future scenarios, including the
impact of demand-side participation and increased penetration
of renewable energy.

The proposed methodology is validated using real NEMS data.
To the best of our knowledge, this work is the first to provide a
probabilistic prediction for price, market share, and power flow
using real-world sanitized data.

The framework for typical prediction methods is shown in
Figure 1A. Figure 1B shows how we address the four points
mentioned previously. To tackle the data availability issue (point
1), the first step is to estimate historically cleared offers based on
accessible data, for which we develop an optimizationmethod. In the
second step, we sort the offer data estimated from the first step using
a clustering technique. We derive clusters of functions, representing
possible offers using regression, and then assign them to generators,
each with associated conditional probabilities. The obtained offer
curves enable the calculation of optimal power flow (OPF),
addressing point 2. In the final step, we propose a conditional
probabilistic market-clearing process. With load forecast as the
input and using Monte Carlo simulation, we can obtain
probabilistic estimates of price along with other market-clearing
outcomes, addressing point 3. Since our methodology is physics-
based, we can conduct scenario studies with assumed system
parameters, addressing point 4.

Frontiers in Energy Research frontiersin.org02

Xu et al. 10.3389/fenrg.2023.1296957

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1296957


The remainder of this paper is structured as follows: Sections
2–4 detail the proposed methodology against the backdrop of the
NEMS. A solution for the historical offer estimation with sanitized
information is proposed in Section 2. The formulation of conditional
offer functions is presented in Section 3. A probabilistic clearing
process for market prediction is proposed in Section 4. In Section 5,
actual NEMS data are used to validate the methodology. Its
performance is benchmarked against both classical and advanced
prediction methods. In Section 6, future scenarios are studied.
Section 7 concludes the paper.

2 Historical offer estimation

2.1 Market basics

In the NEMS, the following data are available either publicly or
through subscription (Energy Market Company, 2023; Energy
Market Authority, 2023): historical USEP and load for each area,
registered information of generating units, overhaul schedule
(i.e., generator’s availability) and its marginal price (i.e., offer
price cleared historically), daily market share of GenCos, and
load forecasts. The 230 kV and 400 kV transmission network
lines of the Singapore power system are available in Limited

(2016), Joseph et al. (2021), and Global Energy Network
Institute, 2023.

Figure 2 shows forms of offers and pricing throughout the
market-clearing process, as well as their data availability in the
NEMS. Like many modern electricity markets, the NEMS uses nodal
pricing. This means that, subject to the physical properties and
constraints, electricity price varies across transmission nodes.
Unique to the NEMS, while generators are paid the nodal price
(local marginal price or LMP), consumers are charged a uniform
price to prevent locational disadvantages. This is referred to as the
Uniform Singapore Energy Price or USEP.

Definition (Uniform Singapore Energy Price): USEP is the
weighted average of LMP over all the nodes that withdraw energy:

pU
t �

∑
NB

i�1
pL
i,t · qDi,t

∑
NB

i�1
qDi,t

, (1)

where pL
i,t and qDi,t are LMP of node i and demand at period t,

respectively. NB is the total number of buses in the system.

2.2 Approximating historically cleared offers

An offer in the context of electricity markets consists of a price
and its corresponding quantity. As illustrated in Figure 2, in the
NEMS, only cleared offer price and historical USEP are available. As
outlined in Figure 1, our initial step is to approximate the offers that
have been cleared historically. To achieve this, we formulate an
optimization problem. The objective of this problem is to
approximate the historical quantity (as shown in the second
block of Figure 2) in such a way that the resulting USEP
estimation closely matches the recorded values (2). In this paper,
the terms “offer” and “price–quantity pair” are used
interchangeably.

FIGURE 1
Comparison of market prediction methods: (A) typical method for market price prediction; (B) proposed method for comprehensive market
prediction.

FIGURE 2
Offers and pricing throughout the market-clearing process and
data availability in the NEMS.
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Minimize:

pU
t − p̂U

t

∣∣∣∣∣
∣∣∣∣∣, (2)

where pU
t and p̂U

t are the actual and estimated USEP at the tth
period, respectively.

In the setup of this problem, qDi,t and NB in (1) are known, and
the LMP pL

i,t is determined by the marginal price and quantity of the
generators. Therefore, (1) becomes

p̂U
t �

∑
NB

i�1
p̂L
i,t · qDi,t

∑
NB

i�1
qDi,t

. (3)

In this paper, p represents the price ($/MWh), while q is the
quantity (MW). The LMP pL

i,t at bus i is defined as the price to serve
the next MW of load at that location as expressed in (4):

pL
i,t � C qDi,t+1( ) − C qDi,t( ), (4)

where C(.) is the total production cost of all generators. The
estimated LMP p̂L

i,t also depends on the generators’ accepted
offers:

p̂L
i,t � C pMt , q̂

M
t , q

D
i,t+1( ) − C pMt , q̂

M
t , q

D
i,t( ), (5)

where pMt and q̂Mt denote vectors of accepted prices and estimated
quantities cleared of all generators at t as expressed in (6) and (7),
respectively:

pMt � pM
1,1,t, p

M
1,2,t,/, pM

2,1,t, p
M
2,2,t,/, pM

g,j,t[ ], g ∈ 1, NG[ ], j ∈ 1, Ng[ ],
(6)

q̂Mt � q̂M1,1,t, q̂
M
1,2,t,/, q̂M2,1,t, q̂

M
2,2,t,/, q̂Mg,j,t[ ], g ∈ 1, NG[ ], j ∈ 1, Ng[ ],

(7)
where pM

g,j,t and q̂Mg,j,t represent the price and estimated quantity
cleared historically, respectively, for the jth generator from the
gth GenCo at period t.NG represents the total number of GenCos
in the system, and Ng is the number of generators in the gth
GenCo.

In addition to the typical constraints for DC power flow
calculations, such as power limits and balance, and branch limits,
the function C(.) is also subjected to an additional
constraint—GenCos’ market shares. In the NEMS, the historical
data of each GenCo’s daily market share are known, as represented
by (8):

∑24h

t
∑
Ng

j

q̂Mg,j,t � qg, (8)

where qg is the total daily production of GenCo g. It is worth noting
that only the output of GenCos, rather than individual generators, is
given. A GenCo typically owns multiple generators, hence the
summation in (8). Furthermore, if generators under the same
GenCo have the same type and capacity, and their cleared prices
are the same, we assume that they share the same quantity, as
expressed in (9):

q̂Mg,j1,t � q̂Mg,j2,t, ifp
M
g,j1,t � pM

g,j2,t, j1,j2 ∈ 1, Ng[ ]. (9)

As can be seen from the aforementioned formulation, the
optimization aims to estimate historically accepted offer quantity
q̂Mt so that the resultant USEP pMt for each period closely matches the
actual USEP, while observing all transmission limits and additional
market constraints. Given the typically large number of generators
and their capacities, there could be many solutions to q̂Mt . (8) and
(9), along with network constraints, help narrow down the solution
space. If a solution cannot be found, (9) is relaxed.

2.3 Solution

The solution to the aforementioned problem is illustrated in
Figure 3. In the present study, we have chosen to employ the self-
adaptive differential evolution (SaDE) algorithm, as detailed in Qin
et al. (2009), given its demonstrated efficiency in optimization tasks.
One of the primary advantages of SaDE over traditional
evolutionary algorithms (EAs) is its intrinsic ability to converge
more rapidly. This accelerated convergence is achieved through
SaDE’s unique capability to adaptively select learning strategies and
fine-tune control parameters throughout the evolutionary process
(Qin et al., 2009; Qin and Suganthan, 2005). Unlike many other
algorithms that require manual parameter tuning, SaDE’s self-
adaptive mechanisms render it more user-friendly and often
more robust across a variety of optimization challenges. By
dynamically balancing exploration and exploitation phases, SaDE
reduces the risk of premature convergence, often a challenge in
traditional EAs. Furthermore, the algorithm’s adaptability means
that it is less sensitive to initial parameter settings, thereby offering a
level of flexibility seldom found in conventional differential
evolution approaches. This dynamic and adaptive nature of SaDE
ensures a holistic and efficient optimization process, making it a
compelling choice for our research.

For corroboration, basic EA options, such as the genetic
algorithm (GA), are also employed. The power flow can be
solved using MATPOWER (Zimmerman et al., 2011). In this
problem, the offer quantity is the variable, while the price is
given. Therefore, the cost/offer functions for generators are
constant functions within each iteration.

FIGURE 3
Flowchart for calculating cleared offers.
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3 Conditional probabilistic offer
functions

Once the estimated offer quantity q̂Mt for each period is
determined, we form the historical data pool of offers. Assuming
that a generator would not significantly change its offer strategy,
each data point (pM

g,j,t, q̂
M
g,j,t) represents a possible offer the generator

might make in the future. However, those data points cannot be
directly used in market-clearing or OPF calculation, where offer
functions are required.

Figure 4 plots the historical price–quantity pairs of a typical
generator (the 8th) in the NEMS. It can be observed that most of the
time, the cleared offer price is under 300 Singapore dollars per
MWh. However, there is also a possibility that the price may exceed
1,000 $/MWh. In this paper, “$” denotes the Singapore dollar.

Second, generators choose their offer submissions based on
various market conditions. As a result, these multiple choices of
offers need to be modeled. In this part of our model, we form offer
clusters and regress offer functions. Each cluster/function is
associated with its respective probability. The framework for this

step is summarized in Figure 5, with the details provided in the
following subsections.

3.1 Clustering

To reflect the decision-making process of GenCos, the offers
obtained in the first step (Section 2) are classified into clusters. Each
cluster represents a group of price–quantity pairs from which a
generator might choose its offer. For instance, as depicted in
Figure 4, the offers made by generator 8 can be clustered into
four groups.

There are many clustering techniques available. In this paper, we
use k-means clustering (Arthur and Vassilvitskii, 2006). The
probability of selecting an offer from cluster k is proportional to
the number of data points in that cluster, as shown in (10).

Pr k( ) � Nk

∑kNk
, (10)

where Pr(k) is the probability of cluster k and Nk is the number of
data points in the cluster.

After clusters are formed, an offer function is used as a
representation of each cluster.

3.2 Conditional offer-making

Variables that influence electricity prices are listed in Chai et al.
(2019). Unlike the Nordic system (Chai et al., 2019), the Singapore
power system primarily relies on domestic generation, with no
presence of hydropower and nuclear power. Among the
accessible data in the NEMS, conditions affecting generators’
offer-making include demand, generation, time of the day, and
day of the week. Under these conditions, (10) becomes

Pr k
∣∣∣∣QG, QD, t( ) � Nk QG, QD, t( )

∑kNk QG, QD, t( ), (11)

FIGURE 4
Historical price–quantity pairs of a generator in the NEMS (from 1 January 2019 to 30 September 2019).

FIGURE 5
Flowchart for obtaining conditional probabilistic offer curves.
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where Pr(k | .) is the probability for an offer to be chosen from the
kth cluster, QG is the total capacity of generation, QD is the load
demand, t is the period of the day, and Nk(.) is the number of data
points in cluster k under conditions. With this conditional filter
applied, the data points are refined and better represent offers made/
cleared under conditions. Figure 6 shows offer data filtered with
conditions.

Within each filtered cluster of the dataset, conditional offer
functions can be obtained using either linear or polynomial
regression. In this paper, linear regression is used, as illustrated
in Figure 6. For this combination of conditions (Figure 6A), the
probabilities associated with the four offer functions (from bottom
to top) are 94.51%, 4.38%, 1.09%, and 0.36%, respectively. In
addition, the set of offer curves varies with the conditions. For
example, the offers made by the same generator during an early
period of the day could only exist in the lowest cluster, as shown in
Figure 6B.

When applying conditions/filters to the offer data, we consider
the following:

1) While results could benefit from an increased number of clusters
and effective conditions in (11), data points with matching
conditions might become sparse as each additional condition
may filter out some data points. In this regard, more data are
required to ensure that the offer functions obtained from the
regression are good representatives of respective clusters. This is
especially true for high-price-point clusters since their
occurrence is far less frequent.

2) Conditions used are subjected to data availability. Both historical
and projected conditions are required. Datasets with matching
conditions are selected to perform prediction. In the NEMS,
both scheduled generator status and load forecast are available.
They are the input of the model (Figure 7). Although price
variations, especially price spikes, are more likely to be related to
emergencies, the true causes and relevant records are not publicly
available in the NEMS. Neither do forecasts on emergencies exist.

3) For conditions such as the total generation capacity QG,
historical records that exactly match a given value could be
limited. In that case, offer points corresponding to adjacent
generation capacities are used to facilitate regression. The
k-nearest neighbors technique fulfills this task (Altman, 1992;
Friedman et al., 1977).

4 Probabilistic market-clearing

The concept of probabilistic market-clearing is integral to our
approach. Instead of relying on deterministic values, we employ a
probabilistic method that accounts for uncertainties inherent in the
electricity market. The crux of our probabilistic market-clearing
method lies in the utilization of Monte Carlo simulation. This
simulation leverages the conditional offer functions and their
respective probabilities, which we previously derived. The process
involves multiple iterations, each time selecting offer functions
based on their conditional probabilities and subjecting them to
random sampling.

FIGURE 6
Example of offer data and fitted offer functions, under conditions of capacity margin, time of the day, and day of the week. [Offers made between (A)
13:00 and 13:30 and (B) 6:30 and 7:00 of the typical working day from 1 January 2019 to 30 September 2019.].

FIGURE 7
Flowchart of probabilistic market-clearing for comprehensive
market prediction.
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For each iteration, the selected offer functions play a pivotal role
in market-clearing. Here, we calculate the LMP and USEP using Eq.
3. This iterative method ensures that the resulting solution is stable
and reflective of market dynamics. To ensure convergence and
computational efficiency, we have set specific criteria: the
simulation halts when the change in variance across
1,000 consecutive iterations is less than 0.1%. An upper limit of
1,000,000 iterations is set to prevent excessive computation.

The primary objective of market-clearing in the NEMS, in the
absence of demand-side bidding, is to minimize the total cost,
represented as C(pMt , q̂Mt ). For the detailed computation of power
flow and network losses, we employ MATPOWER (Zimmerman
et al., 2011), a widely acknowledged tool in the domain. For an in-
depth understanding of the market-clearing process, especially its
formulation in the NEMS, readers are directed to refer to Zhou et al.
(2016) and Gao et al. (2017).

5 Numerical study

Data from the NEMS spanning from 1 January 2019 to
30 September 2019 are used for verification. During this
period, there were 46 registered generators in the NEMS, with
their capacities ranging from 4.8 to 431 MW. The total capacity
was 9.51 GW, and the peak load was 7.24 GW. There were
48 trading/dispatch periods in a day. The proposed
methodology is used for day-ahead market prediction. A 3-
week dataset is selected for testing, while the remaining
datasets are used for modeling.

5.1 Historical offer estimation

The proposed methodology for historical offer estimation
(Section 2) is implemented in the MATLAB environment. Offer
quantities q̂Mg,j,t for 12,096 periods (269 days) are estimated. Given
the computationally intensive calculation involved, the high-
performance computing platform of Nanyang Technological
University (Nanyang Technological University, 2021) is used. A
total of 400 CPU (AMD EPYC™ 7702 2.0 GHz) cores/workers are
deployed in parallel. Using the SaDE algorithm (Qin et al., 2009), it
takes approximately 40 h to converge. It should be noted that this
step of offer approximation is carried out offline, as the estimated

offers serve as the basis for the following steps and would not change
once calculated.

Figure 8 shows the histogram of the values of the objective
function (1). The average of the USEPs for the 9-month period is
98.28 $/MWh. The mean error between the calculated and actual
USEPs ((1)) is 0.084 $/MW (i.e., 0.084% of the average USEP);
99.52% of the cases result in errors less than 1%.

5.2 Comprehensive market prediction
results

With the estimated historical price–quantity pairs, we can
determine offer functions with conditional probabilities (Section
3), followed by USEP forecasting using probabilistic market-clearing
(Section 4). The number of clusters k is set to 7. The prediction
results for a typical day and a day with price spikes are shown in
Figures 9A, B, respectively.

For a typical day in the NEMS, the USEP is approximately 100 $/
MWh in 2019. However, there are possibilities to witness price
spikes, especially during the periods from 10:30 to 12:00 and 13:00 to
14:00. The distribution of the prediction is more converged during
the early hours. This is because, historically, the prices during early
hours are most likely to settle approximately 100 $/MWh.

Generally speaking, the prediction errors mainly stem from
errors in 1) the offer estimation (Section 2) and 2) the clustering,
filtering, and linear regression (Section 3). The benchmark for USEP
prediction and its comparison with other methods are discussed in
the following subsection.

The prediction results for daily market share are shown in
Figure 10. The predicted results for typical normal days are close
to the mean values (Figure 10A), whereas the prediction is more
scattered for a day with price spikes (Figure 10B). This is because
generators’ offers are more likely to settle in lower price tiers on a
normal day, leading to more converged results, as shown in
Figure 10A. This is consistent with the observations in price
prediction, as shown in Figure 9. It is important to remember
that in the NEMS, only daily market share is available (according
to (8)). The calculated market shares for each period and each
generator (Section 2) could differ from the actual market shares.

5.3 Performance benchmarking

The performance of USEP prediction is evaluated against both
classical and advanced prediction models. These include a basic
empirical unconditional density forecast model (EU), a classical
time-series model—generalized autoregressive conditional
heteroskedastic model (GARCH) with the Gaussian error
distribution (Jónsson et al., 2014), and three AI models—an
extreme learning machine logistic continuous ranked probability
score-based ensemble model output statistics (ELC-EMOS) (Chai
et al., 2019), a regularized quantile regression averaging method
which utilizes the least absolute shrinkage and selection operator
(LQRA) (Uniejewski and Weron, 2021), and a combined model
(Combine) (Li et al., 2020).

The continuous ranked probability score (CRPS) is used for
benchmarking. The CRPS measures the closeness of forecast

FIGURE 8
Performance of the offer estimation—histogram of USEP errors.
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distribution to the corresponding observation and is one of the
popular indices for measuring the performance of probabilistic
prediction (Chai et al., 2019; Li et al., 2020; Afrasiabi et al., 2020;

Matheson and Winkler, 1976; Hersbach, 2000; Gneiting et al., 2007;
Gneiting and Raftery, 2007; Zhang et al., 2020). The same NEMS
data are used for training and testing, respectively. However,

FIGURE 9
USEP prediction results vs. observations: (A) 102nd day (12 April) and (B) 76th day (17 March) in 2019.

FIGURE 10
Prediction results for daily market share vs. its observation: (A) 102nd day (12 April) and (B) 76th day (17 March) in 2019.
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network constraints are not considered in the benchmark models.
For quantile forecast, quantiles 0.01 to 0.99 are estimated in steps
of 0.01.

Table 1 presents a comparative analysis of daily average CRPS
for selected testing cases, bifurcated into normal days and days with
price spikes. Among the selected 21 testing cases, two
groups—normal days and days with spikes—are formed and
benchmarked. Among them, 11 are normal days in which the
daily average USEP varies from 87.30 to 107.61 $/MWh, and
10 days with price spikes in which the daily average varies from
112.01 to 520.58 $/MWh. The smaller the CRPS score, the better the
performance.

5.3.1 Classical methods
Among the classical methods, the EU stands out for its

simplicity, relying on a constant empirical distribution.
Information such as QG, QD, and t in Section 3.2 is not applied
in the EU. However, its performance lags behind, as evidenced by
the highest CRPS scores. The GARCH model shows improvement,

attributing its better performance to its heteroscedastic modeling
(Jónsson et al., 2014).

5.3.2 AI-based methods
Turning to AI-based methods, they collectively outperform their

classical counterparts. The combined method slightly edges out
others in both normal days and days with spikes. This indicates
the potential of AI in capturing intricate patterns and nuances in
the data.

5.3.3 Proposed method
Our proposed method outperforms, especially during days with

price spikes. While it competes closely with AI-based methods on
normal days, it takes a clear lead during volatile days. When
comparing the proposed method, for normal days, our proposed
method is on par with AI-based methods, while AI methods have
slight edges. The average CRPSs for ELC-EMOS, LQRA, Combine,
and the proposed method are 7.89, 8.15, 7.51, and 8.16 $/MWh,
respectively. As discussed in Section 3.1 and Section 3.2, increasing

TABLE 1 Daily average CRPS (S$/MWh) benchmarks.

Day Classical AI-based Proposed method

EU GARCH ELC-EMOS LQRA Combine

Normal days 70 11.95 11.12 10.86 11.02 10.94 11.74

84 12.73 9.47 9.03 9.12 7.82 5.97

86 12.49 8.93 8.54 8.77 6.16 5.97

102 8.88 9.14 7.37 8.78 9.01 9.03

105 9.44 8.82 8.20 8.12 7.84 10.9

116 13.87 5.87 6.50 5.88 5.15 6.21

134 13.32 6.54 6.12 6.13 7.28 7.58

180 7.45 6.68 5.59 5.59 5.55 6.25

197 11.51 7.34 5.31 5.98 5.14 9.97

237 13.71 11.36 10.23 11.33 8.45 7.06

273 13.69 10.77 9.14 8.90 9.32 9.03

Avg 11.73 8.73 7.89 8.15 7.51 8.16

Days w/spikes 47 60.01 53.10 51.78 52.62 45.35 39.74

76 70.84 48.58 50.41 48.92 48.51 47.90

80 53.76 48.19 44.36 45.69 44.45 44.79

83 48.86 42.65 42.26 44.31 40.31 38.68

185 44.73 48.81 43.93 42.12 41.52 39.29

186 56.00 36.91 31.16 29.67 30.78 31.89

204 22.23 29.50 23.11 17.16 16.51 14.18

235 27.02 34.05 28.22 30.33 27.13 21.06

255 13.80 10.37 11.26 9.56 10.22 7.68

268 23.25 23.56 21.51 19.12 21.52 16.98

Avg 42.05 37.57 34.80 33.95 32.63 30.22

The lowest values are marked in bold.
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the number of clusters can be one solution to improve the results.
The offer information is distilled and represented by a limited
number of linear functions. For a given number of explanatory
information (i.e., conditional filter QG, QD, and t), an increased
cluster number means less loss of information due to regression.
However, more historical data are also required accordingly.

For days with spikes, on the other hand, the proposed method
takes a clear lead in terms of CRPS. The average CRPSs for ELC-
EMOS, LQRA, Combine, and the proposed method are 34.80, 33.95,
32.63, and 30.22 $/MWh, respectively. This can be mainly attributed
to the following reasons: first, USEP in Singapore context is a form of
local marginal pricing that considers the grid’s network property,
which conventional AI-based prediction models do not take as the
input. Compared with normal days in which offers are cleared at
similar prices, the network’s effect on LMP becomes pronounced
when more generators’ offers are cleared at high price points. As a
result, the LMP on the bus increases. As the weighted average of
LMPs (1), USEP also increases.

The advantage of our method can be ascribed to two key factors:
Network influence on LMP: The inherent network properties of

the Singapore grid play a pivotal role in shaping USEP, especially
during high-clearance offers. Traditional AI models (Wan et al.,
2017; Chai et al., 2019; Wan et al., 2014) often overlook this
constraint. Our method, however, integrates these network
effects, leading to enhanced prediction accuracy.

Data constraints on AI models: While AI-based methods
typically thrive on large datasets, our study was constrained to
9 months of data. This limitation could pose challenges in tuning
AI models, potentially leading to suboptimal performance.

The results underscore the importance of considering network
properties and constraints in electricity market predictions. While
AI offers promise, its efficacy is often contingent upon data
availability. Our proposed method, which seamlessly blends these
considerations, emerges as a robust solution, especially during
market volatilities.

6 Scenario study

6.1 Impact of demand-side participation

The proposed method also has the advantage of being able to
study future scenarios with varied system parameters. For instance,
the NEMS is actively considering consumers’ participation in the
price discovery process, such as demand-side bidding (Energy
Market Authority, 2013). To study the impact, fixed-rate pricing
schemes for demand-side bidding are assumed. Apart from the
pricing, another influencing factor is the penetration level of the
dispatchable load, defined here as the proportion in relation to the
annual peak load. In this case, 1% of the penetration level is
equivalent to 72.37 MW. The dispatchable load is assumed to be
distributed across the whole network in proportion to demand on
each node. In our model, it is treated as generators with negative
output. A price floor of 300 $/MWh for demand-side bidding in the
NEMS is designed to address the potential gaming issue (Energy
Market Authority, 2013).

By varying the price and the penetration level of the dispatchable
load in the system, the changes in the average USEP can be obtained,

as shown in Figure 11. It can be seen from the figure that USEP drops
with the demand-side’s participation. For a given amount of
dispatchable load, the reduction in USEP decreases with the
increase in the bidding price. For instance, with 1% penetration
and 300 $/MWh bidding price, the USEP reduction is 1.30 $/MWh
(1.32% of the average USEP). Increasing the price up to 500 $/MWh,
the USEP reduction remains similar. The impact of demand-side
bidding dwindles when its price is between 600 and 1,000 $/MWh.
Beyond 1,000 $/MWh, its effect on USEP reduction diminishes. The
higher the bidding price, the smaller the chance it can be cleared.
This observation becomes more noticeable with higher penetration
levels.

The second observation concerns the penetration level. Given
the bidding prices, the USEP continuously reduces as the capacity of
dispatchable load increases, but not always in a linear way.When the
price is low, for example, 300 $/MWh, the USEP reduction is almost
in a linear relationship with the penetration level. As the price
increases, especially approximately from 600 to 900 $/MWh, the
USEP reduction does not grow in proportion with the penetration
level. The explanation is that at lower prices, bids from the demand-
side compare favorably with generators. However, at higher price
levels, offers from traditional generators start to compete despite
increased participation of flexible load. From the aforementioned
results, the flexible load can hardly be cleared when the bidding price
is higher than 1,000 $/MWh.

6.2 Impact of rooftop PV penetration

Singapore’s access to renewable energy sources is limited, with
solar photovoltaics (PVs) being one of the few options. Given the
country’s land constraints, rooftop PV installations have become a
popular solution. We obtained power measurement data from a
typical commercial building equipped with solar panels. This
building consumes approximately 60 MWh of energy daily, and
its rooftop PV system has a capacity of 1 MWp. Commercial loads
account for 35% of the Singapore’s total demand, with the majority
located in the central area.

We studied the impact of rooftop PV systems on USEP by
assuming that similar PV systems are installed on other commercial
buildings. The penetration level of rooftop PV, defined as the
installed capacity, ranges from 0 to 1 MWp per 60 MWh
commercial load. Offer strategies from GenCos are assumed to
remain the same. Table 2 shows the average daily USEP reduction
under different rooftop PV penetration levels.

The table reveals that an increase in PV capacity indeed lowers
the electricity price by reducing demand. The price drop is
approximately proportional to the PV penetration level. With the
highest coverage (1.0 MWp per 60 MWh of demand), the PV system
can support up to 2.46% of the total daily demand on a sunny day
(solar radiation intensity ranging from 800 to 1000 W/m2 around
solar noon, a typical intensity for clear days in Singapore’s equatorial
climate (The National Environment Agency, 2023)). In our
experiments, this translates into a modest reduction (0.93%) in
the daily USEP.

The limited impact can be attributed to three contributing
factors: 1). PV can only operate during daylight hours
(approximately 10 h), leaving the USEP unchanged for the
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remaining periods. Additionally, sunlight availability is not always
guaranteed; 2). the penetration of PV is still relatively limited when
installed solely on commercial buildings’ rooftops; and 3). the USEP
is the weighted sum of LMP across all nodes, which means the
overall impact is diluted on average.

7 Conclusion

This paper introduces an innovative analytical method tailored
for electricity market prediction, especially in scenarios with
incomplete market offer data. Our research underscores the
following key findings and contributions:

1. Comprehensive predictions: Beyond price forecasts, our approach
furnishes crucial insights into GenCos’ market shares and load
flows, adding depth to market predictions.

2. Performance benchmarking: Using real NEMS data, our method
displayed superior performance, particularly during price spike
events.

3. Scenario analyses: Our studies highlighted the potential of
demand-side bidding to mitigate the USEP, with effects varying
based on bidding price and dispatchable load capacity. Moreover,
rooftop PV implementations on commercial infrastructures were
found to exert a modest downward effect on prices due to solar
energy limitations and installation capacities.

4. Methodological advantages: The approach stands out for its
adaptability to other deregulated electricity markets, even
without complete historical offer data. Its provision of
added predictive parameters aids market stakeholders in
gauging potential market outcomes. Furthermore, its
physics-based nature paves the way for diverse scenario
studies.

In essence, this work offers a robust and adaptable toolkit for
electricity market prediction, promising expansive applications and
avenues for future exploration.

8 Future work

While our methodology provides a comprehensive approach
to predicting GenCo’s offer-making decisions, it is worth noting
that we have based our predictions on a set of factors including
demand, generation, time of the day, and day of the week. In real-
world scenarios, GenCos often base their decisions on a myriad of
factors, especially in situations leading to price hikes. For
instance, external factors, such as weather patterns, can
significantly influence energy demand, especially with the
increasing penetration of renewable energy sources. Similarly,
broader economic indicators can hint at potential changes in
energy consumption patterns.

FIGURE 11
Impact of dispatchable load on the USEP, with fixed-rate pricing.

TABLE 2 Impact on USEP of rooftop PV penetration on commercial buildings in Singapore.

Rooftop PV penetration level (MWp per 60 MWh commercial load) Average daily USEP reduction ($/MWh) %

0.10 0.13 0.13

0.33 0.31 0.32

0.50 0.45 0.46

1.0 0.92 0.93
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To enhance the predictive accuracy of our model, future
research endeavors should delve deeper into integrating these
additional factors. Incorporating weather data, for example, can
provide insights into potential changes in demand due to
temperature variations. Similarly, studying economic indicators
can give a clearer picture of how broader economic trends might
influence energy consumption and, consequently, GenCo offers.
While our study has been tailored to the unique intricacies of the
Singaporean electricity market, it would be invaluable to apply this
methodology to other electricity markets. This would not only test
the model’s universal applicability but also highlight potential
adjustments required to cater to different market dynamics and
structures.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

NX: writing–original draft. XG: data curation, formal analysis,
and writing–review and editing. SC: writing–review and editing.
MN: writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work is
sponsored by the Scientific Research Startup Fund for Shenzhen
High-Caliber Personnel of SZPT (No. 6022310042k).

Conflict of interest

Author MN was employed by State Grid Liaoning Electric
Power Company Ltd. Author JY was employed by PacificLight
Power Pte Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abedinia, O., Amjady, N., and Zareipour, H. (2017). A New feature selection
technique for load and price forecast of electrical power systems. IEEE Trans. Power
Syst. 32 (1), 62–74. doi:10.1109/tpwrs.2016.2556620

Afrasiabi, M., Mohammadi, M., Rastegar, M., Stankovic, L., Afrasiabi, S., and Khazaei,
M. (2020). Deep-based conditional probability density function forecasting of
residential loads. IEEE Trans. Smart Grid 11 (4), 3646–3657. doi:10.1109/tsg.2020.
2972513

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric
regression. Am. Stat. 46 (3), 175–185. doi:10.2307/2685209

Arthur, D., and Vassilvitskii, S. (2006). k-means++: the advantages of careful seeding.
Stanford.

Bo, R., and Li, F. (2009). Probabilistic LMP forecasting considering load uncertainty.
IEEE Trans. Power Syst. 24 (3), 1279–1289. doi:10.1109/tpwrs.2009.2023268

Brusaferri, A., Matteucci, M., Portolani, P., and Vitali, A. (2019). Bayesian deep
learning based method for probabilistic forecast of day-ahead electricity prices. Appl.
Energy 250, 1158–1175. doi:10.1016/j.apenergy.2019.05.068

Bunn, D. W., Inekwe, J. N., and Macgeehan, D. (2021). Analysis of the fundamental
predictability of prices in the British balancing market. IEEE Trans. Power Syst. 36 (2),
1309–1316. doi:10.1109/tpwrs.2020.3015871

Chai, S., Xu, Z., and Jia, Y. (2019). Conditional density forecast of electricity price
based on ensemble ELM and logistic EMOS. IEEE Trans. Smart Grid 10 (3), 3031–3043.
doi:10.1109/tsg.2018.2817284

Durvasulu, V., and Hansen, T. M. (2018). Market-based generator cost functions for
power system test cases. IET Cyber-Phys. Syst. Theory Appl. 3 (4), 194–205. doi:10.1049/
iet-cps.2018.5046

Energy Market Authority (2023). Energy market authority. [Online]. Available at:
https://www.ema.gov.sg/.

Energy Market Authority (2013). Implementing demand response in the national
electricity market of Singapore - final determination paper.

Energy Market Authority of Singapore (2018). Intermittency pricing mechanism for
intermittent generation sources in the national electricity market of Singapore: final
determination paper.

Energy Market Company (2023). Energy market Company. [Online]. Available at:
https://www.emcsg.com/.

Fraunholz, C., Kraft, E., Keles, D., and Fichtner, W. (2021). Advanced price
forecasting in agent-based electricity market simulation. Appl. Energy 290, 116688.
doi:10.1016/j.apenergy.2021.116688

Friedman, J. H., Bentley, J. L., and Finkel, R. A. (1977). An algorithm for finding best
matches in logarithmic expected time. ACM Trans. Math. Softw. 3 (3), 209–226. doi:10.
1145/355744.355745

Gao, Y., Zhou, S., Shu, Z., and Beng, G. H. (2017). “Market clearing model for
Singapore electricity market incorporating transmission loss,” in 2016 Asian
Conference on Energy, Power and Transportation Electrification (ACEPT 2016),
Singapore, 25-27 October 2016 (IEEE).

Global Energy Network Institute (2023). Global energy network Institute. [Online].
Available at: http://www.geni.org/.

Gneiting, T., Balabdaoui, F., and Raftery, A. E. (2007). Probabilistic forecasts,
calibration and sharpness. J. R. Stat. Soc. B Stat. Methodol. 69 (2), 243–268. doi:10.
1111/j.1467-9868.2007.00587.x

Gneiting, T., and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and
estimation. J. Am. Stat. Assoc. 102 (477), 359–378. doi:10.1198/016214506000001437

He, H., Lu, N., Jiang, Y., Chen, B., and Jiao, R. (2020). End-to-end probabilistic
forecasting of electricity price via convolutional neural network and label distribution
learning. Energy Rep. 6, 1176–1183. doi:10.1016/j.egyr.2020.11.057

Heidarpanah, M., Hooshyaripor, F., and Fazeli, M. (2023). Daily electricity price
forecasting using artificial intelligence models in the Iranian electricity market. Energy
263, 126011. doi:10.1016/j.energy.2022.126011

Hersbach, H. (2000). Decomposition of the continuous ranked probability score for
ensemble prediction systems. Weather Forecast 15 (5), 559–570. doi:10.1175/1520-
0434(2000)015<0559:dotcrp>2.0.co;2
Hong, Y. Y., Taylar, J. v., and Fajardo, A. C. (2020). Locational marginal price

forecasting using deep learning network optimized by mapping-based genetic
algorithm. IEEE Access 8, 91975–91988. doi:10.1109/access.2020.2994444

Ji, Y., Thomas, R. J., and Tong, L. (2017). Probabilistic forecasting of real-time LMP
and network congestion. IEEE Trans. Power Syst. 32 (2), 831–841. doi:10.1109/tpwrs.
2016.2592380

Jónsson, T., Pinson, P., Madsen, H., and Nielsen, H. A. (2014). Predictive densities for
day-ahead electricity prices using time-adaptive quantile regression. Energies (Basel) 7
(9), 5523–5547. doi:10.3390/en7095523

Frontiers in Energy Research frontiersin.org12

Xu et al. 10.3389/fenrg.2023.1296957

https://doi.org/10.1109/tpwrs.2016.2556620
https://doi.org/10.1109/tsg.2020.2972513
https://doi.org/10.1109/tsg.2020.2972513
https://doi.org/10.2307/2685209
https://doi.org/10.1109/tpwrs.2009.2023268
https://doi.org/10.1016/j.apenergy.2019.05.068
https://doi.org/10.1109/tpwrs.2020.3015871
https://doi.org/10.1109/tsg.2018.2817284
https://doi.org/10.1049/iet-cps.2018.5046
https://doi.org/10.1049/iet-cps.2018.5046
https://www.ema.gov.sg/
https://www.emcsg.com/
https://doi.org/10.1016/j.apenergy.2021.116688
https://doi.org/10.1145/355744.355745
https://doi.org/10.1145/355744.355745
http://www.geni.org/
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1016/j.egyr.2020.11.057
https://doi.org/10.1016/j.energy.2022.126011
https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2
https://doi.org/10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2
https://doi.org/10.1109/access.2020.2994444
https://doi.org/10.1109/tpwrs.2016.2592380
https://doi.org/10.1109/tpwrs.2016.2592380
https://doi.org/10.3390/en7095523
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1296957


Joseph, A., Gao, Z., Kong, X., Xu, N. Z., and Ngin, H. T. (2021). Dynamic modelling
and simulation of Singapore transmission network (230/400kV). Technology Disclosure,
(NTU Ref: 2021-305).

Li, T., Wang, Y., and Zhang, N. (2020). Combining probability density forecasts for
power electrical loads. IEEE Trans. Smart Grid 11 (2), 1679–1690. doi:10.1109/tsg.2019.
2942024

Limited, S. P. P. A. (2016). Offering circular. Singapore.

Matheson, J. E., and Winkler, R. L. (1976). Scoring rules for continuous probability
distributions. Manage Sci. 22 (10), 1087–1096. doi:10.1287/mnsc.22.10.1087

Meng, A., Wang, P., Zhai, G., Zeng, C., Chen, S., Yang, X., et al. (2022). Electricity
price forecasting with high penetration of renewable energy using attention-based
LSTM network trained by crisscross optimization. Energy 254, 124212. doi:10.1016/j.
energy.2022.124212

Monteiro, C., Ramirez-Rosado, I. J., and Fernandez-Jimenez, L. A. (2018).
Probabilistic electricity price forecasting models by aggregation of competitive
predictors. Energies (Basel) 11 (5), 1074. doi:10.3390/en11051074

Nanyang Technological University (2021). High performance computing centre
(HPCC). Singapore: Nanyang Technological University. [Online]. Available at:
https://ntuhpc.org/.

Nowotarski, J., and Weron, R. (2018). Recent advances in electricity price forecasting:
a review of probabilistic forecasting. Renew. Sustain. Energy Rev. 81 (2016), 1548–1568.
doi:10.1016/j.rser.2017.05.234

Qin, A. K., Huang, V. L., and Suganthan, P. N. (2009). Differential evolution
algorithm with strategy adaptation for global numerical optimization. IEEE Trans.
Evol. Comput. 13 (2), 398–417. doi:10.1109/tevc.2008.927706

Qin, A. K., and Suganthan, P. N. (2005). “Self-adaptive differential evolution
algorithm for numerical optimization,” in 2005 IEEE Congress on Evolutionary
Computation Vol. 2, Edinburgh, UK, 2-4 September 2005, 1785–1791.

Services, S. P. (2021). Open electricity market. [Online]. Available at: https://www.
openelectricitymarket.sg.

Taylor, J. W. (2021). Evaluating quantile-bounded and expectile-bounded interval
forecasts. Int. J. Forecast. 37 (2), 800–811. doi:10.1016/j.ijforecast.2020.09.007

The National Environment Agency (2023). Meteorological service Singapore.
[Online]. Available: http://www.weather.gov.sg.

Uniejewski, B., and Weron, R. (2021). Regularized quantile regression averaging for
probabilistic electricity price forecasting. Energy Econ. 95, 105121. doi:10.1016/j.eneco.
2021.105121

Wan, C., Niu, M., Song, Y., and Xu, Z. (2017). Pareto optimal prediction intervals of
electricity price. IEEE Trans. Power Syst. 32 (1), 817–819. doi:10.1109/tpwrs.2016.
2550867

Wan, C., Xu, Z., Wang, Y., Dong, Z. Y., and Wong, K. P. (2014). A hybrid approach
for probabilistic forecasting of electricity price. IEEE Trans. Power Syst. 5 (1), 463–470.
doi:10.1109/tsg.2013.2274465

Yang, J., Zhao, J., Wen, F., and Dong, Z. (2019). A model of customizing electricity
retail prices based on load profile clustering analysis. IEEE Trans. Smart Grid 10 (3),
3374–3386. doi:10.1109/tsg.2018.2825335

Zhang, H., Liu, Y., Yan, J., Han, S., Li, L., and Long, Q. (2020). Improved deep mixture
density network for regional wind power probabilistic forecasting. IEEE Trans. Power
Syst. 35 (4), 2549–2560. doi:10.1109/tpwrs.2020.2971607

Zhao, J. H., Dong, Z. Y., Xu, Z., and Wong, K. P. (2008). A statistical approach for
interval forecasting of the electricity price. IEEE Trans. Power Syst. 23 (2), 267–276.
doi:10.1109/tpwrs.2008.919309

Zhou, F., Huang, Z., and Zhang, C. (2022). Carbon price forecasting based on
CEEMDAN and LSTM. Appl. Energy 311, 118601. doi:10.1016/j.apenergy.2022.118601

Zhou, Q., Tesfatsion, L., and Liu, C. C. (2011). Short-term congestion forecasting in
wholesale power markets. IEEE Trans. Power Syst. 26 (4), 2185–2196. doi:10.1109/
tpwrs.2011.2123118

Zhou, S., Shu, Z., Tan, K., Gooi, H. B., Chen, S., and Gao, Y. (2016). “Study of market
clearing model for Singapore’s wholesale real-time electricity market,” in 2016 IEEE
International Conference on Power System Technology (POWERCON 2016),
Wollongong, Australia, September 2016 (IEEE).

Zimmerman, R. D., Murillo-Sánchez, C. E., and Thomas, R. J. (2011). MATPOWER:
steady-state operations, planning, and analysis tools for power systems research and
education. IEEE Trans. Power Syst. 26 (1), 12–19. doi:10.1109/tpwrs.2010.2051168

Frontiers in Energy Research frontiersin.org13

Xu et al. 10.3389/fenrg.2023.1296957

https://doi.org/10.1109/tsg.2019.2942024
https://doi.org/10.1109/tsg.2019.2942024
https://doi.org/10.1287/mnsc.22.10.1087
https://doi.org/10.1016/j.energy.2022.124212
https://doi.org/10.1016/j.energy.2022.124212
https://doi.org/10.3390/en11051074
https://ntuhpc.org/
https://doi.org/10.1016/j.rser.2017.05.234
https://doi.org/10.1109/tevc.2008.927706
https://www.openelectricitymarket.sg
https://www.openelectricitymarket.sg
https://doi.org/10.1016/j.ijforecast.2020.09.007
http://www.weather.gov.sg
https://doi.org/10.1016/j.eneco.2021.105121
https://doi.org/10.1016/j.eneco.2021.105121
https://doi.org/10.1109/tpwrs.2016.2550867
https://doi.org/10.1109/tpwrs.2016.2550867
https://doi.org/10.1109/tsg.2013.2274465
https://doi.org/10.1109/tsg.2018.2825335
https://doi.org/10.1109/tpwrs.2020.2971607
https://doi.org/10.1109/tpwrs.2008.919309
https://doi.org/10.1016/j.apenergy.2022.118601
https://doi.org/10.1109/tpwrs.2011.2123118
https://doi.org/10.1109/tpwrs.2011.2123118
https://doi.org/10.1109/tpwrs.2010.2051168
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1296957


Nomenclature

p Price ($/MWh)

q Quantity (MW)

t Index of the time period

i Node/bus index in the grid

NB Total number of buses in the system

g Index of the generation company (GenCo)

NG Total number of GenCos

j Index of the generator from the gth GenCo

Ng Total number of generators from the gth GenCo

pUt and p̂Ut Actual and estimated Uniform Singapore Electricity
Prices (USEPs) at the tth period, respectively

pLi,t and p̂
L
i,t

Actual and estimated node i’s local marginal price (LMP)
at period t

qDi,t Node i’s demand at period t

C(.) Total production cost of all generators

pMt Vectors of accepted prices of all generators at t

q̂Mt Vectors of estimated quantities cleared of all generators at t

pMg ,j,t Actual price cleared for the jth generator from the gth GenCo at
period t

q̂Mg,j,t Estimated quantity cleared for the jth generator from the gth
GenCo at period t

qg Total daily production of GenCo g

Pr(.) Probability

Nk Number of data points in the kth cluster from estimated price–quantity
pairs

Nk(.) Number of data points in cluster k under conditions

QG Total capacity of generation

QD Load demand
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