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An ultra-short-term multivariate load forecasting method under a microscopic
perspective is proposed to address the characteristics of user-level integrated
energy systems (UIES), which are small in scale and have large load fluctuations.
Firstly, the spatio-temporal correlation of users’ energy use behavior within the
UIES is analyzed, and a multivariate load input feature set in the form of a class
image is constructed based on the various types of load units. Secondly, in order
to maintain the feature independence and temporal integrity of each load during
the feature extraction process, a deep neural network architecture with spatio-
temporal coupling characteristics is designed. Among them, the multi-channel
parallel convolutional neural network (MCNN) performs independent spatial
feature extraction of the 2D load component pixel images at each moment in
time, and feature fusion of various types of load features in high dimensional
space. A bidirectional long short-term memory network (BiLSTM) is used as a
feature sharing layer to perform temporal feature extraction on the fused load
sequences. In addition, a spatial attention layer and a temporal attention layer are
designed in this paper for the original input load pixel images and the fused load
sequences, respectively, so that the model can better capture the important
information. Finally, a multi-task learning approach based on the hard sharing
mechanism achieves joint prediction of each load. The measured load data of a
UIES is analyzed as an example to verify the superiority of themethod proposed in
this paper.
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1 Introduction

Due to the swift economic and social growth, global warming,
shortage of fossil energy and environmental pollution problems are
becoming more and more prominent (Ji et al., 2018). Promoting the
transformation of the traditional energy system, to improve the
efficiency of energy utilisation and to reduce carbon emissions is
currently a major issue facing the global energy industry (Cheng
et al., 2019a). The traditional energy system is limited to the
independent planning, design and operation of energy systems
such as electricity, gas, heat and cold, which artificially severs the
coupling relationship between different types of energy sources, and
is unable to give full play to the complementary advantages between
energy sources (Wang et al., 2019). Energy utilisation efficiency,
renewable energy consumption, energy conservation and emission
reduction have all encountered bottlenecks (Cheng et al, 2019b). In
response to the above problems, the concepts of energy internet (EI)
and integrated energy system (IES) have been put forward and
highly valued by many countries, which emphasise the development
mode of changing from the production and supply of each energy
source to the operation of joint scheduling of multiple energy
sources (Li et al., 2018; Li and Xu, 2018; Zhu et al., 2021).
Among them, IES, as an important physical carrier of EI, is an
important energy utilisation method in the process of energy
transition, as well as an effective method to promote renewable
energy consumption and improve energy efficiency (Wu et al.,
2016). User-side multivariate load ultra-short-term prediction as
the IES optimal scheduling, the primary premise of energy
management, is no longer limited to the independent prediction
of a single energy consumption, it must take into account multiple
energy systems at the same time (Li et al., 2022), which puts forward
higher requirements for the accuracy and reliability of the IES
multivariate load prediction, and it has become one of the
research hotspots in the energy field at the present time.

Theoretically, traditional load forecasting has developed into a
more developed system that focuses mostly on single loads like
electricity, natural gas, cooling, and heating. Data-driven artificial
intelligence techniques have been extensively employed in the
research of load forecasting applications since the emergence of a
new generation of artificial intelligence technology. On a
technological level, there are two general groups of AI-based load
prediction techniques: deep learning techniques and conventional
machine learning techniques.

To accurately anticipate daily peak demand for the next month,
Gao et al. (2022a) used a hybrid of extreme gradient boosting
(XGBoost) and multiple linear regression (MLR). Short-term load
forecasting in the literature (Singh et al., 2017) was accomplished
with the help of a three-layer feedforward artificial neural network
(ANN). For predicting the following day’s electrical usage over a
period of 24 h, a support vector regression machine (SVM) based
technique was presented in the literature (Sousa et al., 2014). Short-
term electric demand forecasting using a hybrid model based on
feature filtering convolutional neural network (CNN) with long and
short-term memory was developed by Lu et al. (2019). Short-term
cold load prediction in buildings using deep learning algorithms was
achieved by Fan et al. (2017). It was suggested by Gao et al. (2022b)
to forecast the cold load of big commercial buildings using a hybrid
prediction model based on random forest (RF) and extreme learning

machine (ELM), and the benefits of this model were validated in
terms of time complexity and its own superior generalisation ability.
Xue et al. (2019) proposed a heat load prediction framework based
on multiple machine learning algorithms, such as SVM, deep neural
network (DNN), and XGBoost, and then implemented a multi-step
ahead heating load prediction in a district heating system to verify
the superiority of the recursive strategy. A novel empirical wavelet
transform (EWT) technique has been developed in the literature
(Al-Musaylh et al., 2021) for revealing the intrinsic patterns in daily
natural gas consumption demand data. For short-term gas load
forecasting, Xu and Zhu, 2021 created a neural network that
combines a time-domain convolutional network (TCN) with a
bi-directional gated recurrent unit (BiGRU).

The foundation of conventional machine learning techniques is
feature engineering, which is labor-intensive, sensitive to noise and
outliers, and inefficient when dealing with high-dimensional data.
Contrarily, the multi-layer mapping of deep learning allows for the
effective extraction of the data’s deep characteristics, greatly
enhancing the model’s capacity to represent the pattern of
sample distribution. As a result, it demonstrates improved load
forecasting prediction accuracy.

In fact, traditional energy system studies focus on a single type of
energy, while IES considers diverse energy demands and focuses on
high-quality multi-class energy studies (Hu et al., 2019). If the
traditional single-load prediction method is still used, it is
difficult to capture the correlation characteristics between
different loads, and the prediction accuracy cannot be
guaranteed. Therefore, how to properly dispose of the coupling
relationship between multiple loads, set a more complete input
feature set, effectively learn multiple energy coupling information,
and achieve accurate IES multiple load forecasting based on this
information is the focus of current research. The main mainstream
techniques to deal with the coupling are multivariate phase space
reconstruction (MPSR) (Zhao et al., 2016), multi-task learning
(MTL) (Shi et al., 2018), and convolutional neural networks
(CNN) (Li et al., 2022). In addition, Bai et al. (2022) utilized the
minimum redundancy maximum relevance (MRMR) to screen
feature sequences and the Seq2Seq model based on the dual
attention mechanism to learn the spatio-temporal properties of
urban energy load sequences. The above literature verifies that
considering the coupling characteristics among loads helps to
improve the forecasting accuracy, and also verifies the role of the
attention mechanism.

Previously, IES load prediction models have focused on single-
load independent prediction, while single-task load prediction
methods consider every prediction task simply, mutually
independent subproblem, which ignores the coupling
relationships within multiple source loads in IES (Zhu et al.,
2019). Multi-task learning improves model generalization by
using a shared mechanism to train multiple tasks in parallel to
obtain information implicit in multiple related tasks. In recent years,
multi-task learning has been gradually applied to IES multivariate
load prediction. Niu et al. (2022) constructed a new multi-task loss
function weight optimisation method to search for optimal multi-
task weights for balanced multi-task learning (MTL), which
improves the prediction of IES multivariate loads.

Currently, the vast majority of studies on IES multivariate load
forecasting are limited to macroscopic class load forecasting
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methods, focusing only on mining the correlation between each
load’s own sequence and sequences of other external macro-factors.
However, in some cases, the load variation patterns of different load
nodes (e.g., substations, parks, and customers) within the same
region may be potentially correlated in space and time due to the
same external factors (e.g., weather and electricity prices). In order to
improve the IES multiple load forecasting method, it is necessary to
consider the spatial and temporal correlation of each load node in
the IES. At this stage, the research on IES multiple load forecasting
based on microscopic class load forecasting methods is still in its
infancy. Compared with the previous studies, the contributions of
this paper are as follows.

(1) The spatio-temporal correlation of the energy-using behavior
of each load unit in the UIES is comprehensively analyzed,
and each load unit is defined as a load pixel point. Based on
the strong correlation of adjacent pixel points in static images
and with reference to the storage method of color images, an
IES multivariate load input feature set in the form of image-
like based on the microscopic class load prediction method is
proposed, which is a novel method for constructing the IES
input feature set.

(2) A deep spatio-temporal feature extraction network (MCNN-
BiLSTM) for multivariate load prediction is proposed.
Among them, MCNN is used to perform independent
spatial feature extraction for each load component pixel
image, and BiLSTM is used to realize temporal feature
extraction for fused load features at each time step. To
realize end-to-end training from space to time and
collaborative mining of spatio-temporal information.

(3) A multi-head attention mechanism is introduced in the
spatial and temporal dimensions, respectively. This
attention mechanism is a plug-and-play module that is
placed before MCNN and before BiLSTM to enable the
model to pay differential attention to the information in
the original input load pixel image and the fused load
sequence during the learning process.

(4) Using BiLSTM as the feature sharing layer, a multi-task
learning approach under the hard sharing mechanism is
adopted to further learn the inherent coupling information
among electricity, heat, and cold loads. In order to adapt to
the characteristics of the fluctuation of the three load profiles,
as well as to explore the correlation of each load with
meteorological factors and calendar rules, three fully
connected neural networks with different structures are
designed as feature interpretation modules.

2 User-level IES load characterization

2.1 User-level IES energy
coupling mechanism

A user-level IES is an integrated energy system constructed at
the distribution and usage levels to meet the diversified energy needs
of multiple types of users, such as industrial parks, commercial
centres, residential buildings and educational institutions. A typical
interactive structure of a user-level IES is shown in Figure 1, which

can be roughly divided into the IES side and the end-user side. On
the IES side, the IES service provider conducts accurate multiple
load forecasting based on the metered data of users’ energy
consumption of electricity, heat, cooling, etc. collected in real
time through intelligent terminals, so as to coordinate the
transformation, storage, and distribution of energy sources within
the IES to satisfy the diversified energy demand of users.

In IES operation, external energy inputs come from the grid and
the natural gas network, internal energy generation comes from
rooftop photovoltaic systems andmicro-gas turbines, various energy
conversion equipment couples the different energy systems in a flow
of energy, and energy storage equipment is used to increase the
economy and flexibility of the system operation. The IES provider’s
ability to provide electricity, heat, and cooling to its customers for a
variety of energy needs is significantly affected by meteorological
conditions, day-type information and building characteristics. In
terms of meteorological conditions, the demand for heating and
cooling loads varies seasonally with the gradual change in
temperature. In terms of day-type information, the difference in
human production activities between weekdays and holidays results
in differences in energy demand. In terms of building characteristics,
different system functions are important reasons for influencing the
characteristics of energy use. Industrial areas tend to consume large
amounts of electrical loads, and the cooling and heating loads play
an auxiliary role to jointly serve the production schedule. The
fluctuation of cooling and heating loads in commercial and living
areas is closely related to human activities and shows some
correlation. Figure 2 shows the variation of the total electric,
thermal and cooling loads of the user-level IES studied in this
paper under four seasons of the year, and the temperature
variation under the corresponding moments.

As can be seen from Figure 2, the fluctuation of various types of
loads in this UIES is accompanied by obvious seasonal changes. And
the degree of coupling between the loads under different time
periods has a certain degree of variability. Among them, the
demand size of each load in summer and winter seasons has a
large difference, which is especially obvious in the hot and cold
loads. The spring and autumn seasons show a clear transition, with
the change of temperature, the fluctuation of the hot and cold loads
show a diametrically opposite trend, and the cold loads show a high
degree of consistency between the overall external morphology and
the temperature change. In addition, the overall trend of electric load
and cold load is consistent in different periods, which indicates that
the change in demand for cold load also affects the level of electric
energy consumption.

2.2 Spatial correlation analysis of load units

In this paper, buildings and activity places with load collection
equipment are defined as load units in the UIES, and the macro load
sequence of the UIES is aggregated from the corresponding micro
load sequence of each load unit. In UIES, the energy consumption
behavior of users is a dual reflection of the energy demand of load
units at both macro and micro levels, which depends on macro-level
factors such as energy price fluctuations, climate seasons, day-type
information, etc., as well as micro-level factors such as regional
planning layout and building design characteristics. At the macro

Frontiers in Energy Research frontiersin.org03

Yin et al. 10.3389/fenrg.2023.1296037

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1296037


level, UIES is confined to smaller spatial scales, load units are
influenced by the same microclimatic conditions in the same
local area, and the energy use behavior of users maintains a
certain degree of consistency. At the micro level, load units with
similar geospatial locations or with the same functional attributes
tend to have similar energy use habits. However, the types of load
units with different functional attributes and their building sizes are
often different, which directly leads to some differences in users’
energy use habits, energy end-uses (cooling, heating, lighting, etc.)
and the proportion of each energy consumption. In addition, users’
energy use behavior can be simultaneously affected by equipment
accidents and maintenance, extreme weather, major events and

other emergencies, resulting in sudden changes in loads. Figure 3
shows the electrical, thermal and cooling load change curves for the
nine load units in the UIES over a 240-h period.

As can be seen in Figure 3, the three types of loads in each
load unit exhibit a high degree of variability in their external
patterns. Among them, the electrical load is significantly affected
by the variation of day types. In addition to User1, the load
change patterns of User2 to User9 have some correlation, which
is manifested as having continuous fixed large peaks on weekdays
and certain small peaks on double holidays. The fluctuation of the
cold load has no obvious weekday or double holiday pattern,
showing a gradual increase in progressive change. For the heat

FIGURE 1
Simplified model of the UIES interaction structure.

FIGURE 2
Multi-energy load correlation analysis of UIES.
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load, affected by the climate characteristics, its demand scale is
much smaller than the electricity, cold load, the user heat
behavior is more random. In addition to User3, User6 and
User7 heat load changes have a certain correlation, the rest of
the heat load fluctuation of the load unit has a strong randomness
and time-varying changes, the cyclical law of change is
not traceable.

After the above analysis, it can be seen that the non-
independence of load change of load unit is not only related to
its own building functional characteristics, scale size, location and
other factors, but also has a close connection with local climate
characteristics and calendar rules. Various types of load units are
complex aggregates with broad spatial correlation. Therefore, the
load change of each load unit is the deeper “implied information” in

FIGURE 3
Demand for various types of energy of load units. (A) Electric load demand by load unit. (B) Heat load demand by load unit. (C) Cooling 199 load
demand by load unit.
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the change rule of the total load of UIES, and it is the “underlying
logic” that reveals the characteristics of the total load’s external form,
which contains a wealth of information to be mined.

2.3 Temporal correlation analysis of
load units

Time correlation analysis is an essential and important part of
load forecasting work. Referring to time correlation can select
reasonable historical load variation intervals as input features in
the subsequent actual load forecasting work, which is helpful to
improve the model learning efficiency and reduce the
computational overhead of the model. Therefore, in this
paper, a certain number of load units are randomly selected
for time correlation analysis based on Pearson correlation
coefficients, which are shown in Figure 4.

In Figure 4, the time sections of historical data selected in
this paper are the first seven historical moments (numbered
15–21) from the current moment (t + 1), the t + 1 moment and
the first six moments a day ago (numbered 8–14), and the t + 1
moment and the first six moments a week ago (numbered 1–7).
According to the results of the time correlation analysis, the
fluctuation of electric and cold loads has an obvious cyclical law
of change, and the load at the current moment is not only
affected by the load at the neighbouring historical moment
but also has a strong correlation with the load at the same
moment a day and a week ago. Among them, the fluctuation
change of the cold load is the most stable and has strong
predictability. While the temporal correlation of heat load
gradually decreases with the increase in time interval, This is
because changes in heat load demand are easily influenced by
external factors. When the time span is large, the external factors
change a lot, resulting in the heat load fluctuation no longer
having a clear regularity.

3 Integrated load pixel image
construction and spatio-temporal
feature extraction

3.1 Integrated load pixel image construction

Compared with the inter-regional level IES and regional level
IES, the UIES is smaller in size, its lack of random error
elimination due to load aggregation effect, and greater load
volatility. It is sometimes difficult to generalize the internal
change pattern of each total load in the UIES if the
macroscopic class load forecasting method is adopted. From
the analysis in Subsections 2.2 and 2.3, it can be seen that the
load data of each load unit in the UIES contains a large amount of
spatio-temporal data, which is the most intuitive characteristic
information for portraying the change patterns of each type of
total load in the UIES.

FIGURE 4
Time correlation analysis.

FIGURE 5
CNN-based feature extraction for load pixel images.

Frontiers in Energy Research frontiersin.org06

Yin et al. 10.3389/fenrg.2023.1296037

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1296037


This paper is based on a microscopic class load forecasting
method, which focuses on the energy demand of each load unit in
the UIES region, and ultimately produces the overall
consumption forecast results for each type of energy in the
UIES. Compared with the macroscopic class load forecasting
method, this type of method explores the energy consumption
characteristics of users from within the region, and its modeling
is more detailed and thorough, so that more accurate forecast
results can be obtained.

Usually, there is a strong correlation between a pixel point of a
static image and its relative neighbouring pixel points, so in the field
of image recognition, convolutional neural networks are often able
to capture the local features of an image through a small receptive
field so as to form a feature quantity with certain regularity and
correlation in the high-dimensional space. Based on the analysis in
subsection 2.2, it can be seen that there is also a certain correlation
between the load units of UIES, and the correlation is more
significant for load units with the same functional attributes and
closer geospatial locations, which is similar to the pixel law of still
images. Analogous to the application of CNN in the field of image
recognition, as shown in Figure 5. In this paper, each load unit in the
studied UIES is regarded as a load pixel point, and the local feature
extraction capability of CNN is used to mine the hidden information
among load units from local to global perspectives so as to realize
ultra-short-term prediction of various types of total loads
in the UIES.

For a colour image, each pixel contains the three colour
components of RGB, which can be regarded as a superposition
of three layers of two-dimensional arrays, each layer
representing a color channel. In the context of this paper,
each load unit in UIES has different levels of demand for
electricity, heat and cold, so load unit contains the
characteristic information of three kinds of loads. Following
the storage form of color images, each load pixel follows a
certain arrangement to form a comprehensive load pixel image,
which consists of three load component images of electricity,
heat and cold. In this paper, from the functional characteristics
of the load units contained in the studied UIES, the load units
are divided into several categories according to their functional
attributes, and the load units with close spatial locations in each
category are arranged closely. For example, the UIES under
study contains N load units, which constitute a composite load
pixel image of length and width � ��

N
√ �. The load units of each

attribute category are filled with load pixel points of each row
along the image column direction in turn, and finally the blank
load pixel points are processed by complementary 0.

Based on the analyses in subsection 2.3, the integrated load
pixel images with different time delays from the predicted
moment are constructed separately, as shown in Figure 6. In
this paper, the integrated load pixel image at each moment is
regarded as a frame of (� ��

N
√ �×� ��

N
√ �), and the load demand

fluctuation of each load unit in the time period (t − h + 1, t) can
be reflected by stacking h frames. In this way, the input feature is a
three-dimensional matrix with spatio-temporal information and
covering the three load coupling features at the same time, while
the output feature is the total electric, thermal and cooling loads
at the moment t + 1 to be predicted.

3.2 Spatial feature extraction based on
parallel multichannel convolutional
neural network

When CNN performs feature extraction on colour images, it
uses the multi-channel mechanism to access the three colour
channels of the colour image. Although the load pixel image
constructed in this paper has similarities with the colour image,
the three load components of the load pixel are more
independent and have different meanings compared to the
RGB components of the pixel points. Therefore, two aspects
should be taken into account when using CNN for the spatial
feature extraction of load pixels. One is that the feature
independence of each load itself should be preserved in the
feature extraction process. Second, the input features in this
paper are loading pixel images at different moments, which need
to be formed into a standard time-step format before subsequent
time-dependent capturing. If the multi-channel mechanism of
CNN is directly used to extract features from the load
pixel images at different moments, the feature information of
the three loads at different moments will be fused at the
same time in the first convolution process, and the
independence and temporal integrity of the loads
embedded in the input sequences will not be preserved.
Therefore, in this paper, a multi-channel parallel CNN
structure is designed for the research context. Figure 7 shows
its network architecture.

FIGURE 6
Integrated load pixel images at different moments.
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In Figure 7, the multichannel convolutional neural network
(MCNN) constructed in this paper has the dual characteristics of
channel depth and network depth. In the channel depth direction,
no information is exchanged between each feature extraction
channel until feature fusion, and the own features of each load
component image under each time section are extracted separately
and independently. The spatial characteristics of the load pixels are
extracted in a sub-category, time-segmented manner. Therefore, the
number of channels of MCNN is always kept as Tse × Nlo during
feature extraction, where Tse is the number of time sections andNlo

is the number of load types in the studied IES. In the direction of
network depth, considering that increasing the pooling layer will
accelerate the convergence speed of the network but also cause
certain information loss phenomenon, so this paper only uses the
convolutional layer for feature extraction. For a certain channel, the
feature extraction process is shown below.

C k( )
i,j � f ∑M

S�1
C k( )

S,j−1 ⊗ W k( )
i,j + b k( )

i,j
⎛⎝ ⎞⎠C k( )

0,0 ∈ G (1)

In the formula: C(k)
S,j−1 is the S-th feature map in the j − 1-th

convolution layer of the k-th channel; W(k)
i,j is the weight matrix

of the i-th convolution kernel in the j-th convolution layer of the
k-th channel; b(k)i,j is the bias matrix; C(k)

i,j is a feature map output
from the j-th convolution layer; ⊗ is the convolution operation; f
is the activation function; M is the number of feature maps; G is
the original set of each load pixel image; C(k)

0,0 is a load component
image under a certain time section of the input to the
k-th channel.

On the basis of MCNN fully extracting each load component
image under each time section, the final number of feature maps
output by all channels is Tse × Nlo × Mnu, whereMnu is the number
of convolution kernels in the last convolution layer of each channel.
It can be seen that the spatial features of each type of load output by
MCNN not only maintain the feature independence of each load

itself, but also retain the information of the time dimension of each
load feature, which can be expressed as:

Ce,h,c � Ce
t−h+1,C

h
t−h+1,C

c
t−h+1,/,Ce

t ,C
h
t ,C

c
t[ ] (2)

In the formula: Ce,h,c is the set of feature maps for the output of
each channel of the MCNN; Ce, Ch, Cc are the set of spatial
characteristic maps of electrical, thermal and cooling loads at a
given moment in time, respectively.

Before proceeding with the subsequent temporal feature
extraction, the spatial features of various types of loads at the
same moment in time need to be fused again using the multi-
channel mechanism. At this time, the number of channels of MCNN
is Tse, and the input features of each channel are under the same
moment Ce, Ch, Cc. Finally, the output fused load feature maps of
each channel are flattened and the features are spliced in
chronological order in order to form a fused load feature
sequence with a standard time step, as shown in the
following equation:

R � Ft−h+1, Ft−h+2,/, Ft[ ] (3)

In the formula: R is the fused load feature sequence; F is the
fused load feature vector at a certain time section.

3.3 Time-dependent capture based on
bidirectional long and short-term
memory networks

LSTM is a variant of the traditional recurrent neural network
(RNN), which is improved by introducing input gates, forgetting
gates, and output gates, thus solving the long-term dependence
problem of RNN in the training process and avoiding the gradient
explosion and gradient dispersion phenomenon. The rules for
calculating each variable in LSTM are shown below.

FIGURE 7
Multi-channel feature extraction CNN network structure.
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ut � σ Wxuxt +Whuht−1 + bu( )
f t � σ Wxfxt +Whfht−1 + bf( )
ot � σ Wxoxt +Whoht−1 + bo( )
g t � tanh Wxgxt +Whght−1 + bg( )
ct � ct−1 ⊙ f t + g t ⊙ ut

ht � tanh ct( ) ⊙ ot

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (4)

In the formula: ut, f t, ot denote the input gate, forgetting gate and
output gate at time t;Wxu,Wxf,Wxo,Wxg are the weight coefficients
corresponding to xt; Whu, Whf, Who, Whg are the weight coefficients
corresponding to ht−1; bu, bf, bo, bg are the bias vectors; xt is the input
at time t ; ht is the hidden state at moment t; ct is the intermediate state
value; σ is the sigmoid activation function; ⊙ denotes the element-by-
element product. The basic network structure and internal structure of
the LSTM are shown in Figure 8.

In the traditional one-way LSTM, the update of internal
variables follows a strict one-way transfer rule, which leads to a
one-way temporal dependence of the hidden states of the LSTM at
each moment from the history to the future. As shown in Figure 8,
the final state ht of the network is intrinsically related to
(x1, x2,/, xt) at all previous moments, while the hidden state
ht−1 at the previous moment cannot be linked to xt. Therefore,
in the one-way LSTM, only the final hidden state can utilize all the
input information, while the hidden state of the previous moment
cannot be influenced by the subsequent input information. For the
load sequence, there is a close relationship between the historical
moment’s load and the future moment’s load. The one-way LSTM is
only capable of capturing the time dependence of the load sequence
from the past to the future, and is unable to derive feature
information in the reverse direction. This paper uses BiLSTM for
temporal feature extraction of load sequences in order to resolve the
inherent defects of one-way LSTM. Figure 9 depicts the structure of
BiLSTM, which consists of both forward- and backward-facing one-
way LSTMs. BiLSTM can be trained forward and backward. BiLSTM
can fully utilize the input information and perform temporal feature
extraction more comprehensively than one-way LSTM.

As can be seen in Figure 9, the hidden state h of the BiLSTM is
determined by the forward LSTM and the inverse LSTM together
as follows:

h � �h⊕ h
←[ ] (5)

To summarize the previous analysis, it uses BiLSTM to capture
the temporal dependencies of the fused load feature sequence R
obtained in subsection 3.2. The number of time steps of BiLSTM is h.

FIGURE 8
LSTM network architecture.

FIGURE 9
Bidirectional LSTM network structure.
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The hidden state vector output from the last hidden layer of BiLSTM
is shown as follows:

ht � h1t , h
2
t ,/, hnt[ ] (6)

In the formula: ht is the vector of hidden states output by
BiLSTM; ht is a hidden state at time t; n is the number of hidden
states, which depends on the number of neurons in the top hidden
layer of BiLSTM.

4 Attentional mechanisms and
multitask learning

4.1 Multi-head attention mechanism

The attention mechanism can be viewed as a means of resource
allocation in the model learning process, with the weight parameter
of each feature serving as the resource of interest for the attention
mechanism in deep neural networks. The attention mechanism
focuses the model on important information by adaptively
assigning weights to input variables. This paper proposes a multi-
head attention mechanism model, as shown in Figure 10.

Taking a set of input features X � [x1, x2,/, xM] of dimension
M as an example, a shared linear layer is used to obtain a
preliminary weight vector Y , as shown below:

Y � σ WX + b( ) (7)
Where, Y � [y1, y2,/, yM] denotes the initial weight

coefficients of each input feature; W is the weight matrix; b is
the bias matrix; σ is the linear activation function.

On this basis, because this paper adopts the multi-head attention
mechanism, a total of N linear transformations are performed, and
the preliminary weight vector obtained by the N-th linear
transformation is Y(N) � [y(N)

1 , y(N)
2 ,/, y(N)

M ], and then the N
preliminary weight vectors obtained are averaged to obtain the
preliminary mean weight vector �Y is:

�Y � 1
N

∑N
S�1

Y S( ) (8)

The relu activation function is used to restrict the initial mean
weight vector �Y � [�y1, �y2,/, �yM] to a non-negative interval, and
then normalize the weight coefficients by the Sigmoid function to
obtain the final attention weight coefficients α � [α1, α2,/, αM], as
shown below:

α � sigmoid relu �y1, �y2,/, �yM[ ]( )( ) (9)

In this paper, the initial mean weight vector �Y is first one-sidedly
suppressed to the positive interval by the Relu function, and then
normalized using Sigmoid. Finally, the final obtained feature
attention weight vector is multiplied with the original input
feature vector by elemental correspondence to obtain the
weighted input feature vector, as shown below:

X′ � α ⊙ X � α1x1, α2x2,/, αMxM[ ] (10)

In the formula: X′ is the weighted eigenvector; ⊙ is the
Hadamard product.

4.1.1 Spatial attention
The most direct input feature of this paper is the load demand of

each load unit at different moments in time, where the proportion of
consumption of the three energy sources varies among load units and
where a portion of the load units consume only one or two types of
energy. Load pixel points that are irrelevant to a certain total load
demand are not only unhelpful to the prediction result but even cause
information interference in the model prediction. In this paper, the
weights assigned to different load pixels can be calculated dynamically
by introducing the spatial attention mechanism. The basic structure of
the spatial attention mechanism model is shown in Figure 10, in which
the input of the multi-head attention mechanism model is the pixel
image of each load component constructed in subsection 3.1, and the
output is the load pixel image after weighting each load pixel point. Due
to the introduction of the spatial attention mechanism, the spatial
attention weights can be used to express the contribution of different
load pixels to each type of total load, so that the prediction model can
focus on “important” load pixels in the learning process.

4.1.2 Temporal attention
Load forecasting is a typical time series forecasting problem,

which is reflected in the extremely high dependence on historical
information. In this paper, the temporal attention mechanism is
introduced into the model to deeply mine the time series
information. The basic structure of the temporal attention

FIGURE 10
Multi-head attention mechanism.
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mechanism is shown in Figure 10, in which the input to the model of
the multi-head attention mechanism is the fused load sequence at
the standard time step in subsection 3.2. Attention weights are
assigned to the fusion features under each time step by the temporal
attention mechanism to increase the model’s attention to the
important time point information during the training process.

4.2 Multitask learning mechanism

The data recorded by UIES contains a large amount of shared
information about energy conversion. Multi-task learning can utilize
this shared information to learn and acquire knowledge amongmultiple
load prediction tasks and train the shared hidden layer on all tasks in
parallel, thus improving the prediction accuracy of each load. In
addition, the parameter sharing strategies for multi-task learning can
be broadly categorized into hard and soft sharing (Niu et al., 2022).
Considering the strong coupling of each load in UIES, this paper
chooses the hard sharing mechanism that is suitable for dealing with
more strongly correlated tasks. The structure of the hard sharing
mechanism for multi-task learning is shown in Figure 11.

For a multi-task learning under a hard sharing mechanism, which
contains multiple learning tasks ym(m ∈ M) and data sets
xi, y1

i , y
2
i ,/, yM

i{ }, (i � 1, 2,/,N), where M is the number of
tasks, N is the number of data samples, and ym

i is the m-th task
label of the i-th data point. fm(x; θsh, θea), x → ym is the prediction
function, where θsh is the shared parameter of each task in the shared
layer, and θea is the independent correlation parameter of each task
itself. Under multi-task learning, the overall objective optimization loss
function is defined as:

L θ( ) � min∑M
m�1

λmL̂
m

θsh, θea( )
L̂
m

θsh, θea( ) � 1
N

∑N
i�1
L̂
m

fm xi; θ
sh, θea( ), ym

i( )
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (11)

In the formula: λm is the weight coefficient of each task;
L̂
m(θsh, θea) is the loss function; L(θ) is the overall objective

optimization loss function.

5 IES multiple load prediction
framework based on spatio-temporal
coupling and multi-headed attention

The forecasting workflow in this paper is divided into the
following six stages:

Step 1: Load pixel image construction
Based on the load pixel image construction method in

subsection 3.1, a comprehensive load pixel image containing
three load components of electricity, heat, and cold is
constructed at a certain moment, as shown below.

P �
pe
1,1 / pe

1,n

..

.
1 ..

.

pe
n,1 / pe

n,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, ph
1,1 / ph

1,n

..

.
1 ..

.

ph
n,1 / ph

n,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, pc
1,1 / pc

1,n

..

.
1 ..

.

pc
n,1 / pc

n,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

In the formula: P is the integrated load pixel image at a certain
time section; pe, ph, and pc represent the electric load, hot load, and
cooling load pixel points respectively; n × n is the size of the load
pixel image, which can also be regarded as the resolution size.

Based on this, the integrated load pixel images at different
historical moments from the prediction target moment (t + 1)
need to be constructed separately. Further, the time-varying
nature of the load is demonstrated by a frame by frame load
pixel image, and the pixel values at any specific location will be
continuously updated according to a certain temporal resolution, as
shown in equation 13. The dimension size of the input features is
thus n × n × 3h, where n is the spatial dimension, h is the channel
dimension, which is the length of the historical time period.

G � Pt−h+1,Pt−h+2,/,Pt[ ] (13)

Step 2: Spatial attention weighting
Before inputting each load component pixel image into

MCNN for spatial feature extraction, the spatial attention
layer is constructed using the multi-head attention mechanism
proposed in subsection 4.1 of this paper. The input features’
spatial dimension is first reduced to their channel dimension, and
the input feature dimension becomes 1 × 1 × 3nnh, which is then
input to multiple shared linear layers. The dynamic assignment of
spatial attention weights during model learning is realized
according to equation 7 to equation 10, and each load pixel
point is assigned its own spatial attention weight coefficient.
Finally, the attention weight vector is dimensionally recovered as
n × n × 3h, and multiply it with the corresponding load pixel
points of the original load pixel image to obtain a weighted load
pixel image G′.

G′ � αt−h+1Pt−h+1, αt−h+2Pt−h+2,/, αtPt[ ] (14)

αP �
α1,1pe

1,1 / α1,npe
1,1

..

.
1 ..

.

αn,1pe
n,1 / αn,npe

n,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15)

In the formula: α is the attention weight vector of the integrated
load pixel image at a certain moment; α is the attention weight
coefficient of a load pixel point.

FIGURE 11
Multi-task learning network structure based on hard
sharing mechanism.
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Step 3: Spatial feature extraction and fusion
On the basis of step 2, this paper inputs the weighted pixel

images of each load component into the MCNN neural network
architecture constructed in subsection 3.2 for spatial feature
extraction and fusion.

Step 4: Temporal attention weighting
Before inputting the fused load time series obtained from step

3 into the BiLSTM shared layer, the temporal attention layer is
constructed using the multi-head attention mechanism proposed in
subsection 4.1. First, the fusion load feature vectors under each time
step are sequentially input into multiple shared linear layers, and the
feature vectors under each time step are dynamically assigned with
temporal attention weight coefficients based on equations 7 to 10.
Finally, the weighted fusion load time series is obtained by
multiplying the temporal attention weight vector with the feature
vectors under each time step by element. This is shown in the
following equation:

R � βt−h+1Ft−h+1, βt−h+2Ft−h+2,/, βtFt[ ] (16)

In the formula: β is the temporal attention weight vector at a
certain moment.

Step 5: Time-dependent relationship capture
The weighted fused load time series obtained from step4 is input

to BiLSTM feature sharing layer for bidirectional temporal
information mining to extract temporal feature information.

Step 6: Multi-task learning joint prediction
In this paper, a multi-task learning approach based on a hard-

sharing mechanism is used for joint forecasting of electricity,
heat, and cold loads. In this, the parameters of BiLSTM as the
bottom layer are uniformly shared, and the parameters of each
fully connected layer as the top layer are independent of each
other. Due to different physical dynamics and different energy
demand characteristics, the various types of loads have different
fluctuation frequencies. In the UIES studied in this paper, the
electric and thermal load profiles have large local fluctuations
with rich details, while the cooling load profile is relatively
smooth. The same feature interpretation network (the same
top layer structure) cannot simultaneously portray the
fluctuation characteristics of each load curve, and it is difficult
to make the three kinds of loads achieve a better fitting state at the
same time. Therefore, it is necessary to construct independent,
fully connected neural network (FCNN) for the three loads as the
feature interpretation network.

According to the analyses in subsections 2.1 and 2.2, it can be
seen that the actual load changes have obvious correlations with
meteorological factors and calendar rules. In the calendar rule,
hourly, day-type information as well as holiday information are
incorporated. The meteorological factors are selected as
temperature, dew point, irradiance, and humidity. The calendar
rules and meteorological factors as external input features are
extracted through three fully connected layers and spliced with
the output features of BiLSTM, which are input to the top inputs of
electric, heat, and cold loads, respectively, to fully explore the
dependence of each load on the calendar and meteorological
information.

h′t � h1t , h
2
t ,/, hnt , ct, dt+1[ ] (17)

In the formula: h′t is the extended feature vector; ct is the vector
of meteorological information under the historical moment
preceding the moment to be predicted; dt+1 is a vector of
calendar information under the moment to be predicted.

As shown in Figure 12, the user-level IES multivariate load
prediction framework based on multi-energy spatio-temporal
coupling and spatio-temporal attention mechanism, which is a
neural network framework with deep spatio-temporal correlation,
has been fully completed.

6 Experiment setup and result analysis

6.1 Introduction to data sources

The data source for this paper is the user-level IES at Arizona
State University’s Tempe campus, which is located in a tropical
desert climate with high demand for cooling and electrical loads and

FIGURE 12
UIES multivariate load forecasting framework.
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low demand for heat loads, and a large portion of the cooling loads
come from electric cooling equipment in the IES system. Electricity,
heat, and cooling load data (including all types of load data for
115 load units and all types of total load data) recorded by the
university’s Campus Metabolism project web platform from January
2019 to March 2020 were used, with a time resolution of 1 h. Based
on the forecasting framework in Figure 12, the total electrical,
thermal, and cooling loads for the next 1 h for this IES system
are forecasted. Before constructing the input feature set, considering
that there are some missing and anomalous mutations in the data
stored in this UIES, this paper firstly replaces and supplements the
anomalies and vacancies, and normalizes the original data to the
interval [0,1] according to the following formula for model training.

xω � xφ − xmin

xmax − xmin
(18)

In the formula: xω is the normalized value of a load in a basic
energy consumption unit; xφ is the actual value with a dimension;
xmin and xmax are the minimum and maximum values.

In this paper, each load unit is classified according to its
functional attributes, of which 24 are teaching venues, 15 are
scientific research venues, 13 are administrative venues, 4 are art
venues, 11 are sports venues, 29 are residential venues, 11 are
public activity venues, and 8 are other auxiliary venues. On this
basis, the load component pixel images under different
moments of size 11 × 11 are constructed according to
subsection 3.1.

The determination of the length of the historical time period
h is considered to take into account two aspects, which are the
difficulty of model training and the completeness of the
knowledge embedded in the input features. If h is too small,
there will be insufficient knowledge in the historical sequence for
the model to learn, thus limiting the prediction accuracy and
generalization ability of the model. Conversely, if h is too large
by considering only the completeness of knowledge information
in the historical sequence, it will increase the complexity of
model training and thus affect the optimization of model
parameters. Therefore, the value of h needs to balance the
above two aspects. Combined with the analysis in subsection
2.3 and through a large number of experimental comparisons,

the length of h is finally determined to be 9. The historical data of
t + 1 moments a week ago and a day ago, as well as the historical
data of the first seven historical moments (t − 6 to t) near the
forecast target moment, are taken as the reference for the current
load forecast at t + 1 moments. As a result, the dimension size of
the input features of the prediction model constructed in this
paper is 11 × 11 × 27.

A pixel image of the electrical load at 3 consecutive moments is
shown as an example, as shown in Figure 13 (load is normalized
value). Since the temporal resolution is 1 h, the variation of the
electrical load can be represented as a frame by frame picture at
1 h intervals.

6.2 Basic evaluation indicators

In this paper, the mean absolute percentage error (MAPE) and
root mean square error (RMSE) metrics are selected to evaluate the
forecasting effectiveness of each load, and the expressions are:

RMSE �

���������������∑M
θ�1

Y θ( ) − Ŷ θ( )( )2
M

√√
(19)

MAPE � 1
M

∑M
θ�1

Y θ( ) − Ŷ θ( )
Y θ( )

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣ × 100% (20)

In the formula: Ŷ(θ) is the predicted value of load at the θ -th
sampling point; Y(θ) is the actual value of load at the θ -th sampling
point; M is the number of test samples.

In addition, in order to evaluate the performance of the
multivariate load forecasting model as a whole, this paper
considers the importance of different loads in the system,
assigns different importance weights to different loads, and
evaluates the overall forecasting effect of the model by using
the mean absolute percentage error of multiple weights
(WMAPE). Since the proportion of cold and electric loads in
UIES is high and the proportion of heat loads is low, the weights
of cold loads, heat loads and electric loads are set to 0.4, 0.2 and
0.4, respectively. The expressions of specific evaluation indexes
are as follows.

FIGURE 13
Pixel images of the electrical load at different moments.
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WMAPE � ∑N
k�1

RkMAPE k( )

∑N
k�1

Rk � 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (21)

In the formula:WMAPE is the mean absolute percentage error
of the integrated load; Rk is the importance weight of the k -th type
of load; N is the number of load types.

6.3 Model hyperparameter settings

For theMCNNnetwork proposed in this paper, it is known from
subsection 6.1 that its input feature set is an electrical, thermal, and
cold load pixel image of size 11 × 11 at 9 moments, so the
dimensional size of the MCNN input features is 11 × 11 × 27.
Based on the analysis in subsection 3.2, the number of channels
of MCNN is determined to be 27, and each channel has a 4-layer
independent structure with only convolutional layer and no pooling
layer, and the convolutional kernel sliding step is 1, and no Padding
operation is performed. First, the first convolution layer of each
channel consists of eight convolution kernels of size 5 × 5, thus
covering a larger number of loaded pixel points in the spatial
association domain, so that each pixel point in the generated
feature map can obtain a large perceptual field. Second, the size
of the convolutional kernels in the second to fourth layers is 3 × 3
and the number of convolutional kernels increases in the order of 16,
32, and 64. Finally, the size of each feature map output by MCNN is
1 × 1, and its perceptual field size in theory is the original input load
pixel image, which contains global information, and the number of
feature maps is 27 × 64. Based on this, we again use the multi-
channel idea to set up 9 channels, each with a convolutional kernel
size of 1 × 1 and a number of 64. After one convolution operation,
the spatial features of electric, thermal and cooling loads under the
same time section are fused to form a time series of fused load
features at standard time steps.

The number of neurons and hidden layers are the two critical
hyperparameters for BiLSTM. In the study findings of recurrent
neural networks represented by LSTM used to load prediction,
the majority of them are empirically compared and eventually set

the number of hidden layers in the network from 1 to 5, with the
number of neurons in each hidden layer often not exceeding 200.
BiLSTM has been observed to frequently experience overfitting,
which lowers prediction accuracy when the number of hidden
layers or the number of neurons in the hidden layers is excessive.
In this study, we carried out a number of tests and discovered that
BiLSTM functions best when there are two hidden layers and an
increase in the number of neurons in each layer on the order
of 64,128.

For the three different structures of feature interpretation
modules, the fully connected layer for cold loads is designed as
one layer with 16 neurons. The fully connected layer for electrical
loads is designed as two layers with 32 and 16 neurons per layer,
respectively. The fully connected layer for thermal load is
designed as 3 layers with 64, 32, and 16 neurons per layer,
respectively.

The Adam algorithm is chosen to train the network with a
learning rate of 0.01 within this paper, a batch size of 256, and an
iteration number of 100. To prevent overfitting, a droup-out
operation is added to the training process, and the probability
parameter is kept at 0.9. The model is developed in the Keras
deep learning framework. The hyperparameter configuration of the
model is shown in Table 1.

6.4 Comparative analysis of
prediction results

In order to fully validate the effectiveness of the IES multivariate
load prediction framework (Case 7) proposed in this paper, six
contrasting models are set up in this section. Among them, Case1 to
Case3 are predicted by multi-task learning, and Case4 to Case6 are
predicted by single-task learning. Among them, the multi-task
learning models all consider the coupling characteristics of each
load, while the single-task learning models do not consider the
coupling characteristics of each load.

Case 1: Based on Case 7, the spatial features are extracted using
MCNN without considering the feature independence of each load,
and only the temporal integrity is preserved. The number of

TABLE 1 Network hyperparameter settings.

Number Layer
Name

Number of neurons/Convolutional
kernels

Convolution kernel
size

Number of channels/Attention
heads

1 Attention layer 11 × 11 × 27 = 3267 — 4

2 MCNN layer 1 8 5 × 5 27

3 MCNN layer 2 16 3 × 3 27

4 MCNN layer 3 32 3 × 3 27

5 MCNN layer 4 64 3 × 3 27

6 MCNN layer 5 64 1 × 1 9

7 Attention layer 64 × 9 = 576 — 4

8 BiLSTM layer 64 — —

9 BiLSTM layer 128 — —
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channels of MCNN is 9, and the input feature of each channel is the
integrated load pixel image at the corresponding moment. The
hyperparameters of MCNN, BiLSTM and spatio-temporal
attention layer are the same as Case 7 except that there is no
feature fusion operation based on MCNN. Multi-task learning is
used to simultaneously predict the total electric, cooling and heating
loads at the next moment.

Case 2: The input and output feature sets, model structure and
hyperparameters are the same as Case7, except that the attention
mechanism is not used, and Case2 considers feature independence
and temporal integrity of each load during feature extraction.

Case 3: The historical values of the total electrical, thermal and
cooling loads are used as input features and then BiLSTM is used as a
feature sharing layer for joint prediction of each of the total loads by
multi-task learning. The hyperparameters of BiLSTM are the same
as those of Case7’s BiLSTM.

Case 4: Based on Case7, the coupling characteristics of each load
are not considered. The number of input channels of MCNN is 9,
and the input feature of each channel is the pixel image of a certain
type of load component at the corresponding moment. The
hyperparameters of MCNN, BiLSTM and spatio-temporal
attention layer are the same as Case7 except that there is no
feature fusion operation based on MCNN. The total load of each
category at the next moment is predicted independently using
single-task learning.

Case 5: Same as Case4, but without the spatio-temporal attention
layer based on the multiple attention mechanism.

Case 6: Based on Case 3, the total electrical, thermal, and cooling
loads are predicted separately and independently using single-task
learning without using multi-task learning. The input features are
the historical values of a particular total load itself, and the
hyperparameter configuration is the same as in Case3.

Considering that the energy consumption patterns of this UIES
in summer and winter are quite different, the external
morphological characteristics presented by each load show a
large change. Therefore, in this paper, the comparison
experiments are designed by selecting the data for each load for a
week in winter and summer, respectively. Figure 14; Figure 15 show
the prediction results of electric, thermal, and cooling loads for
1 week in different seasons, and Table 2, Table 3 show the prediction
errors for each case in the test set.

6.4.1 Analysis of the effect of cold load prediction
The results of the cold load forecasts under the summer and

winter time periods are shown in Figure 14A and Figure 15A,
respectively. It is easy to see that the cold load demand size
under the two seasons has a large change. In the summer season,
the daily cold load change has obvious regularity, and the forecast
models can track the load change trend better. In winter, the cooling
load curves shown in the 96th to 120th hour change significantly
compared with the other hours, and it can be seen that the prediction
error in this hour is much larger than the other hours.

(1) Analysis of the effectiveness of multitask learning models for
cold load prediction

In the summer, as shown in Table 2, the prediction accuracies of
Case 1, Case 2, and Case 7 are higher than those of Case 3, which
indicates that, compared with BiLSTM based on macroscopic class
load prediction methods, the microscopic class load prediction
method can learn the intrinsic law of change of the loads better,
which is attributed to the rich information embedded in its input
features. Compared with Case 1, the RMSE of Case 2 is reduced by
6.18%, and the MAPE is reduced by 2.23%. This indicates that even
with the introduction of the attention mechanism in Case 1, better
prediction results can still be achieved by taking into account the
independent characteristics of the loads themselves in the feature
extraction process. Compared with Case 2, the RMSE of Case 7 is
reduced by 15.18%, and the MAPE is reduced by 15.84%.

As shown in Table 3, the prediction accuracy of the models on
cooling loads during the winter time period is ranked as
Case7>Case2>Case1>Case3. The RMSE of Case 1 is reduced by
6.77 percent, and the MAPE is reduced by 3.31 percent as compared
to Case 3. Case 2 had a 1.32% lower RMSE and 10.26% lower MAPE
compared to Case 1. RMSE was reduced by 19.26% and MAPE was
reduced by 20.13% for Case 7 compared to Case 2.

(2) Analysis of the effectiveness of single-task learning models for
cold load prediction

The prediction accuracies of the models for the two seasons with
respect to the cooling loads were ranked as Case 4 > Case 5 > Case 6.
The RMSE and MAPE of Case4 were 17.23% and 10.67% lower in
the summer time period, respectively, as compared to Case5. Under
the winter time period, Case 4 had 11.74% lower RMSE and 17.22%
lower MAPE than Case 5. This indicates that the introduction of the
attention mechanism can strengthen the significant features of the
loaded pixel images and fused load sequences so as to obtain more
important feature information in the feature extraction process and
improve the prediction accuracy of the model.

(3) Multi-task learning model VS. Single-task learning model

During the summer time period, Case 2 had the best prediction
performance among the multi-task models except Case 7. Among
the single-task models, the highest prediction accuracy is achieved
by Case 4. Compared to Case 2, Case 4 has a 2.08% lower RMSE and
a 3.72% lower MAPE. This is because the summer cold load
fluctuation is more regular, and only relying on its own load
pixels is enough for the model to learn its own intrinsic pattern
of change, while the attention mechanism introduced in Case
4 further improves the model performance.

In the winter time period, the prediction accuracy of Case2 is
slightly higher than that of Case4, and its RMSE is reduced by 0.66%
and MAPE is reduced by 1.36% compared with Case4. This is
because the cold load’s volatility is strengthened at this time, and
relying only on its own load pixel does not allow the model to learn
the intrinsic correlation between the cold load and other loads,
which weakens the model’s ability to perceive the fluctuation pattern
of the cold load itself. In addition, the introduction of the attention
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mechanism in Case 4 compensates for the defect of limited
information expressed by input features to a certain extent.

6.4.2 Analysis of the effect of electrical load
prediction

The predicted electric loads for the summer and winter periods
are shown in Figure 14B and Figure 15B, respectively. Combining
Figure 14A and Figure 15A, it can be seen that the electric load
fluctuates more than the cold load, which is especially obvious in the
winter, and the prediction curves of Case1 deviate more from the
actual curves in some time periods, while the prediction curves of
Case7 follow the actual load curves in the best way. Compared with
the cold load forecasting task, the models show more obvious
performance differences in electrical load forecasting.

(1) Analysis of the effectiveness of multitask learning models for
electrical load prediction

As shown in Table 2, the RMSE of Case 1 decreased by
17.02% and the MAPE decreased by 17.10% compared to Case 3.

The reason for the difference in the performance of the two
models is that the input features of Case 3 only include the
historical data of each total load, which covers limited
information and does not allow the model to fully learn the
fluctuation pattern of each load. Compared with Case 1, the
RMSE of Case 2 decreased by 2.78% and the MAPE decreased by
4.08%. This again shows that it is important to maintain the
independence of each load in the feature extraction process. In
addition, the RMSE of Case 7 decreased by 21.78% and the
MAPE decreased by 29.28% compared to Case 2. This again
demonstrates that the attention mechanism improves the model
learning performance.

As can be seen from Table 3, Case 3 had the lowest prediction
accuracy. The RMSE and MAPE of Case1 were reduced by
10.15% and 3.30%, respectively, compared to Case3. The
RMSE and MAPE of Case 2 were reduced by 18.03% and
20.65%, respectively, compared to Case 3. The RMSE and
MAPE of Case 2 were 8.77% and 17.94% lower than Case 1,
respectively. The more drastic load fluctuations in the winter
compared to the summer lead to a further increase in the

FIGURE 14
Results of each load forecast in summer. (A) Cooling load forecast results. (B) Electrical load forecast results. (C) Heat load forecast.
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performance difference between Case1 and Case2 on the load
forecasting task. The RMSE and MAPE of Case 7 are only 5.34%
and 1.12% lower than those of Case 2, respectively. This is due to

the high volatility of electrical loads in winter, resulting in the
introduction of an attentional mechanism that does not have a
significant improvement effect.

FIGURE 15
Results of each load forecast in winter. . (A) Cooling load forecast results. (B) Electrical load forecast results. (C) Heat load forecast.

TABLE 2 Evaluation index of prediction effect of each model in summer.

Model RMSE/MW MAPE/% WMAPE/%

Electrical Heat Cooling Electrical Heat Cooling Combined

Case1 0.897 0.047 1.537 2.225 2.384 2.415 2.332

Case2 0.872 0.040 1.442 2.134 2.017 2.361 2.201

Case3 1.081 0.044 1.988 2.684 2.259 3.127 2.776

Case4 0.832 0.039 1.412 2.087 1.997 2.273 2.143

Case5 0.923 0.041 1.706 2.326 2.058 2.643 2.399

Case6 1.166 0.044 1.914 2.941 2.312 3.107 2.881

Case7 0.682 0.038 1.223 1.509 1.916 1.987 1.585
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(2) Analysis of the effectiveness of single-task learning models for
electrical load prediction

The ranking of the accuracy of the models on the task of
electrical load forecasting under two seasons is
Case4>Case5>Case6. In the summer time period, RMSE for Case
4 was 9.85% lower than Case 5, and MAPE was 10.27% lower than
Case 5. In the winter, the RMSE and MAPE of Case 4 were only
5.85% and 0.51% lower than those of Case 5, respectively.

(3) Multi-task learning model VS. Single-task learning model

The RMSE and MAPE of Case4 are 4.58% and 2.20% lower than
those of Case2 on the electric load forecasting task in the summer
time period, respectively. This indicates that the introduction of the
attention mechanism focusing on the electric load’s own load pixels
is better than mining the potential correlations among loads based
on various types of load pixels. In contrast, under the winter time
period, the RMSE for Case 2 is 2.90% lower than Case 4, and the
MAPE is 8.47% lower than Case 4. The reason for analysing the
above results is the same as that of the cold load forecasting task,
which is because the cold loads in this UIES are mainly from electric
loads, and the trend of electric load changes is largely consistent with
the cold loads.

6.4.3 Analysis of the effect of heat load prediction
The heat load prediction results under the summer and winter time

periods are shown in Figure 14C and Figure 15C, respectively. Among
them, winter is a typical heat-consuming season for thermal systems,
and the heat load demand decreases abruptly during the day and
increases at night with obvious regularity. Each model can track the
actual fluctuation changes of heat load better. For summer, the user heat
demand is small and the heat behavior is random, which directly leads
to the heat load fluctuation being extremely violent, the rule of change is
not traceable. The prediction results of each model can’t fit the actual
curve of heat load well, and some of the prediction results of Case 1 and
Case 5 have a big deviation from the actual value.

(1) Analysis of the effectiveness of multitask learning models for
heat load prediction

The prediction accuracies of the models on the task of heat load
prediction in summer are Case7>Case2>Case3>Case1. Compared to
Case 1, Case 3 has a 6.38% lower RMSE and a 5.24% lowerMAPE. Due
to the extremely random variation of heat load, its correlation with
electricity and cooling load is small. Meanwhile, Case 1 does not
consider the independent characteristics of each load in feature
extraction, which increases the difficulty of the model learning the
fluctuation law of heat load, resulting in poor heat load feature
extraction. This point also illustrates the effectiveness and
reasonableness of Case7 and Case2 in constructing feature extraction
channels independently for each load component pixel image. Case
3 predicts the heat load based on its own historical data and achieves
better prediction results than Case 1.

The prediction accuracies of the models on the heat load
prediction task in winter time are Case7>Case2>Case1>Case3,
and the RMSE and MAPE of Case2 are only 7.69% and 4.32%
lower than those of Case1 and Case2, respectively. This is because
the correlation between the heat load and the electricity and cooling
loads is stronger at this time, and the simultaneous feature extraction
of the pixel images of each load component at the same moment in
time does not have much effect on the learning effect of the model.
Compared with Case 2, the RMSE and MAPE of Case 7 are only
reduced by 5.21% and 6.28%, respectively. This is because the heat
load fluctuation pattern is obvious, and the model can extract the
heat load feature information better, resulting in the improvement
effect of the attention mechanism that is not obvious.

(2) Analysis of the effectiveness of single-task learning models for
heat load prediction

The prediction accuracies of the models on the heat load
prediction task in the two seasons are ranked as Case 4 > Case
5 >Case6. In the summer, the RMSE of Case4 and Case5 are reduced
by 11.36% and 6.81%, respectively, and the MAPE is reduced by
13.62% and 10.98%, respectively, compared with Case6. Case4 and
Case5 extract features from the heat load pixels, which can learn the
complex fluctuation patterns within the heat load in a more detailed
way and are more advantageous than mining feature information
directly from the heat load’s own historical data. In winter time,
compared with Case6, the RMSE of Case4 and Case5 are reduced by

TABLE 3 Evaluation index of prediction effect of each model in winter.

Model RMSE/MW MAPE/% WMAPE/%

Electrical Heat Cooling Electrical Heat Cooling Combined

Case1 0.513 0.104 0.605 1.962 2.728 4.178 3.001

Case2 0.468 0.096 0.597 1.610 2.610 3.749 2.665

Case3 0.571 0.122 0.649 2.029 3.073 4.321 3.224

Case4 0.482 0.107 0.601 1.759 3.012 3.801 2.826

Case5 0.512 0.111 0.681 1.768 3.021 4.592 3.145

Case6 0.595 0.130 0.731 2.167 3.370 5.301 3.661

Case7 0.443 0.091 0.482 1.591 2.446 2.994 2.339
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17.69% and 14.61%, respectively, and the MAPE is reduced by
10.62% and 10.35%.

(3) Multi-task learning model VS. Single-task learning model

During the summer, the RMSE and MAPE of Case 4 were only
2.50% and 0.99% lower than Case 2, respectively. And the RMSE and
MAPE of Case 7 were only 2.56% and 4.05% lower than Case 4,
respectively. This shows that there is no valid information associated
with the change of heat load in the pixel images of electric and cold
loads, and also verifies that the idea of independent feature
extraction for each load component pixel image in the front-end
and fusion of each load feature at the same moment in the back-end
proposed in this paper is correct. During the winter season, RMSE
decreased by 10.28% and MAPE decreased by 13.34% in Case
2 compared to Case 4, and RMSE decreased by 5.21% and
MAPE decreased by 6.28% in Case 7 compared to Case 2. This
indicates that at this time there are signals in the electrical and cold
load pixel images that are related to changes in the heat load, which
helps to improve the feature extraction of the heat load.

6.4.4 The strengths analysis of the model
The data shown in Tables 4 and 5 indicate that Case 7 exhibits

the best level of prediction accuracy for each load when compared
to the other models. This is due to the fact that the proposed
method in this paper is able to predict the multivariate loads of the
UIES in a refined and three-dimensional way by load types and
spatial and temporal characteristics. Case7 performs independent
feature extraction on the pixel images of each load component at

different moments and fuses the spatial features of the loads in the
high-dimensional space, which takes into full consideration the
independence of the features of the loads. The end-to-end
information flow delivery of spatial feature extraction and time-
dependent relationship capture is also realized. In addition, a
multi-head attention mechanism is introduced to assign weight
coefficients to load pixels and fused load features, respectively,
which realizes the model’s differentiated attention among different
features. Finally, multi-task learning is utilised for joint prediction
of each load, which further exploits the coupling characteristics
among loads. Through the close cooperation of the above three
links, the advantages of each module are fully utilised, and more
accurate prediction results are achieved.

7 Conclusion

In this paper, a MCNN-BiLSTM load prediction method
considering multi-energy spatio-temporal correlation is proposed
for small-scale UIES, which realizes the stereoscopic feature
extraction of UIES multivariate load spatio-temporal information.
The following conclusions are obtained:

(1) The load units covered by the user-level IES hide the
multidimensional information of various types of total
loads, for which the input feature set in the form of an
image is built, and with the powerful feature extraction
capability of CNN, the prediction error caused by load
uncertainty can be significantly reduced.

TABLE 4 Comparative analysis of the proposed model Case7 with other models in terms of forecasting accuracy of each load in summer season.

Model RMSE/MW MAPE/% WMAPE/%

Electrical (%) Heat (%) Cooling (%) Electrical (%) Heat (%) Cooling (%) Combined (%)

vs. Case1 23.96 19.14 20.42 32.17 19.63 17.72 32.03

vs. Case2 21.78 5.01 15.18 29.28 5.03 15.84 27.98

vs. Case3 36.91 13.63 38.48 43.77 15.18 36.45 42.90

vs. Case4 18.02 2.56 13.38 27.69 4.05 12.58 26.03

vs. Case5 26.11 7.31 28.31 35.12 6.89 24.82 33.93

vs. Case6 41.51 13.63 36.10 48.69 17.12 36.04 44.98

TABLE 5 Comparative analysis of the proposed model Case7 with other models in terms of forecasting accuracy of each load in winter season.

Model RMSE/% MAPE/% WMAPE/%

Electrical (%) Heat (%) Cooling (%) Electrical (%) Heat (%) Cooling (%) Combined (%)

vs. Case1 13.64 12.50 20.33 18.39 10.33 28.33 22.05

vs. Case2 5.34 5.21 19.26left 1.12 6.28 20.13 12.23

vs. Case3 22.41 25.41 25.73 21.58 20.40 30.71 27.45

vs. Case4 8.09 14.95 19.80 9.55 18.79 21.23 17.23

vs. Case5 13.47 18.01 29.22 10.01 19.03 34.79 25.62

vs. Case6 25.54 30.00 34.06 26.58 27.41 43.52 36.11
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(2) There are many types of user-level IES loads with high
volatility and complex correlations among loads. When
feature extraction is performed for each load, the
independence of each load needs to be fully considered,
which could lead to more accurate results.

(3) Through the experimental comparative analysis, the
introduction of the attention mechanism layer can assist
the model in better mining the intrinsic law of change of
each load, which improves the load prediction accuracy to a
certain extent.

Along with the rise of digital twin technology, the energy system
will develop in the direction of intelligence and digitalization. In the
future, data-driven load forecasting methods will be widely used in
integrated energy systems at all levels. How to combine macroscopic
class load forecasting methods with microscopic class load
forecasting methods, give full play to their respective advantages,
and apply them to IES load forecasting is our next work plan.
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