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State estimation is an integral component of energy management systems.
Employing a state estimation methodology that is both accurate and resilient is
essential for facilitating informed decision-making processes. However, the
complex scenarios (unknown noise, low data redundancy, and reconfiguration)
of the distribution network pose new challenges for state estimation. In the
context of this study, we introduce a state estimation technique known as the
kernel ridge regression and unscented Kalman filter. In normal conditions, the
non-linear correlation among data and unknown noise increases the difficulty of
modeling the distribution network. Thence, kernel ridge regression is developed
to map the data into high-dimensional space that transforms the non-linear
problem into linear formulations base on the data rather the complicate grid
model, which improves model generalization performance and filters out
unknown noises. In addition, with the unique prediction correction mechanism
of the Kalman method, the kernel ridge regression-mapped state value can be
revised by the measurement, which further enhances model accuracy and
robustness. During abnormal operating conditions and taking into account the
presence of faulty data within the measurement system, we initiate the use of a
long short-term memory network and combined convolutional neural network
(CNN) model, referred to as the ATT-CNN-GRU. This model is utilized for the
prediction of pseudo-measurements. Subsequently, we use an outlier detection
method known as ordering points to identify the clustering structure to effectively
identify and substitute erroneous data points. Cases on the IEEE-33 bus system
and 109-bus system from a city in China show that the method has superior
accuracy and robustness.
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1 Introduction

Power system state estimation (PSSE), playing a key role in safety monitoring
(Samuelsson et al., 2006) and optimal dispatching (Bai et al., 2016), is a necessary data
support for the energy management system (EMS) (Guo et al., 2014; Zhao et al., 2019a).
However, the information uploaded via grid measurement equipment exists as bad data and
unknown noise, which severely restricted the performance of state estimation (Du et al.,
2010). Hence, there is an urgent need for a more effective state estimation method.
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In general, the state estimation techniques could be broadly
classified into parameter methods represented by the Kalman filter
(KF) (Zadeh et al., 2010; Rosenthal et al., 2017) and data-driven
methods such as machine learning (Weng et al., 2016; Mestav et al.,
2019a). The KF determines the best estimate of state using the
forecast-correction mode, and this superior feature inspires many
scholars to focus on the estimation algorithms under the KF
framework (Kalman, 1960). In the work of Ghahremani et al.
(2016), an extended Kalman filter method utilizing PMU was
introduced to identify and estimate the system state and
unidentified variables inputs when the noise is assumed to be
Gaussian. The method was further developed by Zhao (2018),
which combined the H∞ and extended Kalman filter (HEKF).
The HEKF model parameters are improved by considering the
effect of uncertainties (varying generator transient reactance,
uncertain inputs, and noise statistics) on the dynamic model of
the system. Moreover, it is effective when the noise statistics and
transient reactance are unknown. Zhao et al. (2019b), to improve
accuracy and accelerate convergence, introduced a comprehensive
and robust dynamic state estimation framework that leverages the
unscented Kalman filter (UKF) and the ability to deal with (Ji et al.,
2021) weak observation dynamic variables, which enhances filter
performances against bad data. These aforementioned methods
improve the performance of the Kalman-like algorithms, but
such methods are restricted in practical applications because
most of the noise in the actual power system may not follow the
Gaussian distribution.

To address the aforementioned problems, a generalized
maximum likelihood UKF(GM-UKF) estimation approach was
introduced by Zhao et al. (2018), which can improve data
redundancy and filter bad data, and the undetermined Gaussian
and non-Gaussian noises are also filtered out by the generalized
maximum likelihood-estimator, which enhanced the filter
effectiveness and robustness. Dang et al. (2020) presented a
minimum error entropy UKF (MEE-UKF), which exhibits the
robustness and validity with respect to multimodal distribution
noises. In conclusion, Kalman-like methods use prediction
equations to correct measuring equations and are widely used in
industry. However, the parameter model behaves very differently
when choosing different parameter combinations, and the flexibility
of these methods may be limited or even fail to converge. In
addition, the calculation speed and accuracy still need to be
improved.

The difficulties posed by these issues have necessitated the
exploration of data-driven approaches, which utilize historical
data for offline training and real-time data for online state
estimation. The data-driven methods may have an excellent
performance if the dataset is sufficient. The deep neural network
(DNN) was proposed by Mestav et al. (2018); it learns the
probability distribution of grid data to estimate the state online,
which results in better robustness and accuracy. This method was
further developed by Zhang et al. (2019); a deep recurrent neural
network is utilized to forecast the state by leveraging the long-term
non-linear correlations embedded within the historical data. This
approach has notably enhanced the accuracy of estimation. Netto
et al. (2018) introduced a robust, data-driven Kalman filter
incorporating the generalized maximum likelihood Koopman
operator (GM-KKF) to expedite convergence speed. Compared

with the Kalman filter, the Koopman operator using a batch-
mode regression formulation improves nearly one-third in terms
of the computation speed. In the work of Mestav et al. (2018),
Bayesian state estimation was trained by the DNN, and the DNN can
overcome computation complexity in Bayesian estimation, which
has robustness for bad data and missing data. It is noted that some
time series algorithms can also handle missing and abnormal data,
which was proposed in our previous work (Ji et al., 2021). The long
short-term memory (LSTM) method is combined with the outlier
detection technology to predict the outlier, thus improving the
robustness of the filter, which proves that the time series
prediction method can be applied in PSSE. Furthermore, we
notice that the convolutional neural network combined with the
attention mechanism (ATT-CNN) can also filter data feature via
convolutional operation (Kollias et al., 2021). However, none of
these studies have focused on the estimation performance in the
presence of network reconfiguration or reduced redundancy of
measurements in practical application.

This paper introduces a robust method for power system state
estimation built upon the kernel ridge regression and unscented
Kalman filter (KRR-UKF). This approach makes several key
contributions, which are given as follows.

(1) A data-driven KRR approach is first developed in power system
state estimation. Considering the data correlation in PSSE is non-
linear and complicated, which is hard to be solved using the linear
ridge regressionmethod, the kernel trick is applied tomap data into
linear space, which can auto-adjust the model based on the input
data rather the mechanismmodel parameters and express the data
relation precisely and insensitive to unknown noises. Thereby,
reconstructing state transition and measuring models in the UKF
can improve the robustness and accuracy of PSSE notably.

(2) An improved deep learning model the ATT-CNN-GRU is first
proposed to provide pseudo-measurements. The ATT module
can calculate the attention weights of the input data and assist
the CNN to obtain local features and filter noise, and then, the
selected valuable features are passed to the gated recurrent unit
(GRU) for establishing a more suitable model for the relevant
data, which can accelerate computation speed and improve
accuracy compared with LSTM.

(3) An ordered point to identify the cluster structure (OPTICS)
outlier detection method is presented to detect outliers, which is
less sensitive to noise and the changes of parameters, allowing us
to identify outliers accurately and quickly.

In Section 2, the KRR algorithm is described. The KRR-UKF is
described in Section 3. A novel time series model through the ATT-
CNN-GRU is depicted in Section 4, which ensures robustness in the
case of abnormal data. The robustness and wide applicability of the
estimator are tested in Section 5. Finally, conclusions are derived in
Section 6.

2 Kernel ridge regression

The main task of PSSE in the distribution network (DN) is to
obtain the voltage and phase information synchronously when giving
the relevant measurement information and pseudo-measurements of
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a distribution network; the formulation of state and measurement
equations at time t are expressed as follows:

xt � Otxt−1 + wt, (1)
zt � f xt( ) + vt. (2)

In an actual scenario, the measurement information is acquired
using a smart meter, PMU that is susceptible to the unknown noises
wt, and the state equations are also corrupted by process noise vt;
these noises are usually assumed to follow Gaussian. However, due
to the channel communication noise, ambient temperature, and
diverse system operating conditions, the process and measurement
noise are always not Gaussian-distributed. Therefore, in order to
filter out the unknown noise in the system, the key issue is how to
establish the noise wt and vtmodels properly. With this regard, Eq. 1
and 2 can be built based on the KRR method to perform SE in the
distribution network. Based on that, we make the assumption that
there exist n nodes and l lines within the DN, which can be depicted
by a graph Ҁ = {N, L, N = 1,2 . . . N}, the total dataset count is
designated as M, and the DNmeasurements set at bus n and line nm
at time t are denoted by zn � Pn

t , Q
n
t , P

nm
t , Qnm

t , t � 1, 2, 3/M{ }. Let
the voltage at the bus n be defined as xn

t � Vn
t∠θ

n
t . Then, the

measurements and state sets are assumed as Z � zn, n ∈ N{ } and
Xn � xn

1 , x
n
2/xn

t , t � 1, 2,/M{ }, respectively, to collect the DN
information. The set is considered the state estimation set for bus
n, with Y � yn, n ∈ N{ } representing the state estimation dataset.

2.1 Ridge regression

According to the ridge regression method (Hoerl et al., 1970),
the ridge regression model can be set as f (W) =WTX withWT= (w1,
w2 / wn)

T, and the cost function is given as follows:

L W( ) � ∑n
i�1

wT
i xi − yi

���� ����22, (3)

where wi
Txi is the weighted training sample of voltage information

and yi is the corresponding estimation, and we assume the estimated
value is

W1 � argminL W( ). (4)
Considering that there may be insufficient power state

information in practical, due to which matrix W might become
invertible or model overfitting might occur, the regularization
framework argmin[L(W) + ηP(W)] is introduced, and the
estimated value of W1 can be given as follows:

Wt � XTX + η−1T( )−1XTY, (5)
where the estimated value W1 is the sum of a generalized non-
negative semidefinite matrix and a diagonal matrix. As the sum is
positive definite, W1 is reversible, which can suppress overfitting.

2.2 Kernel ridge regression

KRR is a powerful machine learning method used to capture the
connection between output and input datasets. The kernel method
canmap themeasurement or state information into high-dimensional

space; thus, all data are replaced by their feature vector:
X →X̂, Y →Ŷ; then, according to wood bury matrix identity
(Murphy, 2012),

E − FH−1G( )−1FH−1 � E−1F H − GE−1F( )−1, (6)
where H-1 = η-1 I, F = X̂, G = −X̂, and E = I, andW1 can be restated
as follows:

W1 � X̂
T

ηI + X̂X̂
T( )−1

Ŷ. (7)

Equation 7 can be further restated as follows:

W1 � ∑n
i�0
αiX̂, α � X̂X̂

T + ηI( )−1
Ŷ. (8)

Therefore, when a new state data X̂* is added to the dataset, the
predicted value can be computed by projecting it to solution W1 as
follows:

Y* � WT
1 X̂* � XTX̂ XTX + ηI( )−1Ŷ � κ X̂( ) K + ηI( )−1Ŷ, (9)

where κ(X̂) � K(X, X̂) and K is the kernel function. In this paper,
the radial basis function is selected as follows:

K X, X̂( ) � exp − X − X̂
���� ����2

2σ2
⎛⎝ ⎞⎠. (10)

For the parameter selection issues, the five-fold cross validation
can be used to optimize the kernel ridge regression convergence
speed and accuracy (Arlot et al., 2010).

3 Kernel ridge regression and
unscented Kalman filter

The state estimation model denoted by Eq. 1 and Eq. 2 can be
reformed as follows:

Xt+1 � g Xt( ) + qt, (11)
Zt+1 � f Xt+1( ) + pt. (12)

The state variables Xt and Xt+1 include the amplitude and phase
of voltage, which are passed through by the transition function g;
besides, the measurements Zt+1 contain real and reactive power flow
measurements of relevant node and branch, which are passed
through by the measuring function f. qt and pt are the noises
following Gaussian distribution. However, the functions g and f
are non-linear functions, and the estimation after passing the state or
measurement through these two functions is no longer Gaussian. So,
to effectively use the Kalman filter for a posteriori probability
estimation, the UKF uses the unscented transformation method
to simulate real distribution of the dataset.

The transition and the measuring functions g and f can be
replaced by the KRR model so as to learn the covariances of the
unknown noise in measurement and state information. A set of
state–measurement relations needs to be identified to form the
training data of KRR. In the transition model, xt-1 is mapped to
state transition Δx = xt-xt-1, and the state xt can be calculated by
combining the previous state transition. In the measuring model,
state xt is mapped to measurement zt. Then, the formulations of the
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training sets in transition and the measuring functions are shown as
follows:

mf � xt−1,Δx{ }
mg � zt, xt{ }{ . (13)

KRR approximates the functions g and f, and they are denoted
by K̂

f
and K̂

g
, respectively. Thus, (11) and (12) are rewritten as

follows:

xt � K̂
f
mf( ) + εt, (14)

zt � K̂
g
mg( ) + δt, (15)

where the noises εt are distributed following a mean of 0 Gaussian
distribution co-variance K̂

f(mf) and K̂
g(mg). To further remove

the impacts of the non-Gaussian noise, we use an approximate
parametric system model (Julier et al., 2000), and (14) and (15) are
rewritten as follows:

x′
t � K̂

f
mf( ) + ε̂t + f̂ m̂f( ), (16)

z′t � K̂
g
mg( ) + δ̂t + ĝ m̂g( ), (17)

where m̂f � xt−1, xt − K̂
f(mf){ }, m̂g � xt, zt − K̂

g(mg){ },
ε̂t ~ N(0, f̂(m̂f), and δ̂t ~ N(0, ĝ(m̂g)) . The sigma points can
be given by the following equation:

γ � ������
n + λ( )√

χt−1 � μt−1, μt−1 + γ
���
θt−1

√
, μt−1 − γ

���
θt−1

√( ){ , (18)

where μt−1 and θt−1 are the mean and covariance of x′
t, respectively.

The sigma nodes are calculated using the KRR transition model.

�χit � K̂
f
χit−1( ). (19)

The average and variance of the transition noiseQt can be acquired
through the predictive in KRR at the prior mean sigma point.

Qt � K̂
f
μt−1, m̂f( ), (20)

μ̂t � ∑2N
i�1

wi
m�χ

i
t

θ̂t � ∑2N
i�1

wi
c �χit − μ̂t) �χit − μ̂t)T + Qt( .(

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(21)

Then, the new sigma points are given as follows:

χ̂t � μ̂t, μ̂t + γ

��̂
θt

√
, μ̂t − γ

��̂
θt

√( ). (22)

We can obtain the predicted measurements using the KRR
model, and the resultant sigma points are applied for calculating
the mean values ẑt and St along with their associated uncertainties.

ẑit � K̂
g
χ̂it( )

ẑt � ∑2N
i�1

wi
mẑ

i
t

⎧⎪⎪⎨⎪⎪⎩ , (23)

Rt � K̂
g
μt−1, m̂g( )

St � ∑2N
i�1

wi
c ẑit − ẑt( ) ẑit − ẑt( )T + Rt

⎧⎪⎪⎨⎪⎪⎩ , (24)

where Rt is the measurement noise. We can compute the Kalman
gain Kt and use it to update the state estimate.

θ̂
x,z

t � ∑2N
i�1

wi
c X̂

i

t − μ̂t( ) ẑit − ẑt( )T
Kt � θ̂

x,z

t S−1t

⎧⎪⎪⎨⎪⎪⎩ , (25)

μt � μ̂t +Kt zt − ẑt( )
θt � θ̂t −KtStKT

t

{ . (26)

The KRR-UKF inherits the advantages of the UKF for
linearization and can automatically adjust the model and learn
the noise characteristics in the data. The non-parametric model
can analyze samples directly without prior assumptions about the
sample dataset, if less training data are available; to put it differently,
the KRR that is built with more input data offers more accurate
result. In addition, to save time cost, a parallel computing algorithm
is casted to accelerate calculation speed (Ko et al., 2007).

4 Robust power system state
estimation

Abnormal measurements (Zhang et al., 2020) seriously affect the
collection and analysis of user electricity consumption information,
so data detection and replacement are extremely necessary.

4.1 ATT-CNN-GRU prediction

4.1.1 ATT
The attention mechanism (ATT) abstracts the weight

information of historical time series data by calculating the
influence weight of each input data separately and performs
weighted average processing on all information weight factors, so
as to realize the adaptive weight distribution and enhance the
predictive precision of the algorithm. It is assumed that the ATT
mechanism is used to calculate attention distribution between
voltage data V= (v1, v2 . . . vi, i = 1 .. n-1) with timescales from
1 to n-1 and voltage data vn at time n. First, the correlation between
each historical voltage data V and vn is computed through the
utilization of the score function s. Then, the outcome is normalized
using the SoftMax function, and the attention distribution of VN at
each historical voltage input is obtained. The formula of αi is given as
follows:

ai � SoftMax s vi, vn( )( ) � exp s vi, vn( )( )
∑n
i�1
exp s vi, vn( )( )

. (27)

Finally, we weighted the historical voltage data based on the
obtained attention distribution to get the input information that the
next CNN model should focus on.

Att � ∑n−1
i�1

αivi. (28)

4.1.2 CNN
Since the state information is recorded in chronological order

that has a robust correlation, the CNN can be employed to extract
relevant characteristics from the historical operation data (Wu et al.,
2022). With the superiority of convolutional operations of the CNN,
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it is possible to perform a more advanced and abstract
representation of unprocessed data (Jensen et al., 2017).

The convolutional layer performs convolutional operations on
the information in receptive field by designing convolutional kernels
of appropriate size to abstractly represent the raw data. The feature
map C with input S of the convolutional layer can be represented as
follows:

C � P S ⊗ Wc + bc( ), (29)
where ⊗ is the convolutional operation, the rectified linear unit
(ReLU) (Hara et al., 2015) is selected, and P is the activation function.

There are two types of pooling layers, namely, max-pooling and
mean-pooling. In this paper, the choice is made to use max-pooling.
This operation preserves robust features while discarding weaker
ones. Additionally, it aids in the reduction of the number of
parameters to mitigate the risk of overfitting.

In this paper, the CNN is harnessed to capture the features
within the raw data and eliminate noise and unstable elements by
multi-dimensional data mining. The processed and relatively stable
data are passed into the LSTM network as a whole for long-term
sequence prediction.

4.1.3 GRU
The GRU is a variant of the LSTM algorithm. Compared with

traditional LSTM (Hochreiter et al., 1997), the GRU simplifies the
network structure by reducing the gate function and greatly improves
the operational efficiency. By introducing the gate function, we can
mine the time sequence regularity of relatively long interval and delay.
The structure of the GRU is shown in Figure 1.

In period t, the GRU receives input from two external sources,
namely, the present state x′

t and the concealed state ht−1. The
operational workflow of the GRU can be segregated into two
distinct steps.

4.1.3.1 Reset gate
This gate function reduces the risk of gradient explosion in the

model by dropping some information about the data that is not
relevant to the prediction moment and deciding how much
information needs to be saved.

rt � σ Wr ht−1, x′
t[ ]( ). (30)

4.1.3.2 Update gate
The reset gate has the same structure as the t update gate and

determines the degree to which the low-weight information is forgotten
and how much memory is retained to update to the current cell.

ut � σ Wu ht−1, x′
t[ ]( ). (31)

The newly updated memory content utilizes the reset gate to
preserve information related to the past and calculate the Hadamard
product (*) of the reset gate rt and [ht−1, x′

t]. The Hadamard results
will be summed and passed to the hyperbolic tangent activation
function (tanh). Thence, ht retains the influence of historical data on
the current prediction and regulates the influx of input data by
employing gating mechanisms, deciding what information should
be propagated to the subsequent unit, avoiding the gradient
disappearance problem.

ĥt � tanh Wĥ · rtp ht−1, xt( )[ ]( )
ht � 1 − ut( )pht−1 + utpĥt

{ . (32)

4.1.4 ATT-CNN-GRU
The ATT-CNN is employed to find time series data patterns,

which are imported as a whole into the GRU model for long time
series prediction to improve prediction stability, and the steps are
given as follows.

1. Data pre-processing: The data are normalized and then split into
next sets according to the GRU model training method
(Sutskever et al., 2013).

2. ATT-CNN unit: The pre-processed data are distinguished from
their strong and weak features. The weak features are removed,
and the strong features are extracted as the next unit input.

3. GRU unit: Utilizing the output from the preceding unit as input
to construct the time series prediction model.

4. Output: Exporting the results of ATT-CNN-GRU prediction.

More training details can be found in the work of Vinvals et al.
(2015), where theATT-CNN-GRU is used to fast predict the state vector.
Next, an OPTICS-based abnormal detection method is first introduced
and combined with the ATT-CNN-GRU to handle the outliers.

4.2 Abnormal data detection and
replacement

After obtaining the predicted state value, the corresponding
measurement data can be obtained through the power flow equation
(PF) (Tinney et al., 1967).

Pn
t � Vn

t ∑N
n�1

Vm
t Gnm cos θnmt + Bnm sin θnmt( )

Qn
t � Vn

t ∑N
n�1

Vm
t Gnm sin θnmt − Bnm sin θnmt( )

Pnm
t � Vn,2

t Gnm − Vn
t V

m
t G

nm cos θnmt − Vn
tV

m
t G

nm sin θnmt
Qnm

t � −Vn,2
t Bnm − Vn

tV
m
t B

nm sin θnmt + Vn
tV

m
t B

nm cos θnmt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (33)

FIGURE 1
Structure of the GRU
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For outliers such as missing and error measurements, the
anomaly detection method is applied to deal with these outliers.

OPTICS is a commonly used detection algorithm, which can
efficiency discover the oddly shape cluster. OPTICS creates a
neighborhood Nε(z*i ) of radius ε for each z*i , and there should
be no less thanMinPts data points in the neighborhood, where z*i is
the new input measurement at time i. Some definitions are given as
follows.

Directly density-reachable: If the new measurements z*i and z*j
satisfy z*i ∈ Nε(z*j) and card(Nε(z*j))≥MinPts, then z*i is
considered to be reachable by z*j density directly, and z*j is
regarded as core object, where the card(Nε(z*j)) denotes the
quantity of elements contained in the set Nε(z*j).

Density-reachable: For the dataset z*r, zr+1
* ,/, zr+s* , if

z*i i ∈ [r, r + s − 1] can be reachable by zi+1* density directly, then
z*i is density-reachable from zi+1* .

Density-connected: If z*i and z*j are reachable by z*k density
directly, then z*i and z*j are density-connected.

Core distance: The minimum neighborhood radius that makes
z*i a core object can be expressed as follows:

cd z( ) � d z,Na
ε z( )( ), if Nε z( )| |≥MinPts

undefined, if Nε z( )| |<MinPts
{ , (34)

whereNa
ε(z) denotes the dataNε(z) that is the ath nearest neighbor

to the data z, and z is the core object.

4.2.1 Reachability distance
The reachability distance is given as follows:

rd z*i ,z
*
j( )� undefined if card Nε z*i( )( )≤MinPts

max cd z*j( ),d z*i ,z
*
j( )( )∣∣∣∣∣ if card Nε z*i( )( )≥MinPts

{ ,

(35)
where rd(z*i , z*j) is the minimum distance at which z*i can be
reachable by z*j density directly, and z*j is a core object.

In practical applications, the dispatch center only needs to
import historical data into our KRR-UKF method and perform
modeling and then collect real-time data to perform real-time
filtering. Meanwhile, the model can also expand the training set
based on the actual production data to optimize the filter. The
specific flow of the robust KRR-UKF at time t is shown in
Figure 2.

The selection of parameters ε and MinPts can be found in the
work of Ankerst et al. (1999). The OPTICS and ATT-CNN-GRU are
used to handle the outliers, which consist of the following steps.

1. Computing reachability distance: Data zi in new measurement
dataset Z are selected randomly as the current object, and then,
the reachability distance of all other measurements in Z is
calculated with respect to the current object.

2. Marking the data: Data with the smallest reachability distance
from the current object are found, and then, the current object is
replaced with that set of data and is marked as processed.

3. Getting the smallest reachability distance: The reachable
distances of the unprocessed data from the current object are
calculated in turn, and if any of these reachable distances is
smaller than the reachable distance calculated in step 2, then the

corresponding data are replaced with the current object. If not,
the current object remains unchanged.

4. Iteration: Steps 2 and 3 are repeated until all data in Z have been
processed.

5. Classifying the data: The calculated reachable distance ε′ of each
data is compared with ε; if ε′ < ε, then the reachable distance is
meaningful, and the corresponding data are considered normal.
Otherwise, it is marked as outlier.

6. Predicting the state: The predicted measurements in period t of
node n can be computed via the ATT-CNN-GRU.

ẑn � P̂
n

t , Q̂
n

t , P̂
nm

t , Q̂
nm

t{ }. (36)

7. Outlier replacement: If the input data are marked as outliers, the
corresponding measurements are replaced by (39).

5 Case studies

Simulations are carried on a IEEE 33-bus system and a realistic
109-bus system from a city in China to verify the robustness under
different circumstances. The ATT-CNN-GRU and KRR-UKF
models are developed using PYTHON on the NVIDIA GTX-
1660TI with 16 GB RAM. The system state and measurement
dataset are obtained from the MATPOWER toolkit. We use the
mean absolute error (MAE) and root mean squared error (RMSE)
(Hossain et al., 2020).

5.1 IEEE 33-bus system

The load data on Belgian grid of 2020 are selected to generate
8,760 measurement state sets, in which a total of 4,000 sets of data

FIGURE 2
Flow chart of the robust KRR-UKF method.
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are randomly selected as the training set. The load data of 2021 on
Belgian grid are used to generate 8,760 data as the test set.

5.2 Scenario 1: with only Gaussian noise

We assume that the noise follows the Gaussian distribution. We
compare the UKF with the KRR-UKF and GP-FSE (Ji et al., 2021)
under ideal conditions. It is noted that in the existing references on
PSSE based on Kalman filtering, in this section, Gaussian noise with
a mean value of 0 and a variance of 10−6 is added into the sample
data, and the filter performance of the three algorithms is shown in
Figure 3.

As shown in Figure 3, under the ideal conditions, there is a
substantial disparity between the estimated state obtained
through UKF and the true value. Furthermore, we can see
from Figure 3, as data-driven algorithms, the KRR-UKF and
GP-FSE have a better prediction performance than the UKF, and
the difference between the estimated state via the KRR-UKF and
the actual value is exceedingly minute. This is because kernel
ridge regression is a powerful non-parametric tool that has the
capability to acquire noise characteristics and smoothing
parameters from the training data; thus, it is also deduced that
the accuracy of GP-FSE is slightly inferior to the method we have
introduced.

To intuitively demonstrate the effectiveness of these filters, the
MAE and RMSE of the KRR-UKF are shown in Figure 4A. In
addition, to further illustrate the robustness of our methods,
Gaussian noise characterized by a mean of 0 and a variance of
and 10−4 is added to the sample data.

Figure 4 illustrated theMAE andRMSE of the KRR-UKF algorithm
maintained at the range of 10−5–10−6 under different noises. The
proposed KRR maps the non-linear correlation into high dimension
for precisely tracking data characteristics. Then, the five-fold cross-
validationmethod also assignsmore appropriate parameters to the noise
data for optimizing the estimated results. As displayed in Figure 4A, the
data-driven approach we propose exhibits remarkable accuracy and
stability, and Figure 4B shows that the proposed method still has
excellent prediction accuracy when the noise covariance is increased
to 10−4. Furthermore, the RMSE ismore sensitive to predicting abnormal
values, but the RMSE of the KRR-UKF estimation results remains at 10−6

under different noise levels, which demonstrates that the method has
good robustness to the Gaussian noise.

5.3 Scenario 2: with non-Gaussian noise

To test KRR-UKF performances under different non-Gaussian
noises, the weights are 0.95 and 0.05, the bimodal Gaussian noise with
covariance matrices of 10−6 I and 10−5 I is added. The KRR-UKF has
the ability to assign higher weight to the predicted value information
with small deviation, thus filtering out non-Gaussian noise data.

In Figure 5 (a), when the degree of noise deviating from theGaussian
distribution increases, the proposed KRR-UKF still maintains the
estimation performance similar to scenario 1, and its MAE and
RMSE can be kept at 10−6 and 10−5, respectively, which proves that
the method can filter non-Gaussian noises. In order to showcase the
robustness of the KRR-UKF approach, Laplace noise and Cauchy noise
are added, the covariance matrix of Laplace is 10−5 I, and the location
parameter and scale location parameter are 0 and 10−5I, respectively.

In Figure 5, theMAE of the KRR-UKF filter increases slightly, and
the error remains at 10−5, which indicates that the proposed KRR-
UKF is robust to different non-Gaussian noises. To fully verify the
robustness of the KRR-UKF, noises that further deviate from the
Gaussian distribution are added to the datasets of the KRR-UKF and
GP-FSE, the bimodal Gaussian noise covariance matrices of the two
models are 10−6 I and 10−4 I, respectively; and the noise weight ratio is
gradually changed from 0.95/0.05 to 0.5/0.5, with a step size of 0.05.

In Table 1, both methods show an increase in MAE as the
deviation of non-Gaussian noise grows and finally remains at the
order of 10−4, but due to the lack of correction of predict equation,
the MAE of GP-FSE has nearly tripled, and its RMSE increases to
1.190 × 10−4, which means the instability of GP-FSE increases
further. However, the kernel ridge regression method can
optimize the parameters; thus, enabling the model adapts the
unknown noise exactly and corrects the estimation results more

FIGURE 3
Filtering result of node 6 of three algorithms.

FIGURE 4
KRR-UKF performance on node 6. (A)MAE and RMSE of the KRR-
UKF with small Gaussian of noise (B) MAE and RMSE of the KRR-UKF
with large Gaussian of noise.
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accurately. The RMSE of the proposed method fluctuates between
5.857 × 10−5 and 1.231 × 10−5, which demonstrates that the proposed
KRR-UKF has good robustness and stronger stability.

5.4 Scenario 3: with reduced measurement
redundancy

The proposed KRR-UKF method uses the historical data to
model the measuring equation in certain topology network; the
ratio between the number of measurement quantities and state
quantities is defined as measurement redundancy, which is
crucial to determine the result of state estimation. The
historical data used in this model include nodal voltage, phase
angle (V, θ), nodal active and reactive power (P, Q), and
associated branch (Pnm, Qnm). We take the voltage of bus 18 as
the test state consistent with scenario 2. The 100s estimated
results are compared with the calculated value using PF under
noiseless condition.

In Table 2, as the measurement redundancy increases, the
MAE and RMSE gradually decline, which is due to the facts that
more measurement information can be used to eliminate the
influence of bad data and errors. The parallel computing method
can compute the state mapped values of multiple measurements
simultaneously, so when the redundancy increases, there is no
significant increase in consumption time. When the redundancy
reaches 4, the time consumption of the KRR-UKF only increased
33% and remained in the order of milliseconds, indicating that
the proposed method can work properly with reduced
measurement redundancy.

5.5 Scenario 4: under network
reconfiguration

To demonstrate the proposed filter performances when the
topology network changes, we take node 24 as an example.
Table 3 gives two network structures, and the topology changes
from structure A to structure B at 50s. Half of the KRR-UKF training
set comes from structure A and half from topology B.

The performance under the condition of small Gaussian noise is
plotted in Figure 6.

In Figure 6, the voltage amplitude estimated by the KRR-
UKF aligns closely with the actual value. It should be noted that
the proposed KRR-UKF can model only based on the input data,
free from the limitations of the mechanism model. Thus, when
the topology network changes at 50s, both RMSE and MAE can
be maintained at around 10−5. It can be inferred that the
approach is capable of performing under network
reconfiguration by simply expanding the training set, which is
sufficient to deal with the topological changes in the distribution
network.

FIGURE 5
Filtering performance of node 6 in non-Gaussian of noise. (A) In
small noise, (B) under Laplace noise, and (C) under Cauchy noise.

TABLE 1 Performance of the two algorithms under different weight noises.

Weight ratio KRR-UKF GP-FSE KRR-UKF GP-FSE

MAE MAE RMSE RMSE

0.95/0.05 1.221 × 10−5 1.192 × 10−5 1.231 × 10−5 1.428 × 10−5

0.9/0.1 5.474 × 10−5 6.921 × 10−5 2.221 × 10−5 1.442 × 10−5

0.85/0.15 8.758 × 10−5 7.083 × 10−5 2.612 × 10−5 3.098 × 10−5

0.8/0.2 8.948 × 10−5 1.211 × 10−4 3.642 × 10−5 6.281 × 10−5

0.75/0.25 1.007 × 10−4 1.574 × 10−4 2.943 × 10−5 6.270 × 10−5

0.7/0.3 1.331 × 10−4 3.551 × 10−4 4.804 × 10−5 8.018 × 10−5

0.65/0.35 1.642 × 10−4 3.903 × 10−4 5.307 × 10−5 7.821 × 10−5

0.6/0.4 2.026 × 10−4 4.026 × 10−4 5.625 × 10−5 9.026 × 10−5

0.55/0.45 1.354 × 10−4 5.091 × 10−4 6.760 × 10−5 9.778 × 10−5

0.5/0.5 1.880 × 10−4 5.129 × 10−4 8.857 × 10−5 1.190 × 10−4

TABLE 2 Performances of the KRR-UKF using different datasets.

Dataset MAE RMSE Time (s)

{Vn}-{Pn} 6.958 × 10−5 3.898 × 10−5 0.021

{Vn}-{Pn, Qn} 6.272 × 10−5 3.463 × 10−5 0.026

{Vn}-{Pn, Qn, Pnm} 5.133 × 10−5 2.726 × 10−5 0.027

{Vn}-{Pn, Qn, Pnm, Qnm} 4.341 × 10−5 2.203 × 10−5 0.031
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5.6 Scenario 5: with abnormal or missing
data

Due to communication channel interruption, flicker, and
abnormal data transmission problems in the data acquisition
system, abnormal or missing data may occur. To demonstrate
the feasibility of using the ATT-CNN-GRU for outlier
replacement, this section takes the voltage of node 11 as an
example. This paper sets up two cases.

Case 1. assumed that 30% of the active power is abnormal in the
measurement data of node 11, and the gross error is 15%.

Case 2. assumed that there are 20% missing in the measurement
data of node 11.

The OPTICS clustering algorithm is applied to detect and label
outliers, and then, the proposed ATT-CNN-GRU is used to predict
and replace the abnormal measurements. The model tuning mainly
includes the number of convolutional layers, and the voltage
estimation results of different layers are shown in Table 4.

In Table 1, the estimation accuracy and estimation efficiency of the
CNN are optimal for a number of layers of 2. We list the voltage
prediction results of ATT-CNN-LSTM and the ATT-CNN-GRU with
the same structure in Table 5 to substantiate the effectiveness.
Comparing with ATT-CNN-LSTM, the prediction accuracy and
stability of the ATT-CNN-GRU improved by 12.51% and 16.39%,
respectively, because our method optimizes parameter structure and
integrates global and local features to avoid losing necessary feature
data. Thence, the time required to predict the data reduces consumption
of time by 14.75% compared with ATT-CNN-LSTM, which proves that
the method can accurately and efficiently replace the bad data.
Therefore, the ATT-CNN-GRU is selected to handle outliers, and
the filtering results of the KRR-UKF after ATT-CNN-GRU
replacing the anomalous data are shown in Figure 7.

In Figure 7A, the MAE of the KRR-UKF maintained at 10−5,
through the ATT-CNN module, the improved GRU can extract
coarse-grained features from the fine-grained features in data. To a
certain extent, it can solve the problems of memory loss and gradient
dispersion induced by excessively long steps in the GRU, which
provides the proposed method with accurate measurement data for
filtering. From the results of Figure 7 (b), the filtering curve
fluctuates very slightly and ensures filtering accuracy.

In Table 6, the WLS has the least calculation time, but the
estimation accuracy is the worst. Nevertheless, the KRR-UKF uses
improved LSTM algorithms for data replacement, so there will be
time loss when abnormal conditions occur, and still has milli-second
calculation time, which fulfills the criteria for achieving real-time
state estimation accuracy.

The KRR-UKF also displays relatively heightened estimation
accuracy under abnormal conditions with an RMSE of 3.4 × 10−5,
which is nearly 33% accurate than a GP-FSE. Hence, the KRR-UKF
emerges as a relatively optimal choice for real-time state estimation
in the IEEE 33-bus system.

5.7 109-bus system from a city in China

In this section, a 109-bus distribution network system from a
city in China is selected for a practical application test. We obtained
the operation data in August 2020, randomly selected 2,880 groups
as the training set, and used 2,880 groups of data in August 2021 as

TABLE 3 Two different structures of the IEEE-33 system.

Index Open switches

Structure A S33, S34, S35, S36, and S37

Structure B S7, S9, S14, S32, and S37

FIGURE 6
Filtering performance of node 24 when topology changes. (A)
Filter performance of the KRR-UKF when the topology network
changed. (B) MAE and RMSE of the KRR-UKF when the topology
network changed.

TABLE 4 Estimation results for different numbers of convolutional layers.

Number of layers MAE RMSE Execution time (ms)

1 4.509 × 10−4 2.585 × 10−4 14.79

2 9.903 × 10−5 8.021 × 10−5 15.54

3 2.119 × 10−4 1.067 × 10−4 15.92

4 2.031 × 10−4 9.852 × 10−5 17.23
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the testing dataset. We randomly choose 20% data from the test set
for exception handling, in which 10% data are replaced by 0 value
and 10% data are randomly reduced by 15%. The estimation results

of the KRR-UKF, GP-FSE, and UKF under normal conditions are
shown in Figure 8.

As shown in Figure 8, the filtering curves UKF fluctuate, and the
accuracy decreases due to unknown noise, which is affected by
unknown noise and has many deviation points. However, the KRR-
UKF can maintain the same trend as the true value in general.

In Table 7, comparing with the simulation result in scenario 1, the
accuracy of the UKF is greatly reduced due to the unknown noise. The
GP-FSE model is affected by non-Gaussian noise in training data and
lack of predictive steps to correct it. The error increases to 10−3.
However, the KRR-UKF still shows favorable performance, whose
RMSE is 3.22 × 10−4. The calculation time of the KRR-UKF is 0.292 s,
which also fulfills the requirements of real time state estimation. In

TABLE 5 Comparison of forecast results of different algorithms.

Predicted duration (s) Algorithms MAE RMSE Execution time (s)

1,000 ATT-CNN-GRU 8.048 × 10−5 6.103 × 10−5 1.856

ATT-CNN-LSTM 9.199 × 10−5 7.612 × 10−5 2.177

FIGURE 7
Filtering performance for node 11. (A) MAE of the KRR-UKF in
case 1&2. (B) estimation results of KRR-UKF in case 1&2.

FIGURE 8
Filtering performance of different algorithms.

TABLE 6 RMSE and computing time of different algorithms.

Index Algorithm Normal Abnormal

RMSE WLS 7.1 × 10−3 --

UKF 5.4 × 10−4 7.8 × 10−3

CSS (Prasad et al., 2017) 2.6 × 10−4 --

Method in the work of Kong et al. (2022) 3.8 × 10−4 --

GP-FSE 7.5 × 10−6 4.5 × 10−5

KRR-UKF 5.1 × 10−6 3.4 × 10−5

Time (ms) WLS 2.1 --

UKF 29.4 28.9

CSS (Prasad et al., 2017) -- --

Method in the work of Kong et al. (2022) 19.1 --

GP-FSE 32.51 39.24

KRR-UKF 46.56 40.21
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conclusion, the proposed KRR-UKF has sufficient accuracy and
robustness that can be applied in practical engineering.

6 Conclusion

In this paper, a KRR-UKF method, which can improve the
exactitude and robustness of state estimation, is proposed. The test
results prove that the proposed KRR-UKFmethod can filter unknown
noise in the power system, and the ATT-CNN-GRU can enhance the
accuracy of the predicting outlier, as well as in the conditions of
topology network changes or reduced measurement redundancy.
Furthermore, the performances of the KRR-UKF method are only
related to the dataset; that is to say, there is no need to consider the
actual physical model.Moreover, compared to existing algorithms, the
KRR-UKF exhibits significant enhancements in both estimation
accuracy and computational efficiency.

Although the KRR-UKF shows extraordinary performances on
state estimation, when the system is in three-phase unbalanced states,
the results of state estimation may become worse. Furthermore, the
method introduced in this paper necessitates a considerable volume of
historical operational data for model training, imposing a slightly
higher requirement on data accuracy without considering the
placement of measurement equipment and acquisition accuracy in
real industry. Further verification of the feasibility of application to
industry is still required.
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Nomenclature

11.1 Indices

i Index of node

n/m Index of branch

t Index of time

11.2 Sets

N Set of all bus

S Training data

W Set of weight

X Set of state

Y Set of estimation

Z Set of measurement

11.3 Parameters

bc ∈ Rd Biases vector of convolution

bi ∈ Rd Biases vector of the input stage

bf ∈ Rd Biases vector of the forget stage

bo ∈ Rd Biases vector of the output stage

bm ∈ Rd Biases vector of the current state

ct Cell state in prior t

ht−1 Hidden state in prior t

I Unit matrix

qt Process noises that follow Gaussian

pt Measurement noises that follow Gaussian

wt Process noises

vt Measurement noises

Wr ∈ Rd×2d Weighted matrices of the reset state

Wu ∈ Rd×2d Weighted matrices of the update state

Wĥ ∈ Rd×2d Weighted matrices of the output state

O ∈ Rd×2d Weighted matrices of the transition function

Xk Reactance of branch k

ζ Trend vector in period t

η Hyperparameter of the regularization function

11.4 Variables

Bnm
t Susceptance of branch nm in period t

C Mapped output of convolution

Gnm
t Conductance of branch nm in period t

Pn
t Active power of bus n in period t

Pnm
t Active power of branch nm in period t

Qn
t Reactive power of bus n in period t

Qnm
t Reactive power of branch nm in period t

Vn
t Voltage magnitude of bus n in period t

θnt Phase angle of bus n in period t

θnmt Phase angle difference between bus n and m in period t

ϒi Output of the transition function

11.5 Functions

f(·) Measuring function

g(·) Transition function

L(·) Cost function

P(·) Regularization function

σ Active function tanh
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