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To reduce the Carbon footprint and reduce emissions from the globe, the world
has kicked-off to leave reliance of fossil fuels and generate electrical energy from
renewable energy sources. The MOOPF problem is becomingmore complex, and
the number of decision variables is increasing, with the introduction of power
electronics-based Flexible AC Transmission Systems (FACTS) devices. These
power system components can all be used to increase controllability,
effectiveness, stability, and sustainability. The added uncertainty and variability
that FACTS devices and wind generation provide to the power system makes it
challenging to find the right solution to MOOPF issues. In order to determine the
best combination of control and state variables for the MOOPF problem, this
paper develops three cases of competing objective functions. These cases include
minimizing the total cost of power produced as well as over- and underestimating
the cost of wind generation, emission rate, and the cost of power loss caused by
transmission lines. In the case studies, power system optimization is done while
dealing with both fixed and variable load scenarios. The proposed algorithm was
tested on three different cases with different objective functions. The algorithm
achieved an expected cost of $833.014/h and an emission rate of conventional
thermal generators of 0.665 t/h in the case 1. In Case 2, the algorithm obtained a
minimum cost of $731.419/h for active power generation and a cost of power loss
is 124.498 $/h for energy loss. In Case 3, three objective functions wereminimized
simultaneously, leading to costs of $806.6/h for emissions, 0.647 t/h, and $214.9/
h for power loss.
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1 Introduction

Deregulation of power systems aims to introduce competition
and promote efficiency in the market. This has resulted in the
unbundling of vertically integrated utilities into separate entities
responsible for the generation, transmission, and distribution of
power. In deregulated power systems, the government has opened
up the power market to competition and private investment. This
means that private companies are allowed to own and operate power
plants, transmission lines, and distribution systems, and sell
electricity to consumers at market prices. The market determines
the price of electricity, but the government still regulates the quality
and dependability of service and may set criteria for renewable
energy and emissions. Therefore, modern developments such as the
integration of Renewable Energy, aging infrastructure, large demand
variability, grid modernization, and environmental concerns pose a
number of issues for the power system (Duman et al., 2020). Overall,
ensuring the stability, resiliency, and sustainability of the electricity
system necessitates a combination of cutting-edge technology,
policies, and laws to meet these challenges head-on. The
generation, transmission, and distribution of electricity are all
undergoing changes as a result of these current power system
developments. While they present potential to improve power
system efficiency, dependability, and sustainability, they also
present obstacles that must be overcome to guarantee the secure
and reliable operation of the grid (Wei et al., 2004). The power
system has benefited greatly from the incorporation of sophisticated
generation technologies like wind and solar, which have reduced
carbon emissions and increased the usage of renewable energy
sources. Intermittency, Grid Integration, Power Quality, and
Forecasting are just a few of the difficulties that it has posed for
power system management and planning (Abdo et al., 2018). In
order to boost the power system’s efficiency, dependability, and
performance, FACTS devices can be used (Ongsakul and
Bhasaputra, 2002). Installation in both new and existing power
systems makes them useful for a wide variety of voltage regulation
and renewable energy integration tasks. FACTS devices play a
crucial role in helping to keep the voltage profile of the power
system stable (Chen et al., 2018a). While the intermittent nature of
renewable energy sources like wind and solar can lead to voltage
fluctuations that disrupt the operation of other devices in the system
(Zhang et al., 2016), FACTS devices can swiftly and correctly adjust
voltage levels, preventing damage to the system. FACTS devices can
improve power transmission efficiency in addition to supporting a
wider range of voltages. It is not always possible to place wind and
solar generators close to load centers, which might increase
transmission losses and limit the amount of power that can be
transferred (Warid et al., 2016). By regulating the flow of reactive
power and decreasing transmission losses, FACTS devices like static
var compensators (SVCs) and thyristor-controlled series capacitors
(TCSCs) can enhance power transfer capability. By providing
voltage support, boosting power transfer capabilities, and
minimizing power losses, FACTS devices can make up for the
shortcomings of wind and solar integration. FACTS devices will
become even more important in maintaining the power grid’s
reliability, efficiency, and stability as renewable energy sources
like wind and solar continue to play a larger role in the
generation mix (Biswas et al., 2018). Therefore, it is crucial to do

an OPF analysis that accounts for both renewable energy sources
and FACTS technology (Varadarajan and Swarup, 2008; Kumar and
Premalatha, 2015; Li et al., 2019).

Nonlinear programming approaches, such as the gradient-based
quasi-newton method (Mahdad and Srairi, 2016), interior point
methods (Abaci and Yamacli, 2016), and evolutionary algorithms
(Ali et al., 2023a), can be used to solve the classic OPF issue. The best
values for the controllable variables that simultaneously meet the
operating constraints and lower the cost of power generation and
distribution are found in order to solve the OPF problem. The
solutions to the OPF problem can be used to help with power system
planning decisions, such as selecting the best combination of
generation technologies, expanding the transmission system, or
putting demand-side management plans into action. Compared
to conventional techniques like Bender decomposition, Interior
Point approaches, and gradient-based, metaheuristic algorithms
have a number of advantages. They are highly scalable, robust,
capable of global optimization, easily parallelizable, and flexible to
handle different problem formulations. These advantages make
metaheuristic algorithms a popular choice for solving large-scale
optimization problems in various domains.

In the recent few decades, metaheuristic algorithm attains the
focus of researchers to solve complex OPF problems because of
providing a powerful and flexible tool and can help researchers and
practitioners find better solutions to complex power system
optimization challenges especially those involving multiple
objectives and constraints. For the solution of single objective
OPF these include; genetic algorithm (GA) (Kumari and
Maheswarapu, 2010), evolutionary programming (EP) (Wei et al.,
2004), developed Gray wolf optimization (DGWO) (Abdo et al.,
2018); tabu search (TS) (Ongsakul and Bhasaputra, 2002), improved
krill herd algorithm (IKHA) (Chen et al., 2018a); particle swarm
optimization (PSO) (Zhang et al., 2016), Jaya algorithm (Warid
et al., 2016), differential evolution (DE) (Varadarajan and Swarup,
2008; Biswas et al., 2018), modified coyote optimization algorithm
(MCOA) (Li et al., 2019), adaptive real coded biogeography-based
optimization (ARCBBO) (Kumar and Premalatha, 2015), adaptive
partitioning flower pollination algorithm (APFPA) (Mahdad and
Srairi, 2016), differential search algorithm (DSA) (Abaci and
Yamacli, 2016), Improved artificial bee colony algorithm (IABC)
(Ali et al., 2023a), moth swarm algorithm (MSA) (Mohamed et al.,
2017), improved colliding bodies optimization algorithm (ICBO)
(Bouchekara et al., 2016) and backtracking search optimization
algorithm (BSA) (Chaib et al., 2016) have been employed for the
solution to the single objective OPF problem. The main drawback of
this research appears to be that it primarily concentrates on single or
weighted sum multi-objective optimum power flow (MOOPF)
problems. More investigation is required to create more precise
and efficient algorithms that can tackle the issue under a variety of
operating circumstances and uncertainties. When it comes to
optimizing the operation of power systems, single-objective
metaheuristics may not be the most suitable approach. This is
due to the complexities of such a system, which require more
advanced optimization techniques to effectively manage. Multi-
objective evolutionary algorithms (MOEAs) can be better suited
for this purpose. These algorithms can better handle the
complexities of a power system making them more effective than
single objective metaheuristics.
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Several MOEAs have been applied to solve Multi-objective OPF
(MOOPF) problem reviewed in (Niu et al., 2014; Skolfield and
Escobedo, 2022) considering conventional thermal generators; these
includes: enhanced GA (EGA) (Kumari and Maheswarapu, 2010),
shuffle frog leaping algorithm (SFLA) (Niknam et al., 2011), quasi-
oppositional teaching learning based optimization (QOTLBO)
(Mandal and Kumar Roy, 2014), modified imperialist competitive
algorithm (MICA) (Ghasemi et al., 2014), Multi-objective DE
(MDE) (Shaheen et al., 2016), multi-objective modified ICA
(MOMICA) (Ali et al., 2023b), modified TLBO (MTLBO)
(Shabanpour-Haghighi et al., 2014), modified gaussian bare-
bones ICA (MGBICA) (Ghasemi et al., 2015), non-dominated
sorting gravitational search algorithm (NSGSA) (Bhowmik and
Chakraborty, 2015), improved strength Pareto evolutionary
algorithm 2 (I-SPEA2) (Yuan et al., 2017), multi-objective
evolutionary algorithm based decomposition (MOEA-D) (Zhang
et al., 2016), enhanced self-adaptive differential evolution (ESDE-
MC) (Pulluri et al., 2017), novel quasi-oppositional modified Jaya
algorithm (QOMJaya) (Ali et al., 2023c), multi-objective dimension-
based firefly algorithm (MODFA) (Chen et al., 2018b), semidefinite
programming (SDP) (Abbas et al., 2022), improved normalized
normal constraint (INNC) (Rahmani and Amjady, 2018), multi-
objective firefly algorithm with a constraints-prior pareto-
domination (MOFA-CPD) (Chen et al., 2018c), novel hybrid bat
algorithm with constrained pareto fuzzy dominant (NHBA-CPFD)
(Habib et al., 2022), modified pigeon-inspired optimization
algorithm (MIPO) (Chen et al., 2020), and interior search
algorithm (ISA) (Chandrasekaran, 2020). In these papers, the
integration of renewable energy sources was not considered.
Moreover, the integration of wind and solar generation, which
are increasingly important in modern power systems. Wind and
solar power are clean, can significantly reduce greenhouse gas
emissions, and are independent of fossil fuels. System operators
can optimize power system management to make the most of
renewable energy resources like wind and solar by including
them into the MOOPF problem. The inclusion of renewable
energy sources in the MOOPF problem also allows for the
optimization of multiple objectives such as minimizing cost,
reducing emissions, and ensuring system reliability, all of which
are critical for the sustainable operation of power systems.
Therefore, the integration of wind and solar power into the
MOOPF problem is essential to ensure the optimal use of
renewable energy resources and to meet the energy needs of
society in a sustainable and reliable manner.

Several single objective EAs considering uncertainties in wind
generation were implemented to solve the OPF problem that
includes; self-adaptive evolutionary programming (SAEP) (Shi
et al., 2012), Gbest-guided ABC (GABC) (Roy and Jadhav, 2015)
modified bacteria foraging algorithm (MBFO) (Panda et al., 2014;
Ali et al., 2023d). Whereas these papers did not employ MOEAs and
do not consider the impacts of FACTS devices. Multi-objective
optimal power flow (MO-OPF) is a complex optimization problem
that seeks to simultaneously minimize multiple objectives such as
generation cost, transmission losses, and environmental impact
while satisfying various system constraints. FACTS devices can
provide several specific advantages in MO-OPF problems, such
as improving voltage stability, enhancing power transfer capability,
reducing operating costs, better utilizing existing infrastructure, and

offering flexibility and adaptability in optimizing power flow (Benabid
et al., 2009; Sebaa et al., 2014; Ziaee and Choobineh, 2017a; Agrawal
et al., 2018; Shafik et al., 2019).

The optimal power flow (OPF) problem has been the subject of
numerous academic investigations, with many of them employing
single-objective evolutionary algorithms (EAs) to find a solution.
Hybrid tabu search and simulated annealing (TS-SA) (Ongsakul and
Bhasaputra, 2002), DE (Basu, 2008), fuzzy-based improved
comprehensive-learning particle swarm optimization (FBICLPSO)
(Naderi et al., 2019), hybrid PSO-PS (Berrouk and Bounaya, 2018),
Chaotic krill herd algorithm (CKH) (Mukherjee and Mukherjee,
2016), quasi-oppositional chemical reaction optimization (QOCRO)
(Dutta et al., 2018), non-dominated PSO (NPSO) (Benabid et al.,
2009), cross-entropy (CE) (Sebaa et al., 2014), mixed-integer
nonlinear programming (MINLP) (Ziaee and Choobineh, 2017a),
TLBO (Agrawal et al., 2018) and Adaptive Multi-Objective Parallel
Seeker Optimization (APSOA) (Shafik et al., 2019). These studies
involved modifying various standard test networks by considering
only FACTS devices. These publications revealed that the proper
placement and size of FACTS devices can have a major effect on the
power system’s cost, power loss, and voltage profile improvement.
The authors used single-objective EAs to determine the best course
of action for the OPF problem while accounting for FACTS tools.
These results may aid power system operators and planners in using
FACTS devices in power systems that are both efficient and reliable.
However, it should be noted that previous analyses did not factor in
the growing significance of renewable energy sources like wind and
solar in today’s electricity grids. When opposed to conventional
power system components like transformers and capacitors, FACTS
devices that are optimally located and sized provide a number of
benefits. Overall, FACTS devices provide a versatile and low-cost
answer to the problem of improving the power system’s
performance through multi-objective optimal power flow. They
have the potential to lessen the financial and ecological burden
on the power system while increasing its dependability and
efficiency.

Integrating renewable energy sources and flexible AC
transmission system (FACTS) devices has been offered as a
solution to the optimal power flow (OPF) problem. Two studies
that suggest combining wind energy and TCSC, one of the FACTS
devices, to address the OPF issue are the hybrid PSO and GSA (PSO-
GSA) (Duman et al., 2020) and the MINLP-B&P (Abdo et al., 2018).
These analyses aim to minimize the generation cost and emissions
while optimizing a set of weighted total objectives that account for
the uncertainty and variables of wind power. The authors found
superior solutions to the OPF problem by combining wind power
and FACTS devices. These researches emphasize the significance of
optimizing power systems with renewable energy sources and
FACTS devices in mind to achieve sustainable and dependable
energy output. A variety of objective functions and models of
flexible AC transmission systems (FACTS) such as static var
compensators (SVCs), thyristor-controlled series compensators
(TCSCs), and thyristor-switched phase shifters (TSPSs) were used
in the aforementioned papers to formulate implementations of
single and multi-objective algorithms for solving the optimal
power flow (OPF) problem. Several test networks have been
modified by the authors so that their methods can be evaluated.
Table 1 provides an overview of their respective implementations,
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TABLE 1 CRUX of the literature review for the single and multi-objective OPF problem with and without integration FACTS devices.

Year/Method/Ref M Objective functions Res FACTS Test system

S/WS PF CPg CQg E CPL PL VD SI Wind Solar TCSC TCPS STC 30 57 118 Buses

2015/ARCBBO/(Kumar and Premalatha, 2015) √ − √ − √ − √ √ √ − − − − − √ √ − −

2016/APFPA/(Mahdad and Srairi, 2016) √ − √ − − − √ √ − − − − − − √ − − −

2018/MFO/(Trivedi et al., 2018) √ − √ − − − √ √ √ − − − − − √ − − −

2016/DSA/(Abaci and Yamacli, 2016) √ − √ − √ − √ √ √ − − − − − √ √ − 9

2015/IABC/(Ali et al., 2023a) √ − √ − √ − √ − − − − − − − √ √ − 300

2018/DE/(Biswas et al., 2018) √ − √ − √ − √ √ √ − − − − − √ √ √ −

2017/MSA/(Mohamed et al., 2017) √ − √ − √ − √ √ √ − − − − − √ √ √ −

2016/ICBO/(Bouchekara et al., 2016) √ − √ − − − − √ √ − − − − − √ √ √ −

2016/BSA/(Chaib et al., 2016) √ − √ − √ − √ √ √ − − − − − √ √ √ −

2016/MOEA-D/(Zhang et al., 2016) − √ √ − √ − √ √ − − − − − − √ − − −

2017/ESDE-MC/(Pulluri et al., 2017) − √ √ − √ − √ − √ − − − − − √ − − 59

2011/SFLA/(Niknam et al., 2011) √ √ √ − √ − − − − − − − − − √ − − −

2014/MTLBO/(Shabanpour-Haghighi et al., 2014) − √ √ − √ − − − − − − − − − √ √ − −

2015/MGBICA/(Ghasemi et al., 2015) − √ √ − √ − − − − − − − − − √ √ − −

2017/I-SPEA2/(Yuan et al., 2017) − √ √ − √ − − − − − − − − − √ √ − −

2021/MaOGBO/(Premkumar et al., 2021) − √ √ − √ − √ √ √ − − − − − √ √ √ −

2015/NS-GSA/(Bhowmik and Chakraborty, 2015) − √ √ − √ − √ √ √ − − − − − √ − − −

2017/MDE/(Shaheen et al., 2016) − √ √ − √ − √ √ √ − − − − − √ − √ −

2010/EGA/(Kumari and Maheswarapu, 2010) − √ − − − − √ − √ − − − − − √ − − −

2014/QOTLBO/(Mandal and Kumar Roy, 2014) − √ √ − √ − √ − √ − − − − − √ − √ −

2014/MICA/(Ghasemi et al., 2014) − √ √ − − − √ √ − − − − − − − − √ −

2014/MOMICA/(Ali et al., 2023b) − √ √ − √ − √ √ − − − − − − √ − √ −

2018/QOMJaya/(Ali et al., 2023c) − √ √ − − − √ √ − − − − − − √ − − −

2020/ISA/(Chandrasekaran, 2020) − √ √ − − − √ √ √ − − − − − √ √ − −

2018/MODFA/(Chen et al., 2018b) − √ √ − √ − √ − − − − − − − √ √ √ −

2018/SDP/(Abbas et al., 2022) − √ √ − √ − − − − − − − − − √ √ √ −

(Continued on following page)
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TABLE 1 (Continued) CRUX of the literature review for the single and multi-objective OPF problem with and without integration FACTS devices.

Year/Method/Ref M Objective functions Res FACTS Test system

S/WS PF CPg CQg E CPL PL VD SI Wind Solar TCSC TCPS STC 30 57 118 Buses

2018/INNC/(Rahmani and Amjady, 2018) − √ √ − − − √ √ − − − − − − √ − √ −

2019/NHBA-CPFD/(Habib et al., 2022) − √ √ − − − √ √ − − − − − − √ √ √ −

2018/MOFA-CPD/(Chen et al., 2018c) − √ √ − − − √ √ − − − − − − √ √ − −

2019/HFBA-COFS/(Chen et al., 2019) − √ √ − − − √ √ − − − − − − √ √ √ −

2020/MIPO/(Chen et al., 2020) − √ √ − − − √ √ − − − − − − √ √ √ −

2012/SAEP/(Shi et al., 2012) √ − √ − − − − − − √ − − − − − − − 39

2015/GABC/(Roy and Jadhav, 2015) √ − √ − √ − − − − √ − − − − √ − − −

2013/MBFO/(Panda et al., 2014) √ − √ √ − − − − − √ − − − − √ − − −

2015/MBFA/(Ali et al., 2023d) √ − √ √ − − − − − √ − − − √ √ − − −

2002/TS-SA/(Ongsakul and Bhasaputra, 2002) √ − √ − − − − − − − − √ √ − √ − − −

2008/DE/(Basu, 2008) √ − √ − − − − − − − − √ √ − √ − − −

2019/FBICLPSO/(Naderi et al., 2019) √ − √ − − − − − − − − √ − − √ − − −

2018/PSO-PS/(Berrouk and Bounaya, 2018) √ − √ − − − − − − − − √ − − √ − − −

2016/CKH/(Mukherjee and Mukherjee, 2016) √ − − − − − √ √ − − − √ √ − √ √ √ −

2018/QOCRO/(Dutta et al., 2018) √ − − − − − √ √ √ − − √ − − √ − − 14

2009/NPSO/(Benabid et al., 2009) − √ − − − − √ √ √ − − √ − − √ − − 114

2014/CE/(Sebaa et al., 2014) √ − − − − − √ √ − − − − √ − √ − − −

2017/MINLP/(Ziaee and Choobineh, 2017b) √ − √ √ − − − − − − − √ − − − − √ −

TLBO/2018/(Agrawal et al., 2018) √ − − √ − − √ √ − − √ − − √ − − 14, 75

2019/APSOA/(Shafik et al., 2019) √ − √ √ − − √ √ √ − − √ − − √ √ √ 9

2020/PSOGSA/(Duman et al., 2020) √ − √ √ √ − √ √ √ √ − √ − − √ √ − −

2017/MINLP-B&P/(Ziaee and Choobineh, 2017a) √ − √ √ − − − − − √ − √ − − − − √ −

S/WS, single objective or weighted sum; M, Multi-objective; PF, pareto frontier; CPg , Cost of active power generated components; CGg , Cost of reactive power generated components; E, emission; CPL , Cost of Energy loss; FACTS: flexible ac transmission system; SVC,

Static VAR compensator; TCSC, Thyristor-Controlled Series compensator; TCPS, Thyristor-Controlled phase shifter.
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including algorithms, objective functions, FACTS models, and test
networks. Researchers can learn more about what works and what
does not when it comes to solving the OPF problem and creating
optimization algorithms for power systems by comparing the
outcomes of various experiments.

1.1 Motivation

Table 1 clearly shows that Multiobjective EAs considering
simultaneously minimization of highly conflicting objective
functions such as active power cost of conventional thermal
generators along with the uncertain cost of wind generators, cost
of energy loss, and emission was not employed to solve. In addition,
real-time simultaneous modeling of both the site and size of various
FACTS devices such as static var compensator (SVC), thyristor-
controlled series compensator (TCSC), and thyristor-controlled
phase shifter (TCPS) has not been employed to solve multi-
objective optimal power flow (MOOPF) problems. This is crucial
to take into account since the placement and size of FACTS devices
can have a big impact on the optimization goals, such as cost,
emission reduction, and cost of energy loss. Therefore, the
integration of both site and size modeling of FACTS devices into
MOOPF solutions can potentially lead to more effective and efficient
power system optimization. Single objective OPF is extensively
researched in the literature, as shown in Table 1, taking into
account technical, economic, and environmental objective
functions. Compared to single objective OPF, MOOPF is more
resilient to unpredictable factors like changes in load and the
supply of renewable energy. In a single simulation run, multi-
objective also offers a trade-off between several competing
objective functions, which can assist decision-makers in
optimizing the power system with improved overall performance
and efficiency. Multiobjective optimization is important,
particularly in the face of growing renewable energy integration,
which can increase the complexity of power systems and create new
challenges for system operators. It can also be used to reduce the
environmental impact of power systems, by optimizing objectives
such as reducing emissions or promoting renewable energy
integration. This can help utilities to meet environmental targets
and reduce their carbon footprint.

In recent years extremely efficient MOEAs such as Two-phase
(ToP) (Liu and Wang, 2019), CCMO (Tian et al., 2020), C3M (Sun
et al., 2022), and BiCo (Ali et al., 2023e) are implemented to solve
mathematical optimization problems, they were not employed to solve
mixed integer nonlinear MOOPF problem considering site and size of
FACTS device and probabilistic wind generation. In the literature
review, several of the multi-objective evolutionary algorithms
(MOEAs) were examined. These MOEAs make use of the penalty
function approach, a commonmethod for dealing with restrictions that
penalizes those who violate them. The selection of the penalty
parameters has a significant impact on the approach’s efficacy. If the
penalty coefficient is set too low, the algorithm may get stuck in an
unfeasible region, and if it is set too high, the feasible spacemay be over-
explored and the program may become stuck in local optima. A final
non-dominated Pareto front solution that is not viable might also result
from choosing the wrong penalty parameter. Therefore, in order to lead
MOEAs for a real multi-objective problem with constraints, a suitable

constraint management technique is needed. This looks for a broadly
scattered Pareto front close to the global optimum after searching all of
the physically possible space and escaping the infeasible zone.
Additionally, the majority of writers in the literature examined state
that their MOEAs are robust and have converged, producing a better
Pareto front than other MOEAs, and they use pre-defined parameters
for their MOEAs. Comparing many MOEAs is difficult, though,
because each MOEA’s performance is heavily influenced by the data
it collects and its pre-established settings.

1.2 Contributions

In this research, authors developed a stochastic model of wind
power probability and used it to optimize the distribution of three
different FACTS devices: the TCSC, the TCPS, and the SVC. As part
of the optimization process, we take into account penalties and
reserve costs associated with deviations from scheduled wind power
output and determine the optimal placement and rating for these
devices to achieve the lowest possible total cost of generation.
Furthermore, we have carried out a case study to investigate the
effects of wind power, uncertain load demand, and FACTS devices
on the system. In order to determine the best location and size for
FACTS devices and the integration of wind in power systems, the
Multi-Objective Optimal Power Flow (MOOPF) problem
formulation has been taken into consideration. This study makes
a significant contribution by simultaneously taking into account a
number of competing objective functions, such as the price of active
power, emissions, and energy loss. The limited domination principle
and the bidirectional coevolutionary (BiCo) algorithm are used to
generate a large number of solutions in a single simulation run,
allowing power system operators to make well-informed decisions
that balance various factors. The suggested algorithm BiCo is able to
deliver an evenly spaced and wide range of non-dominated
solutions, allowing power system operators to choose the option
that best matches their demands, according to a thorough
examination and comparison of simulation data. In the proposed
MOOPF formulation, optimal siting and allocation of FACTS
devices are used to mitigate the limitations of wind generation, as
discussed earlier, while wind integration can help to reduce
emissions and the cost of conventional thermal generators. The
proposed formulation also made significant contributions to model
various conflicting two and three-objective functions of three study
cases to solve deterministic and probabilistic MOOPF problems.

The rest of the paper is structured as; In Section 2 proposed
FACTS devices are modeled, and in Section 3, the MOOPF problem
is formulated. Section 4 discusses the constraint handling technique
(CHT) and the framework proposed algorithm. The findings of the
simulation are carefully evaluated and juxtaposed in Section 5.
Section 6 contains the paper’s conclusion.

2 Modeling of FACTS devices

Improved power system efficiency is achieved with the use of
FACTS devices. Utility companies can save money upgrading their
current AC transmission system by switching to these substation-
based controls, which have faster reactions against power flow
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fluctuation in transmission lines. Increased power transfer
capability, improved voltage stability, faster reaction, lower
transmission losses, and increased grid dependability are only
some of the benefits of using FACTS devices in power system
operation and management. When it comes to boosting the
efficiency and dependability of power grids, FACTS devices are
both adaptable and affordable. They can aid in lowering the
environmental toll of producing and transporting electricity,
thereby helping to satisfy rising demand. In general, the goals
and limitations of the power system’s operation determine which
FACTS devices are chosen for MOOPF. Power system efficiency,
reliability, cost, and environmental effect can all benefit from the
strategic placement of FACTS devices. Static Var Compensator
(SVC), Thyristor-Controlled Series compensator (TCSC), and
thyristor-controlled phase shifter (TCPS) are just a few examples
of the many FACTS devices available. In this study, we apply SVC,
TCSC, and TCPC to enhance power system performance in the face
of variable wind integration. Figure 1 shows a conceptual diagram of
power system integration.

2.1 Modeling OF SVC devices

SVC devices are important for managing the power flow of
transmission lines because of their ability to modulate voltage by
absorbing or producing reactive power into or out of the bus. For the
purpose of mitigating voltage dips and keeping the system stable
during transient occurrences, SVCs are utilized in MOOPF
difficulties here to manage the voltage and offer reactive power
compensation. By applying SVCs to MOOPF challenges, we can
boost the power grid’s stability and security while increasing its
efficiency and dependability across the board. Figure 1 is a schematic
depicting the power distribution for the SVC model, showing how
the kth bus receives power (Kumar and Premalatha, 2015; Mirsaeidi
et al., 2023):

BSVC � BC + BL γ( ) (1)
QSVC� −V2

kBSVC (2)
The objective functions in MOOPF problems typically include

minimizing the cost of generation and minimizing the

transmission losses. By controlling the reactive power output of
SVCs that isQSVC, these objectives can be achieved more efficiently
and effectively. In the proposed MOOPF problems, SVCs are
modeled as negative VAR generators across the PQ buses
(Biswas et al., 2020).

2.2 Modeling of TCSC

TCSC consists of a thyristor-controlled reactor and a fixed series
capacitor connected in parallel. The combined capacitive and
inductive reactance of a TCSC, denoted by the symbol XC and
XL, respectively, can be written as:

XTCSC γ( ) � XCXL γ( )
XL γ( ) −XC

(3)

Figure 1 displays the fixed model of TCSC that is installed on the
line linking buses i and k. Upon integrating TCSC (as a changeable
capacitive reactance) into the system, the modified reactance (Xeq)
of the transmission line is altered, as indicated by the following
equation:

Xeq � Xik −XTCSC � 1 − τ( )Xik (4)

Whereas,

τ � XTCSC

Xik
(5)

The inductive reactance of the line is denoted by Xik and τ

represents the degree of series compensation. The power flow
equations (Basu, 2008; Biswas et al., 2020) for the line, which
takes into account TCSC, can be formulated as:

Pf
k � V2

i Gik−ViVkGik cos δi − δk( ) − ViVkBik sin δi − δk( ) (6)
Qf

k� −V2
i Bik − ViVkGik sin δi − δk( ) + ViVkBik cos δi − δk( ) (7)

Pt
k � V2

kGik − ViVkGik cos δi − δk( ) + ViVkBik sin δi − δk( ) (8)
Qt

k� −V2
kBik + ViVkGik sin δi − δk( ) + ViVkBik cos δi − δk( ) (9)

Whereas, Gik and Bik are the conductance and susceptance of
transmission line between buses i and k, can be computed as Gik �

FIGURE 1
The pi network of the Transmission line between bus i and k with the integration of SVC, TCSC, and TCPS.
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Rik

[R2
ik
+(1−τ)Xik]2 and Bik� − (1−τ)Xik

[R2
ik
+(1−τ)Xik]2, respectively. δi and δk are the

voltage angles at bus i and k.

2.3 Modeling of TCPS

Figure 1 depicts the arrangement of TCPS on the line
between buses i and k. In case TCPS introduces a phase shift
angle ϕ, the power flow equations for the line, using the
equations given in references (Basu, 2008; Biswas et al.,
2020), can be expressed as.

Pf
k � V2

kGik

cos 2 ϕ
− ViVk

cos ϕ
Gik cos δi − δk + ϕ( ) + Bik sin δi − δk + ϕ( )[ ]

(10)
Qf

k� − V2
i Bik

cos 2 ϕ
− ViVk

cos ϕ
Gik sin δi − δk + ϕ( ) − Bik cos δi − δk + ϕ( )[ ]

(11)
Pt
k � V2

kGik − ViVk

cos ϕ
Gik cos δi − δk + ϕ( ) − Bik sin δi − δk + ϕ( )[ ]

(12)
Qt

k� −V2
kBik + ViVk

cos ϕ
Gik sin δi − δk + ϕ( ) + Bik cos δi − δk + ϕ( )[ ]

(13)
Whereas, in power flow equations ϕ is the phase angle shift

produced by TCPS.

3 Problem formulation

The proposed approach involves modeling the optimal
placement and sizing of series and shunt FACTS devices, in
addition to the optimal integration of wind turbines. The
MOOPF is formulated to address this issue, which is a non-
convex and non-linear problem (NLP) with multiple objective
functions (M ≥ 2). The objective function is expressed as follows,
without any loss of generality:

minF �x( ) � f1 �x( ), f2 �x( ), . . . ,fM �x( )[ ]
s.t: gi �x( )� 0,i� 1, 2, 3, . . . .,p hj �x( )≤ 0,j� 1, 2, 3, . . . ,q �x∈ Ω (14)

While the objective functions are f1(x), f2(x), . . . ,fM(x) the
equality constraints are gi( �x) and the inequality constraints are,
hj( �x), respectively. Both gi( �x) and hj( �x) constraints define the
feasible region and �x is the decision vector. In the following
subsections objective functions, equality and inequality
constraints, and decision vectors are mathematically formulated.
Table 2; Figure 2 provide details about the proposed network and
single-line diagram of the simulation resistively.

3.1 Objective functions, constraints, and
decision variables

The selection of objective functions in the MOOPF problem is
based on the fact that these functions represent the primary
concerns of power system operators and regulators. In this
study, we have chosen these three Multiobjective functions to
reflect the economic, environmental, and technical aspects of
power system operation. The cost of generation is important for
ensuring the economic viability of power system operation, while
the emission cost reflects the need for reducing the environmental
impact of power generation. The cost of energy loss is important
for ensuring the efficient operation of the power system by
minimizing transmission and distribution losses. Therefore, the
selection of these multi-objective functions is based on their
importance in achieving the overall objective of sustainable and
efficient power system operation. By considering these objectives
in a multi-objective optimization framework, the authors aim to
provide a comprehensive solution that balances the trade-offs
between these different objectives. Additionally, the integration
of wind generation and the optimal location and sizing of FACTS
devices are also incorporated into the MOOPF problem
formulation.

3.2 Formulation of objective functions

3.2.1 Cost model
The cost of power generation C(Pg) and reactive power

produced by FACTs devices is given as;

TABLE 2 Data of IEEE standard 30-BUS test system under study.

Devices Number Explanation

Buses 30 Mirsaeidi et al. (2023)

Branches 41 Mirsaeidi et al. (2023)

Thermal Generators 4 Are located on bus No. 1 (ref), 2, 8 and 13

Wind generators 2 Are located on buses No. 5 and 11 (Biswas et al., 2020)

Transformers 4 Installed at branches 11, 12, 15 and 36

SVC 2 Bus and rating are decision variables

TCSC 2 Branch and rating are decision variables

TCPS 2 Branch and rating are decision variables

Loads 24 Commutative active and reactive demand of 283.4 MW, 126.2 MVAr
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f1 � ∑NSC

sc�1
Δsc∑NG

i�1
C Pgt( ) + C PgW( ) + C FAC( )( ) (15)

Where, NSC and NG are the total number of scenarios and
generators, Δsc shows the probability of each scenario. In this
work cost of thermal generators C(Pgt) is computed as:

C Pgt( ) � a + bPG + cP2
G (16)

Where, a, b, and c, a re the parameters (Mohamed et al., 2017)
and Pg is the output power of thermal generator. Cost of wind power
generation C(PgW) is comprised of three components such as direct
cost, reserve cost and penalty cost, given as:

C PgW( ) � gwPschW︸


︷︷


︸
Direct cost

+ CR PschW − PWav( )︸






︷︷






︸
Reserve cost PgW <Psched( )

+ CP PWav − PschW( )︸






︷︷






︸
Penalty cost PgW >Psched( )

(17)
Whereas; gw is the direct cost coefficient. The direct cost of

wind generation refers to the expenses associated with the
installation, operation, and maintenance of wind power
facilities. Reserve cost CR refer to the cost of maintaining a
reserve capacity of power generation to ensure that the power

supply remains stable even when wind generation is variable. Since
wind power generation is intermittent and unpredictable, it is
necessary to have a reserve capacity to ensure that there is enough
power supply to meet demand during periods of low wind
generation. The reserve cost can be significant and may include
the cost of backup power sources, such as natural gas generators or
energy storage systems. On the other hand, the Penalty cost CP

refer to the costs that wind generators may incur if they are unable
to deliver the amount of electricity that they have committed to
providing to the grid. These penalties can be levied by the grid
operator as a way of incentivizing wind generators to meet their
commitments and to ensure that there is enough electricity
available to meet demand. These penalties can also add to the
direct cost of wind generation and need to be taken into account
when estimating the overall cost of wind energy projects.
Therefore, considering the reserve and penalty costs of wind
generators is important to ensure that the project is
economically viable and to accurately estimate the total cost of
wind generation. By taking these costs into account, the author can
provide a more comprehensive analysis of the economic feasibility
of a wind energy project. Reserve and penalty costs are calculated
mathematically as:

FIGURE 2
Adapted modified IEEE 30-bus test network.
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CR PschW − PWav( ) � KRW∫PschW

0
PschW − pW( ) × πw pW( )dpW (18)

CP PWav − PschW( ) � KPW∫PWr

PschW

pW − PschW( )πW pW( )dpW (19)

Whereas, KRW and KPW are the reserve and penalty cost
coefficients and PschW and PWav are scheduled and amiable wind
power at the site. By accurately estimating wind power probabilities,
power system operators can optimize the use of wind energy
resources and ensure the reliable and efficient operation of the
power system. Before computing the cost of wind generators, it is
desirable to compute uncertainties in wind generation. This is
because wind generation is highly variable and uncertain, and the
actual output of wind generators can deviate significantly from their
expected values. By quantifying the uncertainties in wind
generation, power system operators can better estimate the
expected output of wind generators and make more informed
decisions about the deployment and operation of wind power
plants. This can help minimize the economic cost of wind
generation, ensure grid stability, and support the integration of
renewable energy sources into the power system. The Weibull PDF
is a probability distribution that is commonly used to model wind
speed. It is characterized by two parameters: the shape parameter, b,
and the scale parameter, a. The PDF of the Weibull distribution (Shi
et al., 2012; Biswas et al., 2017) is given by the following equation:

Δ] v( ) � b

a
( ) v

a
( ) b−1( )

× e − v
a( )b[ ] (20)

The present studymakes use of the wind turbinemodel developed
in (E. E.-E. 3.000, 2023). The E82-E4 has a rotor diameter of 82 m and
a hub height of 108 m. The wind turbine uses a direct-drive generator,
which eliminates the need for a gearbox and improves reliability and
efficiency. The E82-E4 also features a pitch-controlled rotor system,
which allows the blades to be adjusted to optimize power production
under different wind conditions. The wind turbine has a cut-in vin
wind speed of 3 m/s, rated vr wind speed of 15 m/s and a cut-out vout
wind speed of 25 m/s. The E82-E4 is designed for use in onshore wind
farms and is suitable for low to medium wind speeds. The
proposed wind farm comprising 25 turbines each of 3 MW is
connected to bus 5, and 20 turbines of 3 mW are connected to bus
11. The power generated by each wind turbine is calculated using
the following formula:

pW v( ) �

0, for ]< vin and v> ]ouT

pwr
v − ]in
]r − vin

( )for vin ≤ v≤ vr

pwr for vr < ]≤ vouf

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(21)

Equation 21 clearly demonstrates that the power generated by a
wind turbine is a piecewise function of wind speeds. Following are
the calculations for the likelihood of wind power in these various
zones:

πw pW( ) pw� 0{ }� 1−e − vin
α( )β[ ] + e − vou1

α( )β[ ] (22)
πw pW( ) pw � pwr{ } � e − vr

α( )β[ ] − e − vout
α( )β[ ] (23)

πw pW( ) � β vr − vin( )
αβ*pwr

vιn + pw

pwr
vr − vin( )β−1[ ] × e

− vin+
pw
pwr vr−vin( )

α( )β[ ]
(24)

Moreover, in this study the installation cost of cost of FACTs
devices C(FAC) as given (Shehata et al., 2022) is computed as;

C FAC( ) � C SVC( ) + C TCSC( ) (25)
Whereas,C(SVC) andC(TCSC) are the installation cost of SVC

devices and TCSC devices and in this study these costs are nonlinear
quadratic cost and computed as;

C SVC( )� 0.0003S2+0.3051S+127.38 (26)
C TCSC( )� 0.0013S2−0.7130S+133.73 (27)

Where, S is the MVAr operating range of FACTs devices.

3.2.2 Emissions generated by thermal generators
Considering greenhouse gas emissions as one of the objective

functions in the optimization of power systems can have significant
environmental, regulatory, financial, and technological benefits.
Greenhouse gases particularly carbon dioxide (CO2) is one of the
primary contributors to global climate change. By reducing
greenhouse gas emissions, power systems can play a significant
role in mitigating the effects of climate change and preserving the
planet for future generations. The mathematical derivation to
compute emissions generated by thermal generators depends on
the specific pollutant being considered and the type of fuel being
used. In general, emissions from thermal generators can be
estimated by using emission factors that relate the number of
pollutants emitted to the amount of fuel consumed or energy
generated. The basic equation for estimating emissions E(Pgt)
from thermal generators is:

f2 � ∑NSC

sc�1
Δsc ∑NG

i�1
αi + βiPGi + γiP

2
Gi( ) + ωie

μiPG( )[ ] (28)

Where the constants for the cost and emission of the thermal
generators are αi, βi, γi,ωi and μi (Bhowmik and Chakraborty, 2015).

3.2.3 Cost of power loss
The cost of energy loss represents the economic cost of the energy

that is lost as it flows through the power system due to resistive losses in
transmission and distribution lines and transformers. By including the
cost of energy loss term, the optimizer will therefore seek to balance the
generation and transmission of power in a way that minimizes energy
losses and overall system cost. In MOOPF problems, the cost of energy
loss can be computed as;

PLoss � ∑NSC

sc�1
Δsc ∑Nb

i�1
∑Nb

k�i+1
Gik V2

i + V2
k−2ViVk cos δik[ ] (29)

Whereas, δik � δi − δk, Vi is the complex voltage at bus i.

f3 � a*PLoss (30)
Where a is the energy loss coefficient which is 0.1 $/kWh.

Frontiers in Energy Research frontiersin.org10

Hafeez et al. 10.3389/fenrg.2023.1293870

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1293870


3.3 Equality and inequality constraints

The equality constraint g( �x) are:

PGi − PDi − Vi ∑NB

k�1
VkYik cos θik + δi − δk( )� 0,∀i ∧ k ∈ NB (31)

QGi − QDiVi ∑NB

k�1
VkYik sin θik + δi − δk( )� 0,∀i ∧ k ∈ NB (32)

where PGi and QGi are real and reactive generation. PDi and QDi

are load demands, at bus i. Yik is branch admittance of ikth line,
and θik is the angle. NB shows the total number of buses. On the
other hand, inequality constraint h( �x) for the OPF problem are
Figured as;

Pgi
min <Pgi <Pgi

max,∀i ∈ NG (33)
Qgi

min <Qgi <Qgi
max,∀i ∈ NG (34)

Vgi
min ≤Vgi ≤Vgi

max,∀i ∈ NG (35)
VL

min ≤VL ≤VL
max,∀L ∈ NL (36)

Sl ≤ Sl
max,∀l ∈ Nl (37)

TapT
min ≤TapT ≤TapT

min,∀T ∈ NT (38)
QSVC

min ≤QSVC ≤QSVC
max,∀j ∈ NSVC (39)

τTCSCm
min ≤ τTCSCm ≤ τTCSCm

max ,∀m ∈ NTCSC (40)
ΦTCPS

min ≤ΦTCPS ≤Φman
TCPS,∀n ∈ NTCPS (41)

The limits of active and reactive power generation for thermal and
wind generators are described by Eqs. 33, 34, respectively. These
equations apply to all generator buses, with the total number of
generators or generator buses being denoted as NG. Eq. 35 specifies
the voltage constraint for generator buses, while Eq. 36 applies to the
voltage constraint for load buses. The line capacity constraint is
expressed in Eq. 37. Eq. 38, where NT stands for the number of
transformers, specifies the upper and lower bounds for the
transformer tap settings. In Eqs 39–41, the constraints for FACTS
devices, including SVC, TCSC, and TCPS, are given, respectively. It is
important to highlight that satisfying the equality constraints in the
optimal power flow (OPF) problem can only be done by attaining
power flow convergence. Using the MATPOWER (Zimmerman et al.,
2011), we apply the Newton-Raphson (NR) technique for calculating
power flow (Zimmet al., 2009). A proper constraint-handling strategy is
needed to guarantee that these restrictions are observed. In Section 4, we
dive deeper into how an optimization algorithm can be used in tandem
with a constraint handling technique.

3.4 Decision variables

The study presented in this paper considers all load scenarios
and wind generation probabilities and computes their upper and
lower bounds. The objective functions and constraints for each of
these scenarios are then integrated into a single, complicated
master issue, where they are each considered as a separate
island in a stacked network of all the scenarios. When taking
into account wind and probabilistic load models, using a single
solution for all the MOOPF problem scenarios can have benefits
such as faster computation, higher accuracy, increased flexibility,

better system planning, and easier integration of intertemporal
reserve constraints. The master OPF problem offers a single
solution for all scenarios that may be utilized to make decisions
in real-time, allowing for increased flexibility in the management of
power systems. In situations where the variability of wind and load
demand may affect the stability of the power grid, such as the
management of intertemporal reserve constraints for fixed zonal
reserves, security constraint (NPF) analyses, and multipored
scheduling of renewable energy systems, this can be especially
crucial. This paper defines the decision vector for the OPF
problem, represented as �x:

x � P,V, τ, SVCp, SVCr, TCSCp, TCSCr, TCPSp, TCPSr[ ] (42)

Where GN, TN, and τ are the number of generators, P and V are
the output power of the generators and the voltage at the generator
bus, respectively, and is the transformer tap ratio. The discrete
positions and continuous ratings of SVC, TCSC, and TCPS are
represented by subscripts p and r. The decision variable in the
suggested formulation was made up of mixed-integer variables.

4 Constraint domination principle and
MOEAS

Due to its limited feasible search area and constraints in both the
objective and control variable spaces, the MOOPF issue is a real-
world constrained multi-objective optimization problem that poses
difficulties for existing MOEAs. This work suggests adopting the
bidirectional co-evolutionary (BiCo) constrained MOEA, which
manages constraints by applying the constraint domination
principle (CDP).

4.1 A pareto front with a pareto set

A feasible zone is one where all decision vectors have zero
constraint violation (CV) . The Pareto front (PF) is the set of all
Pareto optimal solutions in objective space. Pareto optimal
solutions (PS) are the set of all solutions that correspond to
viable regions.2).

4.2 Pareto dominance

The concept of Pareto dominance states that if two decision
vectors �xu and �xv are considered, and for all objective functions,
f( �xu) has a value that is less than or equal to of f( �xv) but for at least
one objective function j,fj( �xu) is less thanfj( �xv), then �xu is said to
dominate �xv, and �xu is considered non-dominated or better than �xv.

4.3 Constraint domination principle (CDP)

The Constraint Domination Principle (CDP), proposed in (Deb
et al., 2002), is a simple and efficient constraint handling technique
(CHT) used in this paper. It compares pairs of individuals using the
following rules:
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• If both solutions �xu and �xv are infeasible, select �xu if
CV( �xu)<CV( �xv).

• �xu is feasible and �xv is infeasible, select the feasible one i.e., �xu.
• If both �xu and �xv are feasible, then select �xu if for all the

objective functions fi( �xu)≤fi( �xv).

4.3.1 Multi-objective bidirectional co-evolutionary
algorithm (BICO)

The existence in the MOOPF problem makes it difficult for
MOEAs to achieve well-converged and uniformly dispersed PF. But
the majority of MOEAs favor workable solutions, which can cause
two problems. First, people can become trapped in their local,
optimally viable areas. Second, since the population only expands
from the viable side, the search for space exploration might be
restricted. The population may become imprisoned in local feasible
or optimal feasible regions as a result of the conventional strategy of
only optimizing feasible solutions, which restricts its capacity to
effectively move the solutions towards the real or global PF. To
overcome these issues, a bidirectional co-evolutionary (BiCo)
algorithm (Ali et al., 2023e) along with the integration of CDP
(Deb et al., 2002) is proposed in this paper, which coevolves both
feasible (main) and infeasible (archive) populations to drive the
solutions towards the PF. This is accomplished by looking at the
search space from both the feasible and impractical sides. The
archive population is also updated using a novel angle-based
density (AD) selection strategy that preserves the diversity of the
search space, makes it easier to find more feasible regions, and keeps
the infeasible solutions that are close to the PF.

The BiCo can be explained in four steps. Firstly, an initial
population is created randomly and the objective functions and
overall constraint violation (CV) of each population are evaluated.
The second step involves generating an offspring population (Qt) by
collaborating and interacting between the main (feasible search
space) and archive (promising infeasible solutions) populations to
produce high-quality offspring. Binary tournament selection is used
to select parents for the mating pool. If the length of the archive
population (‖At‖) is smaller than the population size N, parents are
chosen from the combined population of the main (Pt) and archive
(At) populations. Otherwise, the selection of parents is done
alternatively by comparing the main and archive populations
based on constraint violation and angle-based-density (AD),
respectively. To select parent p1, two solutions x1 and a1 are
randomly selected from Pt and At, respectively, and the one with
the smaller CV value is chosen. To choose p2, x2 and a2 are picked
randomly from Pt and At, respectively, and the one with the larger
AD value is chosen. The proposed algorithm calculates AD as
follows:

In the opening, normalize the objective function space, say jth
solutions of objective functions F′

i(vj) �
(f1

′(vj), f2
′(vj), . . . ,f′

m(vj)) using ideal Z i
min and nadir Z i

max

points in the combined population Ut according to;

f′
i xj( ) � fi − Z i

min

Z i
max − Z i

min

, i� 1, 2, . . . ,m (43)

After that vector angle between F′(xj) and F′(xk) solutions
selected from Ut is computed as

θxj,xk
′ � arccos

F′ xj( ) · F′ xk( )
F′ xj( )����� ����� F′ xk( )���� ����

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣where xk ∈ Pt ∩ xk ≠ xj (44)

Next, each solution is ranked based on the angle between them.
The larger the angle, the higher the rank of the solution, making it a
promising candidate for mating selection. The third step involves
updating the main population Pt+1, which is responsible for
driving the search toward the PF from the feasible side of the
search space. To do this, the main population is combined with the
offspring population Qt, and solutions are divided into feasible S1
and infeasible S2 sets. If the number of feasible solutions in S1 is less
than the population size N, then the first (N − S1) infeasible
solutions from the sorted set S2 are selected. If the number of
feasible solutions in S1 is greater than N, non-dominated sorting is
applied to S1 to obtain the PF of different ranks, such asF 1, . . . ,F k,
and so on, where F 1 is the highest rank. The solutions with the
highest rank are assigned to Pt+1, followed by the second-highest
rank, and so on until the size of Pt+1 is equal to N or greater than N.
If the size of Pt+1 exceeds N, then the crowding distance (CD)
operator is used to eliminate some of the solutions in the last front
(Deb et al., 2002). Updating the archive population for the
upcoming iteration is the fourth and last stage At+1, it creates
non-dominated, impractical solutions in order to increase the
Pareto front’s variety (Ali et al., 2023e). The algorithm
considers CV as an additional objective function M + 1th,
making the original constrained problem as an unconstrained
multi-objective problem, given as:

min F x( ) � f1 x( ), f2 x( ),/,fm x( ), CV x( )( )T (45)
This helps in generating promising non-dominated infeasible

solutions. Next, the solutions are ranked using ND sort (Deb et al.,
2002) to determine the PF, and capable infeasible solutions are
selected based on CV (M+1 objective function) and AD as described
in Eq. 39. Figure 3 displays the flow diagram for the proposed
algorithm.

5 Simulation results and discussion

In this paper, we consider the effectiveness of the proposed
algorithm by evaluating it on the IEEE standard 30-bus test system.
We provide detailed data of the test network as shown in Table 2 and
proposed problem formulation in Section 3. Additionally, we
implement four state-of-the-art MOEAs, including NSGAII (Deb
et al., 2002), CCMO (Tian et al., 2020), ToP (Liu and Wang, 2019),
and C3M (Sun et al., 2022), to solve the MOOPF problem. We
present simulation results of all the algorithms applied to the
MOOPF case studies and analyze and discuss them in this
section. The formulation of objective functions in the MOOPF
problem is based on the fact that these functions represent the
primary concerns of power system operators and regulators. To
highlight the technical, economic, and environmental facets of
power system operation, we have selected three study examples
with three conflicting objective functions with and with cost of
FACTS devices. The proposed study cases without cost of FACTs
devices:
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• Case 1a: Cost of active power generation C(Pg) from Eq. 15
vs. emission rate E(Pgt) from Eq. 25.

• Case 2a: Cost of active power generation C(Pg) from Eq. 15
vs. Cost of power loss C(PL) from Eq. 28

• Case 3a: All three objective functions C(Pg) vs.
E(Pgt) vs. C(PL)

The proposed study cases with cost of FACTs devices:

• Case 1b: Cost of active power generation C(Pg) from Eq. 15
vs. emission rate E(Pgt) from Eq. 25.

• Case 2b: Cost of active power generation C(Pg) from Eq. 15
vs. Cost of power loss C(PL) from Eq. 28

• Case 3b: All three objective functions C(Pg) vs.
E(Pgt) vs. C(PL)

Each case study is applied to find the optimal site and size of
FACTS devices with the integration of wind generation along
with the consideration of deterministic and probabilistic
scenario-based load variation. User-defined parameters of
each algorithm are adopted from their original papers.
However, in deterministic study situations, the population

size and the maximum number of function evaluations are
40 and 20,000, respectively, whereas in probabilistic study
cases, they are 40 and 50,000. Here, deterministic cases are
merely altered to show how much better and more efficient
the suggested approach is compared to the most recent state-of-
the-art MOEAs. Solution of proposed study case has been found
on the platform of MATLAB 2021b core i7 PC using
version 9.10.

5.1 Allocation of FACTS devices in MOOPF
problem with and without cost of FACTS
devices

In the following subsections, we have conducted a
comparison between the outcomes of our suggested algorithm
and those of current advanced MOEAs. Fixed parameters of
proposed algorithm have chosen from their original study, and
population sizes and the maximum function evaluation of each
algorithm remains fixed, allowing for a fair comparison between
the proposed approach and existing Multi-Objective
Evolutionary Algorithms (MOEAs). The selection of minimum

FIGURE 3
Flow diagram of the proposed algorithm.
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and maximum values for each objective function and the
Hypervolume Indicator (HVI) will be discussed in the
following subsections. Additionally, each algorithm is run
independently 20 times for each case to enable statistical
comparison. The comparison between the proposed algorithm
and other algorithms will be based on the best, worst, and mean
values of the HVI. To ensure a fair comparison with regard to
constraints, each algorithm is combined with the CDP constraint
handling technique. As outlined in Section 4, the standard
approach for integrating the CDP method is to be utilized at
the stage of selecting population members for the next-
generation.

5.1.1 Selection of best PF based on statistics of HVI
and minimum values of objective functions

In a single simulation run, MOEAs seek to find high-quality
non-dominated solutions. The goal of MOEAs is to produce non-
dominated solutions with improved convergence, variety, evenness,
and maximum spread. The effectiveness of the non-dominated
solutions obtained using MOEAs is evaluated using these
variables. Several performance criteria have already been
developed to allow a fair comparison of MOEAs. In this work,
the convergence and diversity of distinct MOEAs are assessed using
a performance metric called the hypervolume indicator (HVI) (Deb
et al., 2002). The genuine Pareto front (PF), which is required by the
HVI metric, should ideally be close to the nadir point. The PF with
the highest HVI is considered the best when evaluating different PFs
for a certain situation. For all situations based on HVI, we outlined

in Table 3 the statistical performance of the proposed algorithm and
other cutting-edge MOEAs, such as NSGAII (Deb et al., 2002),
CCMO (Tian et al., 2020), ToP (Liu and Wang, 2019), and C3M
(Sun et al., 2022).

For each study case across twenty independent runs, Table 3
summarizes the statistical results of HVI (maximum, minimum,
mean, and minimum value of each objective functions) of with and
without cost of FACTS devices, highlighting the best outcomes.
Table 3 demonstrates that in most of the study cases compared to
HVI value, BiCo outperforms compared to all other algorithms.
According on statistical data, the proposed algorithm outperformed
the majority of MOEAs. In addition, extreme values of objective
function optimal compromise solutions are viewed as the lowest
among all MOEAs. That demonstrates the ability of the suggested
approach to discover widespread PF. Also, in extremely complicated
case 3a and 3b proposed algorithm outperforms compared to other
MOEAs. Moreover, ToP consistently fails to find a higher value of
HVI. C3M (Sun et al., 2022) gives better statistical results after that
proposed algorithm. While PF of ToP is the trap into local optimum
when determining the minimum values of each OF in all
circumstances, it is also concluded that minimum values of
objective functions in table demonstrate that BiCo always
provides a well-distributed and wide range of objective function
values. The final non-dominated solutions for each of the
algorithm’s scenarios are shown in Figure 4 alongside the
responses from the other MOEAs.

Algorithms that produce Pareto fronts that are widely spread,
evenly spaced, and well-converged in comparison to most

TABLE 3 Simulation results based ON HVI and extreme values of objective functions of all the study cases.

Algorithm Best Worst Mean min(f1) min(f2) min(f3) Best Worst Mean min(f1) min(f2) min(f3)

Case 1 (a): C(Pg) vs. E(Pgt) Case 1 (b): C(Pg) vs. E(Pgt)

NSGAII (Deb et al., 2002) 0.145 0.144 0.145 802.2 0.196 266.9 0.122 0.121 0.121 1323.4 0.196 265.7

CCMO (Tian et al., 2020) 0.145 0.144 0.145 801.2 0.196 253.5 0.122 0.121 0.121 1326.4 0.196 267.4

ToP (Liu and Wang, 2019) 0.144 0.134 0.141 802.8 0.198 366.3 0.117 0.110 0.114 1323.9 0.196 247.6

C3M (Sun et al., 2022) 0.144 0.144 0.144 800.9 0.196 307.3 0.120 0.119 0.120 1339.1 0.196 360.8

Proposed 0.146 0.145 0.145 800.6 0.196 245.3 0.122 0.121 0.122 1323.3 0.196 283.7

Case 2 (a): C(Pg) vs. C(PL) Case 2 (b): C(Pg) vs. C(PL)

NSGAII (Deb et al., 2002) 0.257 0.250 0.254 800.9 0.198 197.4 0.217 0.212 0.215 1324.0 0.198 193.4

CCMO (Tian et al., 2020) 0.257 0.252 0.255 801.6 0.196 204.7 0.217 0.210 0.214 1325.4 0.197 200.2

ToP (Liu and Wang, 2019) 0.254 0.217 0.231 801.7 0.197 199.6 0.210 0.189 0.195 1323.1 0.196 204.6

C3M (Sun et al., 2022) 0.253 0.249 0.251 801.2 0.198 211.0 0.215 0.208 0.211 1327.4 0.196 222.5

Proposed 0.258 0.250 0.255 800.7 0.196 186.7 0.218 0.214 0.217 1324.0 0.196 191.9

Case 3 (a): C(Pg) vs. E(Pgt) vs. C(PL) Case 3 (b): C(Pg) vs. E(Pgt) vs. C(PL)

NSGAII (Deb et al., 2002) 0.130 0.110 0.129 800.5 0.196 203.5 0.106 0.104 0.105 1338.4 0.196 223.7

CCMO (Tian et al., 2020) 0.131 0.106 0.130 801.3 0.196 198.6 0.107 0.105 0.106 1326.4 0.196 211.7

ToP (Liu and Wang, 2019) 0.121 0.120 0.114 807.0 0.196 285.9 0.094 0.081 0.090 1324.2 0.196 231.8

C3M (Sun et al., 2022) 0.127 0.091 0.125 804.1 0.196 227.0 0.102 0.100 0.101 1345.9 0.196 303.1

Proposed 0.131 0.114 0.129 800.5 0.196 195.0 0.107 0.105 0.106 1323.3 0.196 202.1
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techniques. Most of the time, ToP and NSGAII become trapped in
locally optimum solutions. The visualization in Figure 4 shows that
the suggested approach is capable of locating non-dominated,
broadly spread, and evenly spaced solutions. Figure 4 also
displays extreme values of non-dominated solutions produced by
the suggested technique for improved visibility. A difficult
optimization issue is one that has both discrete and continuous
variables. It is important to emphasize that during the initial search
phase, algorithms are driven by constraint-handling strategies and
look for workable solutions. Once possible ones have been identified,
the quality of the replies improves within the feasible range.Within a
few hundred function evaluations, all algorithms in the investigated
system found the feasible zone.

From the statistical values shown in Table 3 and from the final
PF shown in Figure 4 these does not clearly shows that the
performance of which algorithm in most of the independent runs
find the better solution. Therefore, box chart for all the
independent runs is as shown in Figure 5 clears that the
proposed algorithm in most of the study cases outperforms
compared to the other cases. Box chart give the statistical
information of all the twenty independent runs (called sample
data). Each box comprised of HVI values of all the independent
runs of each algorithm. Moreover, line inside the box is called
median, edges of the box called upper and lower quartiles. These
quartiles also give the information about standard deviation

(SD), larger the box areas more the SD and vice versa. The
lines that extend above and below each box are called
whiskers. Whiskers in box plot connects the quartiles to the
minimum and maximum values of HVI. Notches in the box is
used to compare the median of multiple boxes in the plot. Box
charts whose notches do not overlap have different medians at
the 5% significance level. In the Box chart bubble shows the
outlier HVI value and these are more than 1.5 of interquartile
range of bx. From the box chart it clearly shown that in all the
runs proposed algorithm always converges and widely
distributed solutions.

5.1.2 Selection and analysis of best compromise
solution (BCS)

There are 27 decision variables in the deterministic MOOPF
problem, some of which pertain to where FACTS devices are
installed. These variables are comprised of continuous and integer
and the proposed MOOPF problem I s mixed integer nonlinear
problem, integer variables correspond to location of TCSC/TCPS or
SVC branch or bus numbers. Each FACTS device is subject to two sets
of control variables: location and device rating. The location variable is
rounded to the nearest integer before the power flow analysis, although
it may become a fraction throughout the optimization process. FACTS
devices are deployed instead of SVC on generator buses because of the
potential for reactive power exchange. In addition, tap-changing

FIGURE 4
Comparison of best PFs of State-of-the-art MOEA with the proposed Algorithm.
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transformers are not installed on branches with TCSC or TCPS, and no
more than one FACTS device is installed in a given site. Transformer
taps are taken to be discrete variables. The case studies’ range of
probable tap settings is 0.90–1.10 p. u. During the search phase, the
control variables for the transformer taps are rounded to the nearest
multiple of 0.02 p. u. SVC can deliver or absorb reactive power up to
10 MVAr, but TCSC can lower.

Line reactance by up to 50% when it is installed. Angle
adjustment for the phase shifter (TCPS) is possible between −5°

and +5°. In most of cited papers available in the literature, the
reactive power capacities of wind generators range from
roughly −0.4 p. u. to 0.5 p. u. The BCS (Best Compromise
Solution) is obtained through the use of a fuzzy decision
approach, as described in reference (Abbas et al., 2022). This
approach involves first calculating the membership function (μkm)
for the objective.

μkm �

1 forfk
m ≤fm

min

fm
max − fk

m

fm
max − fm

min
for fm

min <fk
m <fm

max

0 forfk
m ≥fm

max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(46)

The calculation of the membership function μkm involves the use
of parameters m and k, which represent the number of objective
functions and final non-dominated solutions, respectively. The
fitness value fk

m is also used in this calculation. Once the

membership function is computed, it is then normalized to
obtain the normalized membership function μk.

�f x( ) � ∑m
i�1

~fi x( ) (47)

The value ofNd represents the number of solutions in the final PF
(Pareto Front). The BCS can be determined by finding the index with
the highest μk value and are shown in Figure 4 of diamond shape.
Moreover, Table 4 displays the decision variables and objective function
values of all the cases with and without cost of FACTS devices. Table 4
shows that the decision variables in all three study cases are within the
desirable range.With the decision variable settings shown in Table 4 for
Case 1a, where the cost of active power generation and emission are the
objective functions, the proposed algorithm achieves costs of 848.9 ($/h)
and emissions of 0.232 (t/h). The optimal siting of SVCs is located at
buses 21 and 24 with the rating of 8.267 and 8.4029 respectively.
Whereas the siting of TCSC and TCPS (branch number and the branch
connected between the buses are also shown in Table 4). On the other
hand, in Case 1b, where along with the cost of active power generation,
cost of FACTS devices is also incorporated and emission are the
objective functions, the proposed algorithm achieves costs of 1369.1
($/h) and emissions of 0.234 (t/h). The optimal siting of SVCs is located
at buses 8 and 13 with the rating of −9.97 and −9.92MVAr respectively.
Whereas the siting of TCSC and TCPS (branch number and the branch
connected between the buses is also shown in Table 4).

FIGURE 5
HVI distribution of all the cases of all the algorithms comparison with proposed algorithm.
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TABLE 4 Best compromise solutions for all cases using the proposed algorithm.

Parameters LB UB Case 1a Case 2a Case 3a Case 1b Case 2b Case 3b

Pg1 50 200 98.396 100.469 74.946 107.7 99.3 71.6

Pg2 @ bus 2 20 80 60.61 48.18 53.92 55.92 54.33 51.71

Pg3 @ bus 5 0 75 29.28 38.33 39.51 31.75 36.96 41.16

Pg4 @ bus 8 10 35 34.88 34.98 34.21 35.00 34.98 34.97

Pg5 @ bus 11 0 60 29.92 35.13 52.21 28.00 35.19 57.34

Pg6 @ bus 13 12 40 35.26 30.61 32.07 30.19 27.08 30.00

Vg1 0.95 1.1 1.064 1.062 1.058 1.069 1.066 1.064

Vg2 0.95 1.1 1.052 1.055 1.047 1.060 1.056 1.054

Vg3 0.95 1.1 1.027 1.035 1.026 1.025 1.035 1.028

Vg4 0.95 1.1 1.042 1.040 1.034 1.039 1.044 1.040

Vg5 0.95 1.1 1.047 1.085 1.075 1.074 1.097 1.074

Vg6 0.95 1.1 1.058 1.075 1.075 1.065 1.066 1.075

TX1 0.9 1.1 1.075 1.038 0.976 1.008 1.007 1.032

TX2 0.9 1.1 0.900 0.933 1.010 0.976 0.975 0.908

TX3 0.9 1.1 1.004 1.004 1.011 1.020 1.025 1.012

TX4 0.9 1.1 0.971 0.982 0.986 0.973 0.971 0.956

SVCr1 −10 10 8.267 9.804 9.944 −9.973 −9.992 9.284

SVCr2 −10 10 8.409 8.912 9.979 −9.927 6.366 −9.995

TCSCr1 0 0.5 0.231 0.081 0.204 0.500 0.500 0.499

TCSCr2 0 0.5 0.442 0.300 0.203 0.500 0.500 0.474

TCPSr1 −5 5 1.012 1.041 1.348 3.360 0.943 1.857

TCPSr2 −5 5 −2.400 2.764 −1.934 −1.173 1.541 −1.207

SVCp1 3 30 21 24 24 8 13 24

SVCp2 3 30 24 21 20 13 24 13

TCSCp1 1 40 5 (2–5) 36 36 13 (9–11) 24 20

TCSCp2 1 41 23 (18–19) 2 2 41 (6–28) 20 28

TCPSp1 1 40 29 (21–22) 9 33 15 (4–12) 15 13

TCPSp2 1 41 34 (25–26) 35 8 8 (5–7) 35 8

Pg1 50 200 98.396 100.469 74.946 107.7 99.3 71.6

Qg1 −20 150 2.561 −9.309 5.703 −3.691 −1.431 3.695

Qg2 −20 60 11.734 20.405 6.200 30.663 12.119 16.364

Qg3 −30 35 25.323 27.880 25.711 18.920 27.412 21.187

Qg4 −15 48.7 42.551 27.448 28.507 44.108 37.189 34.016

Qg5 −25 30 18.256 24.352 17.123 27.839 26.379 23.668

Qg6 −15 44.7 16.849 20.252 26.279 36.893 34.595 37.147

C(Pg ) in $/h 848.9 869.3 936.5 847.1 864.7 937.2

E(Pgt ) in t/h 0.224 0.232 0.201 0.234 0.225 0.204

C(PL) in $/h 511 430.3 335.3 514.5 447.5 334.7

C(FAC) in &/h 0 0 0 521.9 526.8 528.6
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In both of the Cases 2a and 2b, only the direct cost of the wind
generators (placed at buses 5 and 11) is taken into account in
deterministic instances. The minimal value of the cost of active
power generation achieved by the suggested algorithm is 869.3 ($/h)
in Case 2a, and with slightly less cost of active power generation
864.7 ($/h) in case 2b. Whereas second objective function in Case 2a
and 2b is the minimum value of the cost of energy loss is 430.3 and
447.5 ($/h) respectively. Cost of energy loss emphasize to decrease
active power generation of all the thermal generators with the
decrease in bus voltage level and hence emission in case 2a and
2b is reduced compared to case 1a and 1b. Form this comparison it
clear to identify that cost of energy loss is the important objective
function to control emission. In case 3a and 3b, all the tri objective
functions are equally emphasized to find the decision vectors.
Decision variables in both of the case 3a and 3b shown that the
all the objective functions are better compared to case 1a, 1b and 2a,
2b. In Case 3a (without cost of FACTS devices), three objective
functions such as the cost of active power generation, emission rate,
and cost of energy loss are simultaneously minimized without
considering the cost of FACTS devices. The values of objective
functions obtained by the proposed algorithm are 936.5 ($/h), 0.201
(t/h), and 335.3 ($/h).

Whereas, in Case 3b, the values of objective functions obtained
by the proposed algorithm are 937.2 ($/h), 0.204 (t/h), and 334.3
($/h), which are marginally more than the values obtained in Case
3a. Computing the location of FACTS devices along with their
ratings can provide significant benefits to power system planners,
operators, and customers. By optimizing the installation of these
devices, the power system can operate more efficiently, reliably, and
cost-effectively. For FACTS devices to be as effective as possible,
their ideal placement within a power system must be determined.
Through optimization techniques, the location of FACTS devices
can be determined in such a way that the power system can be

operated at its highest efficiency, reliability, and stability. Currently,
FACTS devices are frequently added to networks to improve their
ability to handle higher loads. The placement of these devices is
strategically optimized to minimize real power loss in the network
and maximize its loading capacity. This is why Case 2 and 3, which
aims to reduce the cost of real power loss in the network, is
implemented. The need for an aim that takes into account both
the cost of emissions and the cost of energy loss is therefore larger.
Figure 6 displays the voltage profiles of all the study cases a) without
considering the cost of FACTS devices and (b) considers the cost of
FACTS devices.

Figure 6 shows that compared to base case, voltage profile of all
the study cases is better to seem. As compared to Case 1a, 2a and 3a,
obtained voltage level of Case 3a is best and the similar situation is
also shown in Case 1b, 2b and 3b. How when comparing the voltage
profile between Cases a and b (such as with and without considering
the cost of FACTS devices), Case 1b, 2b and 3b are seems better
compared to Case 1a, 2a and 3a. All the voltage waveforms shown in
Figures 6A, B are within desireable limit that highlights performance
of the proposed MOEA with the integration of constraint
domination principle. The aim of displaying the voltage profiles
is to exhibit how the algorithm adheres to the limits the critical
constraint on the voltage of PQ and PV buses. Simulation results
shown in Table 4 further demonstrates how the suggested algorithm
optimizes FACTS device placement and ratings to reduce generation
costs, emission rates, and power loss costs with and without
considering cost of FACTS devices. Previous works had fixed
placements for the devices in the network, frequently without
prior investigation, and mostly optimized just their ratings.
Placing FACTS devices in a real network or arranging a known
network differently without conducting enough analysis may lead to
ineffective and inadequate utilization of network resources
(Mukherjee and Mukherjee, 2016).

FIGURE 6
Optimal setting of the bus voltages.
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Moreover, minimization of cost of FACTS devices does not
widely change the objective functions such as cost of active power
generation, cost of energy loss, and emission rate. Active and
reactive power form generators is marginally increased with the
consideration of cost of FACTS devices, whereas, second
objective function, cost of energy loss, controls the active
power generation decision variables. This study also proves
that the OPF is multiobjective optimization problem, more the
number objective functions better the control of decision
variables. That is clearly shown in Table 4, cumulatively
decision variables obtained in Case 3a and 3b are optimal
compared to Case 1a, 1b and Case 2 a, 2b.

5.1.3 Probabilistic MOPF considering uncertain
wind generation and load

To model uncertain load demand usually, the normal
probability density function (PDF) (Mohseni-Bonab et al., 2016)
is commonly adopted in the literature. To handle this uncertainty in
the optimization task, a scenario-based approach is adopted. This
means that the optimization problem is solved for different levels of
load demand, called scenarios, and then the proposed network is
stacked into/combined in some way to get an overall solution. This
approach is often used when there is uncertainty in the problem
parameters, such as in this case with the variable load demand. The
normal distribution diagram shown in Figure 7 is a visual
representation of the normal PDF used to describe the
uncertainty in the load model. The x-axis represents the
percentage of maximum capacity that is being used, and the
vertical y-axis signifies the probability density of the load
demand being at that level. The shape of the curve is determined
by the mean (μ) and standard deviation of the normal distribution,
which describe the average level of demand and how spread out the
demand is around that average. This subsection describes a case
study that takes into account the variability of the load demand in a
realistic setting. To model the uncertain load demand, a normal PDF
as shown in Figure 7 is employed, and the optimization task is
carried out using a scenario-based approach at discrete levels of load
demand. Themean value (μd) and standard deviation σd) of the PDF
are each 70 and 10, respectively. The regions are divided into four
various levels or scenarios of network loading (Pd) that are taken
into consideration in the case study by the three colored shaded
areas. The following formulae are used to calculate the mean loading
and the likelihood that a specific scenario will occur (Mohseni-
Bonab et al., 2016).

Δsc,i � ∫Phigh
di

Plow
di

1
σd

���
27r

√ e
− Pd−μd( )2

2σ2
d

[ ]
dPd (48)

Where Plow
di and Phigh

di are the low and high levels of ith scenario.
Now, the mean of the ith level of loading Pd,i:

Pd,i � 1
Δsc,i

∫Phigh
di

Plow
di

Pd ×
1

σd
���
2π

√ e
− Pd−μd( )2

2σ
d2

[ ]⎛⎜⎜⎝ ⎞⎟⎟⎠dPd (49)

Table 5 contains the computer means and probabilities for all
loading scenarios. After the creation of load scenarios and wind
generation probabilities (as given in Section 3), these scenarios are
then combined into a larger-scale master problem, where each

scenario’s objective functions and constraints are treated as
separate islands in a stacked network. Solving the MOOPF
problem with a single solution for all scenarios when dealing
with wind and probabilistic load models can offer several
advantages.

The master OPF problem enables greater flexibility in
managing power systems since it provides uniformly
distributed and wide final nondominated solutions for all
scenarios that can be used to make real-time decisions. In
each scenario, the proposed algorithm optimizes the power
scheduled from all generators and also optimizes the locations
of FACTS devices. The algorithm optimizes the locations of
FACTS devices for all load levels. The program also adjusts
each device’s ratings for the network’s various degrees of load.
This study is useful because it uses MOOPF to run at
predetermined intervals to optimize many, competing multi-
objectives of an electrical network. Table 4 gives the constant
minimum and maximum values for the decision vector under
regulation. The outcomes of each simulation, which took into
account the stochastic cost of energy generation and variable load
demand, are shown in Table 6. It is evident from the decision
variables shown in Table 6 that the BCS solution parameters are
within the desirable range. The proposed algorithm was tested on
three different cases with different objective functions.

In Case 1, the algorithm achieved an expected cost of $833.014/h
and an emission rate of conventional thermal generators of 0.665 t/
h. In Case 2, the algorithm obtained a minimum cost of $731.419/h
for active power generation and a cost of power loss is 124.498 $/h

FIGURE 7
Gaussian distribution function for the generation of scenarios.

TABLE 5 Scenario-based variable load demand and its probability.

# Of
scenarios (sc)

Scenario
Probability, Δsc

% Of average
Load, Pd

sc1 0.159 54.75

sc2 0.341 65.40

sc3 0.341 74.56

sc4 0.159 85.25

Frontiers in Energy Research frontiersin.org19

Hafeez et al. 10.3389/fenrg.2023.1293870

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1293870


TABLE 6 Simulation results of various scenarios at different loading.

DV Case 1 Case2 Case 3 DV Case 1 Case2 Case 3 DV Case 1 Case2 Case 3

Pg2 39.8 20.0 49.5 Vg1 1.070 1.061 1.068 TCSCp1 2 2 17

Pg3 0.0 39.4 0.0 Vg2 1.043 1.056 1.053 TCSCp2 41 21 30

Pg4 11.1 10.0 22.1 Vg3 1.008 1.048 1.020 TCSCp3 63 77 73

Pg5 1.7 24.7 11.0 Vg4 1.029 1.045 1.000 TCSCp4 46 67 59

Pg6 12.4 12.0 19.1 Vg5 1.042 1.076 0.974 TCSCp5 101 112 89

Pg2 46.3 20.2 41.4 Vg6 1.059 1.068 1.073 TCSCp6 105 118 108

Pg3 21.7 63.6 38.4 TX1 0.921 0.953 1.065 TCSCp7 143 136 131

Pg4 10.6 10.0 14.4 TX2 0.981 0.983 0.929 TCSCp8 146 163 156

Pg5 22.9 30.5 27.4 TX3 1.036 0.968 1.007 TCSCr1 0.108 0.256 0.430

Pg6 15.5 12.0 14.8 TX4 0.967 0.965 0.973 TCSCr2 0.092 0.339 0.499

Pg2 46.7 21.4 32.6 TX1 0.919 0.974 1.066 TCSCr3 0.229 0.406 0.379

Pg3 35.4 59.3 39.5 TX2 1.097 1.007 1.004 TCSCr4 0.214 0.497 0.094

Pg4 10.3 10.0 24.3 TX3 1.079 0.995 1.005 TCSCr5 0.334 0.066 0.095

Pg5 30.5 60.0 43.2 TX4 1.038 0.983 0.994 TCSCr6 0.336 0.145 0.281

Pg6 23.4 12.0 22.6 TX1 1.048 0.971 0.925 TCSCr7 0.429 0.365 0.029

Pg2 52.6 28.3 36.4 TX2 0.901 1.071 1.055 TCSCr8 0.062 0.168 0.223

Pg3 45.0 75.0 46.5 TX3 0.970 1.013 1.009 TCPSp1 24 9 5

Pg4 15.2 11.9 17.8 TX4 1.008 1.019 0.986 TCPSp2 21 35 15

Pg5 16.6 60.0 58.6 TX1 1.050 0.990 0.941 TCPSp3 53 55 45

Pg6 21.6 12.0 33.5 TX2 0.957 0.999 0.931 TCPSp4 63 53 67

Vg1 1.038 1.014 1.051 TX3 0.962 1.042 1.009 TCPSp5 98 93 85

Vg2 1.015 1.009 1.046 TX4 1.006 0.993 0.942 TCPSp6 122 84 90

Vg3 0.993 1.001 1.017 SVCp1 7 24 22 TCPSp7 127 138 151

Vg4 0.978 1.001 1.042 SVCp2 14 10 7 TCPSp8 142 158 137

Vg5 1.025 1.059 1.077 SVCp3 57 54 35 TCPSr1 −3.700 0.346 −2.720

Vg6 1.014 1.053 1.077 SVCp4 37 41 47 TCPSr2 −1.764 1.081 3.367

Vg1 1.053 1.044 1.036 SVCp5 69 86 88 TCPSr3 0.484 0.134 −1.004

Vg2 1.051 1.039 1.032 SVCp6 81 84 64 TCPSr4 −1.212 0.950 −1.055

Vg3 1.015 1.034 1.014 SVCp7 100 114 111 TCPSr5 3.022 4.095 −0.253

Vg4 1.019 1.030 1.020 SVCp8 109 93 103 TCPSr6 −1.459 −0.329 −3.468

Vg5 0.994 1.078 1.026 SVCr1 7.322 5.239 −8.408 TCPSr7 −0.258 −2.094 0.831

Vg6 1.036 1.056 1.010 SVCr2 8.612 9.733 6.428 TCPSr8 1.368 3.193 −3.339

Vg1 1.018 1.063 1.072 SVCr3 7.655 7.589 1.616 Cost 833.014 731.419 806.6

Vg2 1.008 1.057 1.055 SVCr4 3.189 1.468 3.611 Thermal 479.664 406.334 467.1

Vg3 0.972 1.044 1.033 SVCr5 7.372 2.138 4.625 Over 19.564 57.379 31.6

Vg4 0.990 1.048 1.025 SVCr6 6.992 7.878 1.321 Under 333.786 267.707 307.8

Vg5 1.012 1.070 1.048 SVCr7 −1.394 9.749 8.164 Emission 0.665 0.690 0.674

Vg6 1.042 1.019 1.026 SVCr8 3.464 −5.119 2.320 CEL 322.966 124.498 214.9
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for energy loss. In Case 3, three objective functions were
simultaneously minimized, resulting in costs of $806.6/h, 0.647 t/
h for emissions, and $214.9/h for the cost of power loss.

Each case’s ideal FACTS device placement and size were identified,
and they are shown in Table 6. For a particular situation that had the
highest likelihood of occurring, the devices were positioned optimally,
and the same optimal placements were applied for the remaining
possibilities. In most cases, the FACTS devices operated near their
peak values in scenario 4, where there was a large inductive load in the
network. Optimizing the placement and rating of these devices can
improve the efficiency, reliability, and cost-effectiveness of power
systems. By analyzing the three cases, it became evident that the
generation cost and cost of power loss were greater in Case 1.
Tables 4, 6 show that in a realistic loading scenario, the cost of

network operation and power loss are much reduced. Additionally,
FACTS devices significantly modify their compensation in each case.
The bar chart in Figure 8 shows the breakdown of a number of costs,
such as the total cost of active power generation, the cost of thermal
generators, the reserve and penalty cost of wind generators, and the cost
of active power across the transmission line. The various elements that
affect the price of wind energy and power losses in various scenarios are
shown in Figure 8. First off, a low coefficient for the penalty function
results in minor penalty costs in all scenarios. In Cases 2 and 3 of
Scenario 4, running generators linked to Buses 5, 8, and 11 close to their
maximum rated capacities can aid in minimizing power losses brought
on by heavy network loading in those regions. But in Cases 1 and 3,
underestimating wind energymight result in higher reserve costs due to
direct, reserve, and penalty expenses for wind power. Due to lower

FIGURE 8
Comparison of Various costs for all the cases.

FIGURE 9
Best PF of BiCo of expected final nondominated solutions.
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scheduled power relative to Case 1, Cases 2 and 3’s thermal generator
costs are lower. Consideration of power loss as an optimization aim can
help to lower the cost of power loss, which is estimated based on the unit
cost of energy. Figure 9 displays the BSC and final predicted
nondominated solutions for each instance. Figure 9 show PF and
the minimum values of the objective function, and the red color
highlights the best compromise solution. Table 7 shows the state
variables such as active power generated by slack bus generators and
reactive power generated by all the PV bus generators of all the
scenarios.

Table 7 shows that in Case 1, there is a wide range of possible
values for the active MW injection at the slack bus. However, in
Cases 2 and 3, the power generated by the slack bus generator is
nearly equal across all scenarios. The bar charts in Figure 10

compare the active and reactive injections of all scenarios from
the slack bus and PV bus generators respectively. Figure 10 also
displays the load bus voltage profile for all scenarios. As can be
seen in Figure 10, the voltage profiles on the load buses are well
within the allowed range. In Case 1, the network voltage profile is
very close to unity, however in Cases 2 and 3, the objective
function includes the cost of active loss, which improves the
voltage profile.

6 Discussion

The main focus of this paper is on addressing the global need to
reduce the carbon footprint and emissions by transitioning from
fossil fuels to renewable energy sources for electricity generation.
The study highlights the increasing complexity of the Multi-
Objective Optimal Power Flow (MOOPF) problem, especially
with the introduction of power electronics-based Flexible AC
Transmission Systems (FACTS) devices. These FACTS devices
offer a range of benefits, including improved controllability,
effectiveness, stability, and sustainability in power systems.
However, they also introduce uncertainty and variability, making
the resolution of MOOPF issues challenging.

To address this, the paper develops three distinct cases with
competing objective functions to find the optimal combination
of control and state variables for MOOPF problems. These cases
consider minimizing the total power generation cost, estimating
the cost of wind generation, emission rate, and power loss due to
transmission lines. The study covers both fixed and variable load
scenarios. The proposed algorithm is put to the test in three
different cases, yielding results that highlight its effectiveness. In
Case 1, the algorithm achieved an expected cost of $833.014/h
and an emission rate of 0.665 t/h for conventional thermal
generators. In Case 2, it obtained a minimum cost of
$731.419/h for active power generation and a cost of
$124.498/h for energy loss. In Case 3, all three objective
functions were minimized simultaneously, resulting in costs
of $806.6/h for emissions, 0.647 t/h for emission rates, and
$214.9/h for power loss.

The research emphasizes the importance of optimizing power
systems for sustainability and efficiency, given the current
developments in the power sector, including deregulation,
integration of renewable energy sources, aging infrastructure,
demand variability, and environmental concerns. The integration
of FACTS devices is crucial in addressing these challenges and
ensuring the reliability, efficiency, and stability of the power grid.
The study goes further to compare the proposed algorithm with
other state-of-the-art multi-objective evolutionary algorithms,
demonstrating the proposed algorithm’s efficiency in providing a
diverse range of non-dominated solutions. It discusses the
significance of multi-objective optimization in handling complex
power systems, especially with the growing integration of renewable
energy sources. The paper’s contribution is in its focus on
integrating both site and size modeling of FACTS devices into
MOOPF solutions, potentially leading to more effective power
system optimization. Furthermore, this study also emphasizes
that multi-objective optimization is crucial for addressing the
evolving challenges in the power sector, reducing environmental

TABLE 7 Slack bus active and reactive power of all generators of all scenarios.

Parameter Case 1 Case 2 Case 3

PgSsc1 94.12 50.11 55.74

PgSsc2 71.08 50.14 50.65

PgSsc3 68.05 50.02 51.37

PgSsc4 94.90 55.97 51.88

Qg1 29.85 −2.58 −6.10

Qg2 −1.66 2.93 8.83

Qg3 17.73 11.17 −1.94

Qg4 −2.67 15.04 21.12

Qg5 −0.68 7.51 23.94

Qg6 11.14 7.98 21.68

Qg7 −8.46 −2.78 −3.43

Qg8 44.73 4.29 16.45

Qg9 1.65 13.12 7.58

Qg10 17.66 21.40 22.69

Qg11 −12.44 13.55 18.99

Qg12 29.79 13.11 8.05

Qg13 7.03 1.17 31.05

Qg14 20.67 13.81 15.55

Qg15 1.52 12.36 17.48

Qg16 25.91 30.74 15.45

Qg17 9.14 19.41 1.02

Qg18 15.67 5.14 6.24

Qg19 42.10 −1.24 30.67

Qg20 −9.87 8.11 38.11

Qg21 3.82 17.87 19.55

Qg22 40.89 25.84 7.99

Qg23 16.20 23.71 −17.96

Qg24 14.43 25.65 25.68
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impact, and helping utilities meet their environmental targets and
carbon footprint reduction goals.

7 Conclusion

FACTS are to enhance the controllability, efficiency, stability,
and sustainability of power systems. Alternatively, wind integration
in power systems offers a range of benefits including diversification
of energy sources, environmental benefits, cost savings, local
economic benefits, and energy independence. The optimal site
and size of FACTS devices along with wind generation adds
another level of uncertainty and variability to the power system,
making it a challenging area of research to find the optimal solution
to MOOPF problems. Therefore, in this work, the stochastic
MOOPF problem with allocation and siting of FACTS devices
and wind integration is modeled. The main objective of this
study is to identify the best Pareto front of no-dominated
solutions that satisfy all of the MOOPF problem’s operational
and physical constraints while incorporating stochastic wind
generation and the three types of FACTS devices that are most
frequently used. Three study cases of conflicting objective functions
such as minimization of the total cost of power produced, emission,
and cost of energy loss produced by transmission line are formulated
to find the optimal set of control and state variables of the MOOPF
problem. The case studies involve conducting optimization analyses
for power systems under both fixed and uncertain load demands.
Appropriate probability density functions (PDFs) have been
employed to model the random nature of both the wind energy
and load demand to create representative scenarios of low and
high probability. After that, all the scenarios are combined into
the largescale master problem, whereas, objective functions and

constraints of each scenario are treated as separate islands in a
single stacked network. Simulation results show that the use of a
single set of decision variables for all the scenarios is providing
better trade between the conflicting objective functions and has
advantages such as reduced computation time, improved
accuracy, enhanced flexibility, improved system planning, and
reduced risk. The cost of thermal generation, the direct cost of
scheduled wind power, penalty charges for underestimating wind
power, and reserve costs for overestimating wind power are all
included in the total cost of the power supplied. Most recent
multi-objective evolutionary algorithms are implemented
analyzed and compared with the proposed algorithm.
Simulation results show that the proposed algorithm finds the
near global Pareto Front (PF) compared to the other MOEAs in
most of the cases.
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