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Conducting research on cluster control strategies for distributed photovoltaic
systems to address voltage fluctuations and reverse power flow caused by large-
scale distributed photovoltaic integration is crucial foundational work in
establishing a new power system and ensuring its safe and stable operation.
Based on the division of distributed photovoltaic cluster, this paper takes
distributed photovoltaic cluster as the intermediate layer of control, and
researches the two-layer control strategy of inter-cluster coordination and
intra-cluster autonomy. The inter-cluster coordination strategy is located at
the upper layer, and this strategy based on the power grid structure of the
controlled area, comprehensively considering the observability, controllability,
degree and betweenness centrality of each node, the latter two characterize the
spatial location of the nodes. The dominant nodes of each cluster are selected by
the above multiple indicators. The multi-objective inter-cluster coordination
control model respectively focusing on the minimum voltage deviation of the
dominant node or the minimum network loss of the system is constructed
according to whether the voltage of the dominant node crosses the limit or
not, and the improved particle swarm-gray wolf coupling algorithm (PSO-GWO) is
used to generate the output indicators of each cluster. The intra-cluster autonomy
strategy is at the lower layer. In the shortage of adjustable PV resources connected
to the dominant node, the intra-cluster autonomy strategy adopting the control
sequence of dominant node-downstream node-upstream node to distribute the
output indicators of inter-cluster coordination within the cluster; In addition, in
view of the situation that the cluster cannot receive the output indicators due to
communication failure, The intra-cluster autonomy control model is constructed
with the goal of minimum voltage deviation and minimum network loss of the
dominant node in the cluster. The distributed photovoltaic inter-cluster
coordination + intra-cluster autonomy two-layer regulation strategy is used to
simulate the improved IEEE33-nodes system undermultiple scenarios. The results
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show that the proposed control strategy can effectively solve the voltage overlimit,
power flow back and other problems, and play an important role in ensuring the
safe and economic operation of the system.

KEYWORDS

distributed photovoltaic, cluster division, dominant node, inter-cluster coordination,
intra-cluster autonomy

1 Introduction

Driven by the dual-carbon strategy, China’s new power system
construction process is continuously deepening, and the scale of
distributed photovoltaic grid integration is rapidly expanding. Due
to the strong randomness and intermittency of distributed
photovoltaics themselves, and often being connected to low-
voltage distribution networks in a highly dispersed manner (Qian
and Haiyun, 2023), it has exacerbated the phenomena of power flow
reversal and voltage fluctuations in distribution networks. However,
traditional centralized control is unable to address the massive
communication data issues caused by the sharp increase in the
number of controlled entities (Wei et al., 2013). Researching efficient
control methods for distributed photovoltaics is a fundamental
undertaking to ensure the safe and reliable operation of the new
distribution network.

In recent years, with the continuous development of distributed
photovoltaic grid-connected technology, domestic and foreign
scholars have conducted extensive research on the control
strategies of distributed photovoltaics in response to the above-
mentioned issues. As early as 2009, scholars from the international
community emphasized the significant role of photovoltaic inverters
in voltage control. They compared two voltage controlmethods: active
power limitation and reactive power support by photovoltaic
inverters, indicating that both strategies should be used in
conjunction to fully exploit the voltage control capability of
photovoltaic inverters. They also anticipate the emergence of more
intelligent photovoltaic regulation methods in the future (Demirok
et al., 2009). Currently, fundamentally speaking, the content of
distributed photovoltaic regulation still combines the reasonable
reduction of active power and the full utilization of reactive power
regulation capability. However, various regulatory strategies have
emerged in form, leading to continuous improvement in regulation
effectiveness. Among them, voltage and reactive power control based
on clusters represent an important direction, encompassing reactive
power partitioning, dominant node selection, and regulation
strategies. Regarding reactive power partitioning and dominant
node selection in distribution networks, reference (Ze and
Yunning, 2020) applied an electrical distance-based agglomerative
hierarchical clustering algorithm to partition the distribution network,
subsequently constructed a multi-objective function-based dominant
node selection model, and the particle swarm algorithm based on the
relative dominance strategy is adopted for solving. In reference (Wei
et al., 2017), both the controllability of power sources to nodes and
nodes to loads and their influence on other areas are taken into
account to construct the dominant node selection model. The genetic
algorithm based on the relative dominance strategy is employed for
solving. Additionally, they propose the control space of dominant
nodes and use the K-means clustering algorithm to partition the

distribution network. Both references have validated the reliability of
the partitioning results and dominant node selection through
simulations. However, the evaluation criteria solely consider the
size of the objective function and do not consider the impact of
changes in distribution network structure resulting from the multi-
point grid connection of distributed photovoltaics. In distributed
photovoltaic control strategies, reference (Hongmin et al., 2019)
first acquires the voltage sensitivity matrix by calculation. Based on
this sensitivity matrix, reactive power adjustments of distributed
photovoltaics are allocated in the distribution network. This is
then supplemented by appropriate active power reduction to
enhance grid integration characteristics. Reference (Peng et al.,
2016) proposes a hierarchical multi-mode reactive power control
strategy for distributed photovoltaic clusters, comprising an executive
layer and an intelligent control layer. Two control modes are designed,
with the intelligent control layer utilizing a fuzzy controller to adjust
the reactive power curve under the respective mode. The executive
layer then outputs the corresponding reactive power based on the
reactive power curve, this method makes full use of the bidirectional
reactive power regulation capability of photovoltaic inverters. Both
references primarily focus on the optimization of distributed
photovoltaic control within specific regions, overlooking the
coordinated operation and global planning functions among
different clusters.

To effectively address the aforementioned issues, this paper
considers the characteristics of distributed photovoltaic grid
integration based on cluster partitioning. In the selection criteria
for dominant nodes, two factors, namely, node structural
characteristics and positional information, are integrated to
optimize the dominant node selection method, ensuring that the
chosen dominant nodes effectively reflect the each cluster’s voltage
levels in numerous distributed photovoltaic integration. Based on the
voltage levels of dominant nodes in each cluster, the inter-cluster
coordinated optimization model and the intra-cluster autonomous
optimization model are constructed to regulate reactive power output
from distributed photovoltaics using an improved particle swarm
optimization-grey wolf coupling algorithm. The application of this
dual-layer cluster control strategy based on the improved particle
swarm optimization-grey wolf coupling algorithm to the improved
IEEE 33-node system demonstrates that the control results can reduce
node voltage deviations and system power losses, effectively enhance
system security and economic performance in various scenarios.

2 Cluster division and dominant node
selection method

Household distributed photovoltaics are connected to the grid in
the form of inverters, which brings about challenges of handling
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massive communication data and numerous controlled entities,
making centralized control difficult. Additionally, the inverters
themselves serve as reactive power sources, providing the
connected photovoltaic systems with a significant amount of
reactive power reserve. In the 1970s, Electricité de France (EDF)
proposed a voltage hierarchical control scheme based on “dominant
nodes” and “control zones" (Bifeng, 2006). This scheme employs
cluster division to spatially decouple the distribution network,
allowing each cluster to fully utilize its own reactive power
resources for on-site reactive power balance. It can effectively
utilize the reactive power reserve of distributed photovoltaic
inverters to achieve efficient voltage regulation in large-scale
photovoltaic grid integration. The division of distribution
network clusters and the selection of cluster-dominant nodes are
the main tasks of the voltage hierarchical control scheme.

2.1 Cluster division method

Cluster division of distribution networks should adhere to the
following principles (Lin et al., 2017).

(1) Clusters should be approximately decoupled from each other,
with minimal mutual influence, and control measures for
neighboring clusters have limited impact on the cluster in
question;

(2) Each cluster should possess sufficient voltage reactive power
reserves to maintain its own voltage level.

For a given distribution network’s cluster division, the first step
involves constructing an optimization model for cluster division
using electrical distance as an indicator of node coupling degree. An

improved particle swarm optimization algorithm is employed for
finding the optimum and solution. The specific implementation
process is illustrated in Figure 1.

2.2 Improved dominant node selection
method

2.2.1 Observability and controllability indicators
The dominant node is a crucial node within the cluster. In

monitoring perspective, the voltage level of the dominant node
can represent the cluster’s voltage level. In control perspective,
efficient control of the cluster’s voltage can be achieved by
regulating the voltage of the dominant node. Selecting
dominant nodes can effectively reduce the difficulty of
observing the voltage states of each cluster, which is especially
applicable in the context of insufficient measurement resources in
distribution networks. The criteria for selecting dominant nodes
include observability and controllability indicators (Fei et al.,
2011), which are derived from the elements of the sensitivity
matrix. First, the decoupling of active and reactive power is
performed based on the Jacobian matrix in the Newton-
Raphson power flow calculation method:

ΔP
ΔQ[ ] � JPθ JPV

JQθ JQV
[ ] Δθ

ΔV[ ] (1)

In the equation, ΔP represents the change in active power
injection at the node; ΔQ represents the change in reactive power
injection at the node; Δθ represents the voltage phase angle at the
node; ΔV represents the voltage magnitude at the node; J is the
Jacobian matrix. Due to the higher coupling between voltage
magnitude and reactive power, and the lower coupling between
voltage magnitude and active power, setting ΔP � 0 and obtain:

ΔQ � ∂Q/∂V[ ]ΔV � JQV − JQθJ
−1
PθJPV[ ]ΔV (2)

ΔV � ∂V/∂Q[ ]ΔQ (3)
In the equations, ∂Q/∂V represents the part of the Jacobian

matrix related to reactive power and voltage magnitude; ∂V/∂Q is
the sensitivity matrix, reflecting the sensitivity of voltage magnitude
to input reactive power. According to equation (3), the voltage
sensitivity between any two nodes within the cluster is defined as
follows:

αij � ΔVi/ΔVj � ΔVi

ΔQj
/ΔVj

ΔQj
(4)

In the equation, αij represents the voltage sensitivity, ΔQj is the
reactive power change at node j, and when the voltage magnitude at
node j changes by ΔVj, the voltage at node i changes by
ΔVi � αijΔVj. Since αij reflects the impact of voltage changes at
node j on the voltage of another node i within the same cluster, the
observability of node i is determined by:

Oi � ∑
j∈Sa

αij (5)

In the equation,Oi represents the observability indicator of node
i, and Sa represents the set of all nodes within the cluster to which
node i belongs.

FIGURE 1
Flowchart of cluster partitioning.
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Similarly, according to equation (3), formulas for reactive power
voltage sensitivity and controllability indicators can be derived as
follows:

βij �
ΔUi

ΔQj
(6)

Ci � ∑
j∈Sa

βij (7)

The reactive voltage sensitivity in equation (6) is directly derived
from equation (3). In equation (7), Ci is the controllability index of
node i.

After obtaining the observability and controllability indices for
each node in the cluster, and considering their values differ by nearly
one order of magnitude (Xiaoyu et al., 2019), normalization is
performed first, followed by weighted summation:

Si � αOi + βCi (8)
In the equation, Si is the comprehensive indicator for selecting

the dominant nodes of node i, Oi and Ci are the normalized
observability and controllability indicators of node i, α and β is
the weight.

The number of dominant nodes generally does not exceed the
number of clusters participating in the regulation system, so the
number of dominant nodes in each cluster is set to 1, and the node
with the largest comprehensive indicator value becomes the
dominant node of the cluster.

2.2.2 The improved selection criteria for dominant
nodes considering node structural information and
spatial location

Considering the impact of a large number of distributed
photovoltaic access on the distribution network, distributed
photovoltaics are mostly connected to the terminal nodes of
feeders to raise the end voltage level (Chang et al., 2022). In
large-scale distributed power grid systems, the dominant nodes
selected based on observability and controllability criteria are
often connected to reactive power source nodes (Jianfang et al.,
2017). This facilitates efficient regulation of voltage levels in
dominant nodes, but the observability of such nodes is generally
poor. Therefore, introducing the node degree value and node
betweenness centrality from complex network theory can
represent the structural characteristics and positional information
of each node, optimizing the selection of dominant nodes.

Dkm � ∑
l∈E

δkl , Bkm � ∑
i,j

∑
l∈Sij

δkl

Sij
∣∣∣∣ ∣∣∣∣ (9)

In the equation, E represents the set of connecting lines between
nodes in cluster m to which node k belongs; when the connecting
line l is associated with node k, the symbol δkl takes the value of 1,
otherwise it is 0. The node degree valueDk represents the number of
connecting edges for node k, reflecting the ability of nodes within the
cluster to be closely connected to other nodes which are in the same
cluster; Sij is the set of shortest paths between any two nodes (i, j)
within cluster m, which can be obtained by the Floyd algorithm for
optimal path planning; the node betweenness centrality Bk

represents the total number of times node k passes through

shortest paths in the entire network, reflecting the spatial
centrality of node k within the cluster (Xiao et al.., 2013).

After adding the node degree value and node betweenness
centrality, the improved expression for the comprehensive
selection criterion is as follows:

S′k � Dkm · Ok + Bkm · Ck (10)
In equation (10), the node degree value and node betweenness

centrality replace the observability and controllability weights in
equation (8), avoiding the consideration and arrangement of
weighting sizes, and enhancing the influence of node structure
and spatial position on the selection of dominant nodes.

3 Inter-cluster coordinated control
strategies

Inter-cluster coordination strategies activate different control
modes based on the overvoltage conditions of dominant nodes. The
improved particle swarm-grey wolf coupling algorithm is used to
optimize the calculation of reactive power output indicators for each
cluster, which are then distributed to the respective clusters.

3.1 Inter-cluster coordination strategy
control objectives

The inter-cluster coordination strategy is based on the control
objectives of minimizing the voltage deviation of the dominant node
of each cluster and minimizing the system network loss:

minf1 � ∑J
j�1

Uj − U0

∣∣∣∣ ∣∣∣∣, minf2 � ∑M
m�1

Ploss,m (11)

In the equation, J represents the number of dominant nodes; Uj

represents the voltage magnitude of the dominant nodes, U0

represents the node voltage reference value, they all calculated in
per unit values where U0 = 1 p. u.; M represents the number of
clusters, Ploss,m represents the network loss of cluster m.

The weighted sum of the two objective functions is the
comprehensive inter-cluster coordination objective function:

minf � ω1f1 + ω2f2 (12)
In the equation, ω1 and ω2 are the weights of the two objective

functions.

3.2 Inter-cluster coordination strategy
constraints

The inter-cluster coordination strategy constraints include three
types: power flow constraints, cluster power constraints, and
operational safety constraints.

3.2.1 Power flow constraints
Power flow constraints refer to the equality constraints that must

be followed in system power flow calculations, which can be
expressed as (Tao et al., 2021):
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i2iju
2
i � P2

ij + Q2
ij

uj � ui − 2 rijPij + xijQij( ) + r2ij + x2
ij( )i2ij

Pj � Pij − i2ijrij( ) −∑
jl

Pjl

Qj � Qij − i2ijxij( ) −∑
jl

Qjl

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

In the equation, Ui and Uj represent the node voltages of nodes i
and j respectively; iij represents the branch current from node i to
node j; Pij and Qij represent the active and reactive power flowing
through branch i-j; rij and xij represent the resistance and reactance
of branch i-j respectively; Pj and Qj represent the net active and
reactive loads injected at node j; jl represents the set of branches
connected to node jwith node l as the endpoint; Pjl andQjl represent
the active and reactive power flowing through branch j-l.

3.2.2 Cluster power constraints:

0≤Ppv,m ≤Ppv,m
max

Qpv,m
min ≤Qpv,m ≤Qpv,m

max{ (14)

In the equation, Ppv,m andQpv,m represent the active and reactive
power outputs of cluster m’s distributed photovoltaic generation,
Ppv,m

max represents the maximum active power output of cluster m’s
distributed photovoltaic generation, Qpv,m

min and Qpv,m
max respectively

represent the upper and lower limits of cluster m’s distributed
photovoltaic reactive power output. The cluster power constraint
determines the adjustable upper limit of reactive power output for
each cluster.

3.2.3 Operational safety constraints:

Uj
min ≤Uj ≤Uj

max (15)

In the equation, Uj
min and Uj

max represent the upper and lower
limits of the voltage at the dominant node j. According to national
standards (Institute et al., 2008), the voltage deviation for three-
phase supply up to 20 kV in China is ± 7%. To proactively address
situations where the voltage exceeds the standard, this paper adopts
a safe operating range for node voltage of 0.95p.u.~1.05p.u., which
corresponds ± 5% to the nominal voltage.

3.3 Inter-cluster coordinated regulation
algorithm based on improved particle
swarm-gray wolf coupling algorithm

3.3.1 Improved particle swarm algorithm based on
dynamic inertia weights

Particle Swarm Optimization (PSO) is a type of swarm
intelligence optimization algorithm. This algorithm is derived
from the study of bird preying behavior, and its basic idea is to
find the optimal solution through the cooperation and information
sharing among individuals in a group. First, define a particle
population where each particle has two multidimensional
features: velocity and position. After the population is generated,
the particle swarm starts iterative updates. The update direction of
each particle is determined by two factors: the global optimal

objective function value of the entire particle swarm and the
historical optimal objective function value of the particle itself.
Assign corresponding weights to particles for iterative updates in
these two directions, so that the entire population can search for the
optimal value through continuous iterations. The iterative update
formula for PSO algorithm is as follows:

vt+1i,j � wvti,j + c1r1 pbestti,j
− xt

i,j( ) + c2r2 gbestti,j
− xt

i,j( ) (16)
xt+1
i,j � xt

i,j + vt+1i,j (17)

In the equations, w represents the inertia weight factor, vt+1i,j is
the velocity of the i-th particle in the j-th dimension at the t-th
iteration, xt+1

i,j is the position of the i-th particle in the j-th dimension
at the t-th iteration, pbestti,j

represents the personal best position of
the particle at that time, gbestti,j

represents the global best position of
the particle swarm at that time, c1 and c2 are the individual learning
factor and social learning factor with predefined values, r1 and r2 are
random numbers distributed in [0, 1].

In the classical PSO algorithm, the inertia weight w is constant.
To improve the optimization performance of the algorithm, a
linearly decreasing dynamic formula for the inertia weight w is
set as shown in (Jinghua et al., 2023):

w � w max − w max − w min

t max
· t (18)

In the equation, the inertia weight w linearly decreases within
the range [w min,wmax], t represents the current iteration count, tmax

represents the maximum iteration count.
To compare the optimization performance between constant

inertia weight and dynamic inertia weight PSO algorithms, we set
constant inertia weights as 0.4, 0.6, and 0.8, and the dynamic inertia
weight varies within the range of [0.4, 0.8] according to equation
(18). The aforementioned inter-group coordination optimization
model is optimized using these settings, and the iteration process is
shown in Figure 2. From the figure, it can be observed that when
using constant inertia weight PSO algorithm, the better the objective
function value found as the inertia weight increases, gradually
exhibiting saturation characteristics, and the optimal objective

FIGURE 2
Iterative process of inertial weight PSO algorithm.
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function value is obtained when the constant inertia weight is 0.8.
On the other hand, the dynamic inertia weight PSO algorithm can
search for the optimal value of the objective function while having
higher optimization speed and stability.

3.3.2 Improved gray wolf algorithm based on
nonlinear convergence factors and perturbation
weighting rules

Grey Wolf Optimization (GWO) is a swarm intelligence
optimization algorithm that simulates the hunting behavior of
grey wolves. The fundamental concept involves forming a wolf
pack, organized into a strict four-tier social hierarchy. The first
three tiers consist of leadership wolves, usually limited to three
individuals, ranked as alpha, beta, and delta wolves, respectively.
These wolves are composed of individuals with the highest
fitness values within the pack. The remaining wolves constitute
the fourth tier, and their position iteratively updates and converge
based on the positions of the three leading wolves, leading the
entire wolf pack towards the optimal value. The specific formula is
as follows:

�D � �C ·WP t( )
�����→−W t( )

���→∣∣∣∣∣ ∣∣∣∣∣ (19)
�W t + 1( ) � WP t( )

�����→− �A · �D (20)
In the equations, �D represents the distance between the grey

wolf and the prey (optimal value under the defined objective
function), W(t)

����→
and WP(t)

�����→
represents the positions of the grey

wolf and the prey. t stands for the current iteration count, �C
signifies the influencing factor, and �A denotes the vector of
iteration coefficients, expressed as:

�A � 2a · r1→− a (21)
�C � 2r2

→ (22)
In the equations, the convergence factor a linearly decays from

2 to 0 during the iteration process, r1
→ and r2

→ are random vectors
distributed within the interval [0, 1]. Therefore, the range of �A values
for is [-2, 2], and the range of �C values for is [0, 2].

While the three leading grey wolves approach the prey following
equations (18) to (21), the other grey wolves in the pack optimize
their search paths along with the leading ones, as described by the
specific formula:

Dα
�→ � C1

�→ ·Wα
��→− W

�→∣∣∣∣∣ ∣∣∣∣∣
Dβ
�→ � C2

�→ ·Wβ
��→− W

�→∣∣∣∣∣ ∣∣∣∣∣
Dδ
�→ � C3

�→ ·Wδ
��→− W

�→∣∣∣∣∣ ∣∣∣∣∣
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (23)

W1
��→�Wα

��→− A1
�→· Dα

�→( )
W2
��→�Wβ

��→−A2
�→· Dβ

�→( )
W3
��→�Wδ

��→−A3
�→· Dδ

�→( )
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (24)

W
�→

t + 1( ) � W1
��→+W2

��→+W3
��→

3
(25)

Wα
��→

, Wβ
��→

and Wδ
��→

represent the positions of the three leading wolves
after iterative updates, W

�→
represents the position of a certain grey wolf

within the wolf pack,Dα
�→

,Dβ
�→

, andDδ
�→

signify the distances between this
grey wolf and the three leading wolves, and W

�→(t + 1) represents the

position of the grey wolf after optimization. The entire wolf pack
approaches the optimal value according to the aforementioned formula.

The optimization process of GWO includes two phases: breadth
search and depth search. During the initial iterations, the breadth
search phase aims to expand the search range as much as possible to
discover numerous local optimal solutions. When a sufficient
amount of local optimal solution information is accumulated, the
later iterations enter the depth search phase, characterized by more
precise development and tracking capabilities, enabling an accurate
and rapid approach towards the global optimal solution.

During the aforementioned iterative process, the position updates
of the wolf pack are sharply influenced by the coefficient vector �A, and
the factor �A also impacts the proportion of depth search and breadth
search iterations. The originator, Seyedali Mirjalili, defined |A|> 1 as
the breadth search phase. As deduced from equation (20), during this
phase, the position alterations of each grey wolf are substantial, which
favors the exploration of prey within the global scope. When |A|< 1 is
reached, the algorithm transitions to the depth search phase, resulting
in the narrowing of the wolves’ activity range and gradual
encirclement of the prey (Mirjalili et al., 2014).

As evident from equation (21), �A linearly converges with the
convergence factor a. During this phase, the GWO algorithm faces
the issue of insufficient optimization time for breadth search in the
early iterations, leading to difficulties in identifying an adequate
number of local optimal solutions. Moreover, the convergence speed
for depth search in the later iterations is relatively sluggish. In the
context of multidimensional optimization for distributed
photovoltaics, the overall optimization performance of GWO is
inadequate (XING Yan-Zhen and WANG Dong-Hui, 2018).
Therefore, a nonlinear convergence factor a is introduced:

a � 2

����������
1 − t

t max
( )2

√√
(26)

In the equation, t represents the current iteration number, tmax

represents the maximum iteration number. The convergence factor
a varies with the iteration count as shown in Figure 3.

FIGURE 3
Curve of convergence factor with the number of iterations.
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As evident from Figure 3, the nonlinear convergence factor
exhibits a slow decay rate in the early iterations, contributing to a
higher proportion of the breadth search phase, thereby retaining
robust global search capabilities. In the later iterations, it rapidly
decays to 0, ensuring effective optimization speed without excessive
consumption of iteration counts.

Moreover, equations (23) to (25) reveal that the GWO algorithm
does not manifest a hierarchical structure among the three leading
wolves in their position update step and lacks communication
between individual grey wolf entities. Hence, the introduction of
the perturbation-weighted rule (Menglong Cao, 2023):

C1 � 0.5

C2 � random 0, 1( )
2

C3 � 1 − random 0, 1( )
2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (27)

W
�→

t + 1( ) � C1 ·W1
��→+ C2 ·W2

��→+ C3 ·W3
��→

(28)
In the equations, the weight C1 value remains constant, ensuring

that the highest-ranked α wolf maintains an unchanged coefficient
for influencing the position updating process of other grey wolves,
reflecting its supreme leadership position. Conversely, for the β and
δ wolves, a random weighting approach is employed to perturb the
coefficients influencing the position updating process of other grey
wolves. This imparts distinct functional emphasis to the three
categories: the α wolf, as the leader, consistently fulfills the
optimal optimization role, whereas the β and δ wolves enhance
the search diversity of the wolf pack through varying weight
assignments, further diminishing the likelihood of the algorithm
being trapped in local optima.

3.3.3 Improved particle swarm-gray wolf (PSO-
GWO) coupling algorithm

The PSO algorithm possesses the characteristics of fast
optimization speed, relatively stable results, and simplicity;
however, its search capability is limited, making it susceptible
to local optima. The GWO algorithm has a stronger global search
capability and is relatively less prone to local optima compared to
the PSO algorithm. Nonetheless, its search capability heavily
relies on the three leading grey wolves, and the strength of search
capability is closely related to the initialization of the wolf pack.
Therefore, an improved PSO-GWO coupling algorithm is
proposed for the optimization calculation of inter-group
coordination regulation models. Firstly, the PSO algorithm is
employed to iteratively optimize the inter-group coordination
regulation model, resulting in three optimal particles. The
objective function values of these three optimal particles
obtained by the PSO algorithm are compared with the initial
objective function values of the three leading grey wolves
initialized by the GWO algorithm. If the objective function
values of the particles obtained by the PSO algorithm are
superior, they replace the initial values of the leading wolves,
while the initialization positions of other wolves remain
unchanged. This ensures that the wolf pack has superior
initial positions of the leading wolves in the early iterations.
The improved PSO-GWO coupling algorithm is outlined in
Figure 4.

3.4 Inter-group coordination control
scenarios

The inter-cluster coordination strategy adopts different control
modes based on the voltage levels of the dominant nodes in each
cluster. When the voltage fluctuates within limits at the leading node
without exceeding them, the weight ω1 of the voltage deviation of
nodes in the inter-cluster coordination control objective function is
set smaller than the weight ω2 of network loss, and the system enters
the economic control mode, mainly focusing on reducing network
loss by controlling the reactive power output of distributed
photovoltaics in each cluster. When the voltage at the leading
node exceeds limits, the weight ω1 of the voltage deviation
becomes larger than the weight ω2 of network loss, and the
system enters the emergency control mode, primarily focusing on
adjusting the reactive power output of distributed photovoltaics in
each cluster to ensure that the voltage at each leading node operates
safely within a specified range. After the calculation of the reactive
power output of distributed photovoltaics in each cluster is
completed, instructions are generated and sent to the lower-level
inter-cluster autonomous strategy for allocation.

FIGURE 4
Flowchart of PSO-GWO coupling algorithm.
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4 Intra-group autonomy control
strategy

4.1 Reactive output allocation strategy

Upon receiving the reactive power control instructions
distributed by the upper-level inter-cluster coordination strategy,
the cluster calculates and issues indicators to determine the
allocation among various photovoltaic power stations within the
cluster using Intra-group autonomy control strategy. Generally, the
allocation is based on the proportional capacity of each photovoltaic
power station, ensuring the efficient utilization of reactive power
capacity across the stations. However, this method neglects the
varying sensitivity of voltage influence by the photovoltaic power
station’s location on the dominant node. In reference (Lijun and
Chao, 2021), distributed photovoltaics with the same capacity are
integrated into upstream node n-1 and downstream node n+1, both
at the same distance from a certain node n. When the injected
photovoltaic power is equal, the integration of photovoltaics at
downstream node n+1 exerts a greater impact on the voltage of
node n. This conclusion can be obtained by using DisFlow power
flow equation and considering the characteristics of distribution
network feeders. The node voltage of the upstream node n-1 of node
n in the distribution network can be obtained by the following
formula:

V2
n−1 � V2

n + 2 PnRn + QnXn( ) (29)
In the equation, Rn, Xn and Pn,Qn are the resistive, reactance and

active power, reactive power between nodes n-1 and n, respectively.
Let the load power of node n be PLn, QLn, and node n possesses
distributed PV output power PVn, QVn. When the distributed PV
output power of node n changes at moment t while the injected
power of the downstream node remains unchanged, the voltage
change of the upstream node at moment t+1 is:

Vt+1
n−1( )2 � Vt

n( )2 + 2ΔPt
Vn ∑n−1

i�1
Ri + 2ΔQt

Vn ∑n−1
i�1

Xi (30)

In the equation, ΔPt
Vn and ΔQt

Vn is the change in PV output
power. Similarly, when the injected power at the upstream node is
unchanged, the change in the PV output power at node n results in a
change in the voltage at the downstream node n+1 as:

Vt+1
n+1( )2 � Vt

n( )2 − 2ΔPt
Vn∑n

i�1
Ri − 2ΔQt

Vn∑n
i�1
Xi (31)

From Eq. (30) and (31), it can be seen that the change of PV
output power of node n has an impact on the voltage of both
upstream and downstream nodes, and the voltage change of the
upstream node is larger, which indicates that regulating the PV
output power of a node has a greater impact on its upstream node. In
the case that the dominant node has both better observability and
controllability, the voltage change of the dominant node is observed
as the standard, so the downstream distributed PV of the dominant
node should be preferentially invoked to obtain higher regulation
efficiency of the dominant node.

Consequently, the strategy for reactive power output
distribution within the cluster is as follows: Upon receiving
instructions at the cluster level, a check is first performed to

ascertain whether the self-dominant node is connected to
photovoltaics. According to the prioritized control sequence of
dominant node, downstream node and upstream node, the
indicators are then allocated to distributed photovoltaics within
the cluster. Nodes within each priority level are assigned indicators
based on their respective distances from the dominant node. Only
when the adjustable reactive power of a certain level is completely
utilized and there are remaining control indicators, can the
adjustable reactive power of the next priority level be invoked.

4.2 Intra-group autonomy regulation
strategy in case of down command
communication failure

In case of communication failures between the inter-cluster layer
and the cluster layer, and the cluster is unable to receive output
indicators, the intra-cluster autonomy control strategy can be
implemented. The control objectives of the intra-cluster
autonomy control strategy aim to minimize the voltage deviation
of the dominant node and the network loss of the cluster:

minf3 � Upilot node − U0

∣∣∣∣ ∣∣∣∣, minf4 � Ploss,n (32)
minf � ω1f3 + ω2f4 (33)

In the equations, Upilot node represents the voltage at the
dominant node of cluster n, and Ploss,n represents the network
loss of cluster n. The comprehensive objective function is formed
by the weighted combination of the two individual objective
functions. The constraint conditions and optimization algorithm
of the intra-cluster autonomy control strategy are identical to those
of inter-cluster coordination. In the case of communication failures,
cluster n, based on whether its dominant node’s voltage exceeds
limits, enters either an emergency control mode or an economic

FIGURE 5
Flowchart of inter-cluster coordination + intra-cluster autonomy
two-tier regulation strategy.
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control mode, with the same weighting of control objectives as the
inter-cluster coordination strategy. The flowchart for the bi-level
cluster control strategy involving inter-cluster coordination and
intra-cluster autonomy is illustrated in Figure 5.

5 Simulation analysis of improved IEEE
33-node system

The improved IEEE 33-node system is selected, containing
32 load nodes with 9 nodes incorporating distributed
photovoltaics. The total load of the system is 3,715 + j2315kVA,
and the power factor of each distributed photovoltaic is 0.95. The
network topology, distributed photovoltaic integration status, and
cluster partitioning results are depicted in Figure 6; Table 1.
Variances in simulation scenarios can lead to differences in
cluster partitioning outcomes, this paper only presents the cluster
partitioning results for a specific scenario.

5.1 Analysis of cluster dominant node
selection results

Selecting dominant nodes using three types of indicators.
Method 1: Single observability indicator; Method 2: Composite

indicator of observability and controllability, with a weight ratio of
0.4:0.6; Method 3: Improved dominant node indicator considering
node degree and betweenness centrality. The selection results of
the three methods are shown in Figure 7.

From Figure 7, it can be observed that dominant nodes selected
by Method 1 are mostly non-photovoltaic access nodes. The voltage
of these nodes can better reflect the cluster voltage level, but the
single observability indicator does not consider the regulating
performance of these nodes. Dominant nodes selected by Method
2 are mostly photovoltaic access nodes. These photovoltaic access
nodes exhibit superior voltage regulation capabilities. However,
there is a tendency for dominant nodes to be located at the end
of feeders, which does not effectively represent the overall voltage
level of the cluster. Dominant nodes selected by Method 3 are often
situated in the middle of the cluster and are mostly photovoltaic
access nodes. These nodes possess a good balance between
observability and controllability.

The dominant nodes selected by the three methods are
consistent in Clusters 3, 5, and 6. For Cluster 4, Method
1 designates Node 17 as the dominant node, which is situated
at the end of a feeder and lacks photovoltaic access, thus not
conducive to voltage regulation voltage regulation. Both Method
2 andMethod 3 select Node 15 as the dominant node, positioned at
the center of the cluster and equipped with photovoltaic access,
exhibiting superior controllability. In Cluster 1, Method
2 designates Node 5 as the dominant node, with photovoltaic
access but located at the edge of the cluster; both Method 1 and
Method 3 designate Node 24 as the dominant node, not only
adjacent to photovoltaic Node 25, but relatively closer to the
cluster center, ensuring better regulation performance. For
Cluster 2, both Method 1 and Method 3 designate Node 6 at
the cluster center as the dominant node; however, Method
2 designates Node 8, an edge-of-cluster photovoltaic access
node, as the dominant node. The differences in node selection
between the two approaches reflect varying emphasis on
observability, controllability, and spatial position factors. To
compare the effectiveness of the two approaches (YAN
Xiangwu et al., 2020), the reactive load of the dominant nodes
in both approaches is sequentially increased by a factor of 1.1. The

FIGURE 6
Improvement of IEEE 33-node system.

TABLE 1 Improved IEEE33 node system cluster division, dominant node
selection results.

Cluster number Nodal range Dominant node

1 3–5, 23–25 24

2 6–9, 26–27 6

3 10–12 11

4 13–18 15

5 2, 19–22 21

6 28–33 32
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voltage trend of each node in the cluster is iteratively computed, as
illustrated in Figure 8, enabling the analysis of the observability
and controllability performance of the dominant nodes in the two
approaches.

From Figure 8A, it can be observed that during the process of
increasing reactive load resulting in voltage of cluster’s nodes
changes, Node 6’s voltage closely aligns with those of the internal
nodes within the cluster. Furthermore, the voltage drop rates of all
nodes are consistent. In other words, Node 6 can effectively reflect
the voltage level of the cluster, validating the rationality of this
dominant node selection approach. From Figure 8B, it can be seen
that the voltages of Nodes 7, 8, and 9 are similar, exhibiting
consistent trends in change. Similarly, the voltage values and
trends of Nodes 6, 26, and 27 are alike. The six nodes in Cluster
2 gradually segregate into two groups with significant deviations in

voltage levels, indicating that Node 8 does not adequately represent
the voltage fluctuation trend of the entire cluster.

5.2 Analysis of inter-cluster coordinated and
regulation strategies

In regard to the improved IEEE 33-node system, system voltage
fluctuations caused by varying photovoltaic output under different
sunlight conditions are simulated. Three scenarios are considered:
voltage fluctuations within limits, voltage exceeding the upper limit,
and voltage falling below the lower limit, for the purpose of
conducting cluster control analysis. In the improved PSO-GWO
coupling algorithm, the particle count of the particle swarm and the
gray wolf individuals in the gray wolf population are both set to 50.

FIGURE 7
Comparison of the results of dominant node selection.

FIGURE 8
Trend of voltage change at each node due to increasing reactive load at node 6 or 8.
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The particle swarm undergoes 20 iterations, while the gray wolf
population undergoes 100 iterations. In the PSO, both individual
learning factor and social learning factor are set to 0.4.

5.2.1 Scenario 1: Dominant node voltage fluctuates
but does not cross the limit

When the dominant node voltages of each cluster operate within
a safe range, the system enters an economic control mode; at this
time, the minimum target weight for network loss is 0.7, and the
minimum target weight for dominant node voltage deviation is 0.3.
Two approaches are adopted for voltage control: this paper
proposed improved PSO-GWO coupling inter-cluster
coordination + intra-cluster autonomy allocation strategy, and
the classical PSO inter-cluster coordination + intra-cluster
allocation strategy based on photovoltaic capacity ratio. The
optimized reactive power outputs of each cluster obtained using
the proposed improved PSO-GWO coupling inter-cluster
coordination + intra-cluster autonomy allocation strategy are
shown in Table 2, and the reactive power outputs of each
photovoltaic station after intra-cluster autonomy allocation are
shown in Table 3.

The comparison of system node voltage magnitudes before and
after voltage control using the two approaches is shown in
Figure 9A, and the voltage deviation, system network loss, and
objective function values are presented in Table 4.

The comparison of PSO-GWO algorithm control before and
after, as shown in Figure 9A; Table 4, reveals that the sum of
magnitudes of dominant node voltage deviations decreases by
35.27%, the maximum node voltage deviation decreases by
35.15%, and the sum of magnitudes of voltage deviations for all
nodes decreases by 38.13%. In contrast, the PSO algorithm control
shows an increase of 8.09% and 5.12% in the sum of magnitudes of
dominant node voltage deviations and the maximum node voltage
deviation, respectively, while the total node voltage deviation
decreases by 1.42%. Compared to the control before, the PSO-
GWO algorithm reduces system network loss by 34.0063kW,
achieving a decrease of 26.23%; the PSO algorithm reduces
system network loss by 6.7408kW, a reduction of 5.20%. This
demonstrates that the PSO-GWO coupled control approach
significantly reduces system network loss and voltage deviations,
while effectively elevating the voltage levels at the end of feeders.

Figure 10 illustrates the relationship between the objective
function values and the number of iterations during optimization
for the two approaches. It is evident from the figure that the PSO
algorithm achieves rapid optimization but lacks precision, quickly
converging to a local optimum after only 10 iterations. In contrast,
the PSO-GWO coupling algorithm, benefiting from the initial
optimization of the PSO population and the utilization of intra-
cluster autonomy allocation strategy, has an initial objective
function value that surpasses the local optimum reached by the
PSO algorithm. Moreover, the PSO-GWO algorithm exhibits
superior global search capability, enabling it to continue
searching for improved objective function values even after
stabilization. It can expand the search range through
perturbation weighting and continues to find better solutions
around the 50–60 iteration mark.

5.2.2 Scenario 2: Dominant node voltage exceeds
upper limit

The inter-cluster coordination detected the dominant node
voltage exceeding the set upper limit of 1.05 p. u., causing the
system to enter emergency control mode. At this time, the minimum
target weight for network loss is 0.3, and the minimum target weight
for dominant node voltage deviation is 0.7.

The improved PSO-GWO coupling inter-cluster coordination +
intra-cluster autonomy allocation strategy optimization proposed in
this paper yields the reactive power output of each cluster as shown in
Table 2. After intra-cluster autonomy allocation, the reactive power
output indicators of each photovoltaic station are presented in Table 3.

The comparison of system node voltage magnitude before and
after voltage regulation using the two approaches is shown in
Figure 9B, along with the voltage deviations, system network loss,
and objective function values as presented in Table 4.

As evident from Figure 9B; Table 4, before regulation, the dominant
node 15 of Cluster 4 exceeded the upper limit, triggering emergency
control mode. After regulation, all node voltages are within the safe
range, and the drop in Cluster 4, which had the highest exceedance, is
significantly greater than other clusters, demonstrating the effectiveness
of the control. Comparing PSO-GWO algorithm control before and
after, the sum of dominant node voltage deviation magnitudes in the
system decreases by 78.35%, the maximum node voltage deviation
drops by 83.05%, and the sum of all node voltage deviation magnitudes

TABLE 2 Output before and after regulation of each cluster.

Cluster number PV active output/kW PV reactive power output/kvar

Scenario 1 Scenario 2 Scenario 3 Before regulation After regulation

Scenario 1 Scenario 2 Scenario 3

1 1,000 1,400 600 0 328.68 374.4538 197.2105

2 400 550 200 0 131.47 −180.7763 65.7368

3 400 550 200 0 262.95 −180.7763 65.7368

4 1,000 1,400 600 0 −218.07 −460.1577 197.2105

5 400 550 200 0 74.09 −170.8061 27.5756

6 1,000 1,400 600 0 197.21 222.6069 197.2105
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decreases by 75.02%. On the other hand, comparing PSO algorithm
control before and after, the sum of dominant node voltage deviation
magnitudes, maximum node voltage deviation, and total node voltage

deviation values decrease by 59.82%, 81.07%, and 65.15% respectively.
Compared to the pre-regulation state, in order to control dominant
node voltages, the PSO-GWO algorithm results in the system network

TABLE 3 Output of each PV power plant before and after regulation.

PV
station

Belong
cluster

Access
node

PV active output/kW PV reactive power output/kvar

Scenario
1

Scenario
2

Scenario
3

Before
regulation

After regulation

Scenario
1

Scenario
2

Scenario
3

PV1 1 5 400 550 200 0 131.47 95.0723 65.7368

PV2 3 8 400 550 200 0 131.47 −180.7763 65.7368

PV3 3 11 400 550 200 0 131.47 −180.7763 65.7368

PV4 4 15 400 550 200 0 −131.47 −180.7763 65.7368

PV5 4 18 600 850 400 0 −86.60 −279.3815 131.4736

PV6 5 21 400 550 200 0 74.09 −170.8061 27.5756

PV7 1 25 600 850 400 0 197.21 279.3815 131.4736

PV8 2 29 400 550 200 0 131.47 0 65.7368

PV9 6 33 600 850 400 0 197.21 222.6069 131.4736

FIGURE 9
Plot of system voltage amplitude before and after regulation in scenarios 1~4.
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loss increase of 72.8456 kW during the control of distributed
photovoltaic reactive power output, while the PSO algorithm
increases it by 85.4878 kW. This illustrates that the PSO-GWO
coupling control approach outperforms the PSO algorithm in all
performance indicators. Furthermore, it significantly reduces feeder
terminal node voltage deviations compared to the PSO algorithm.

5.2.3 Scenario 3: Dominant node voltage crosses
the lower limit

Inter-cluster coordination detected that the voltage of the
dominant node has crossed the set lower limit of 0.95 p. u.,
causing the system to enter an emergency control mode. At this
moment, the weights corresponding to the minimum network loss
objective function and the minimum dominant node voltage
deviation objective function are the same as in Scenario 2.

The improved PSO-GWO coupling inter-cluster coordination +
intra-cluster autonomy allocation strategy optimization proposed in
this paper yields the reactive power outputs of each cluster as shown
in Table 2. After undergoing intra-cluster autonomy allocation, the
reactive power outputs of individual photovoltaic stations in each
cluster are presented in Table 3.

A comparison of system node voltage magnitudes before voltage
regulation and after employing two different approaches for voltage
regulation is illustrated in Figure 9C, along with their corresponding
voltage deviations, system network losses, and objective function
values as outlined in Table 4.

As indicated by Figure 9C; Table 4, it can be observed that the
dominant node 32 of Cluster 6 exceeds the lower limit before
regulation, triggering the emergency control mode. In comparison
to the state prior to control, the total modulus sum of the dominant
node voltage deviations in the system decreases by 34.98% after PSO-
GWO algorithm control, with the maximum node voltage deviation
decreasing by 25.47%, and the total modulus sum of all node voltage
deviations decreasing by 36.06%. Conversely, for PSO algorithm-
based control, in comparison to the state before control, the dominant
node voltage deviation modulus sum decreases by 33.88%, the
maximum node voltage deviation decreases by 25.31%, and the
overall node voltage deviation values decrease by 35.40%.

Due to the low solar irradiance in this scenario and the limited
capacity for adjustable reactive power, the space for effective control
scheme optimization is constrained, leading to reduced optimization
difficulty. Consequently, the performance metrics of the PSO-GWO
algorithm exhibit only minor discrepancies compared to the PSO
algorithm. Both approaches are capable of identifying the global
optimum.

In summary, for the improved IEEE 33-node system under three
distinct scenarios, a comparative analysis of cluster control is
conducted between the enhanced PSO-GWO coupling strategy
with inter-cluster coordination and intra-cluster autonomy
allocation, and the classical PSO strategy with inter-cluster
coordination and intra-cluster allocation based on photovoltaic
capacity ratios. The results demonstrate that the proposed

TABLE 4 Table of indicators for regulatory assessment.

Scenarios Regulation before and after Ploss Ubias_SD Ubias_max Ubias_SN fopt

Scenario 1 Before regulation 129.6513 0.0828 0.0293 0.3737 0.0005149

PSO regulation 122.9105 0.0895 0.0308 0.3684 0.0002415

PSO-GWO regulation 95.6450 0.0536 0.0190 0.2306 0.0001379

Scenario 2 Before regulation 257.0742 0.0993 0.0655 0.5285 0.002949

PSO regulation 342.5620 0.0399 0.0124 0.1842 0.0004530

PSO-GWO regulation 329.9198 0.0215 0.0111 0.1320 0.0001379

Scenario 3 Before regulation 96.0877 0.2001 0.0636 1.0370 0.007556

PSO regulation 51.4141 0.1323 0.0475 0.6699 0.004326

PSO-GWO regulation 50.5938 0.1301 0.0474 0.6631 0.003062

Scenario 4 Before regulation 96.0877 0.2001 0.0636 1.0370 0.007556

No intra-group autonomous regulation 61.7769 0.1771 0.0506 0.8199 0.003743

With intra-group autonomous regulation 50.3694 0.1483 0.0474 0.6603 0.003109

FIGURE 10
Iterative optimization graph of PSO algorithm and PSO-GWO
coupling algorithm.

Frontiers in Energy Research frontiersin.org13

Li et al. 10.3389/fenrg.2023.1292899

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1292899


approach can effectively achieve voltage control under different
scenarios and reduce system network losses. The control
performance is significantly enhanced compared to the classical
particle swarm optimization strategy with inter-cluster coordination
and intra-cluster allocation based on photovoltaic capacity ratios.

5.3 Analysis of intra-cluster autonomy
strategies in case of cluster
4 communication failures

According to Table 2, in scenario three, compared to other
clusters, Cluster 4 has the highest active power capacity and a
reactive power capacity of 197.2105 kvar, with low node voltages
within this cluster; In the absence of communication failures, as per
the inter-cluster coordination strategy proposed in this paper,
Cluster 4’s reactive power output is at its maximum state; If a
communication failure occurs within this cluster, resulting in its
exclusion from the overall system control, its reactive power output
becomes zero. This situation would significantly impact the
effectiveness of voltage limit control in the system; Consequently,
Cluster 4 is designated as the communication failure cluster,
operating with an intra-cluster autonomy strategy.

Since the dominant node 15s voltage within Cluster 4 does not
fall below the lower limit, the intra-cluster autonomy strategy
enters an economic control mode. The computation using the
intra-cluster autonomy strategy yields maximum reactive power
output for this cluster, as shown in Table 5. A comparison among
the pre-control scenario, Cluster 4 with communication failure
and no intra-cluster autonomy, and Cluster 4 with communication
failure and intra-cluster autonomy is illustrated in terms of node
voltage magnitudes in Figure 9D. Voltage deviations, system
network losses, and objective function values are presented in
Table 4. From Figure 9D; Table 4, it is evident that when Cluster
4 experiences a communication failure and lacks intra-cluster
autonomous control, the system lacks adjustable reactive power
participation from Cluster 4. This deficiency results in a maximum
node voltage deviation of 0.0506 p. u., which still exceeds the lower
limit. When Cluster 4 experiences a communication failure and is
subject to intra-cluster autonomy control, even though the cluster
enters an economic control mode due to the non-exceedance of its
dominant node voltage limit, the overall lower voltage level allows
the intra-cluster autonomy strategy to yield an output scheme
consistent with the inter-cluster coordinated control.
Furthermore, the voltage deviations, system network losses, and
objective function values are nearly identical to those of the inter-
cluster coordinated control.

In conclusion, when the communication failure occurs within a
cluster, the intra-cluster autonomy control strategy can facilitate
inter-cluster coordination to issue commands to that cluster. This

achieves voltage limit regulation and promotes secure and
economical operation.

6 Conclusion

In response to the issues of voltage exceeding limits and reverse
power flow caused by the integration of a large number of
distributed photovoltaics, this paper proposes an improved PSO-
GWO coupling inter-group coordination + intra-group autonomy
allocation strategy. After conducting multiple scenario-based
simulation analysis on an enhanced IEEE 33-node system, the
following conclusions are drawn.

(1) The improved PSO-GWO coupling inter-group coordination +
intra-group autonomy allocation strategy, based on
considerations of observability and controllability, first
introduces node degree and node betweenness centrality
reflecting node structural information and spatial position.
These metrics form a comprehensive indicator for selecting
the dominant node within each cluster. In comparison to
conventional observability and controllability metrics, the
dominant node selected based on the comprehensive
indicators considering node position information and
topological structure can effectively reflect the cluster’s
voltage level and exhibit excellent control capabilities.

(2) The improved PSO-GWO coupling algorithm introduces linearly
decreasing dynamic inertia weights in the PSO algorithm,
enhancing optimization speed and search depth; in the GWO
algorithm, a nonlinear convergence factor is set to optimize the
breadth-to-depth search ratio, accelerating convergence speed; a
disturbance-weighted rule for leading-level wolves is established
to enhance optimization diversity; and the improved PSO
algorithm is coupled with the improved GWO algorithm to
optimize the initial structure of the wolf pack.

(3) Targeting minimal voltage deviation of the dominant node and
minimal system power loss, a regulatory optimization model for
distributed photovoltaic clusters is established. The improved
PSO-GWO coupling algorithm is applied for coordinated
computation and issuance of reactive power output for each
cluster. Intra-cluster autonomous allocation strategies are
implemented for each cluster.

In the improved IEEE 33-node system, typical scenarios are
established to compare the improved PSO-GWO coupling inter-
group coordination + intra-group autonomy control strategy with
the classical PSO inter-group coordination + intra-group allocation
strategy based on photovoltaic capacity proportion. The results
indicate that the proposed strategies exhibit favorable effects on
reducing node voltage deviation and lowering power loss under

TABLE 5 Autonomous regulation of reactive power output within cluster 4 cluster.

Scenario Reactive power capacity/
kvar

Inter-cluster coordination
indicator

No intra-group
autonomy

Intra-group
autonomy

Cluster4 reactive
output

197.2105 197.2105 0 197.2105
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different scenarios. This strategy is suitable for complex control
scenarios arising from the integration of a large number of
distributed photovoltaics, characterized by extensive equipment
monitoring and communication pressure, effectively ensuring the
secure and economic operation of the distribution network.
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