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Introduction: Power load forecasting and market price analysis have become
crucial in the context of complex power energy systems and volatile market
prices. Deep learning technology has gained significant attention in time series
forecasting, and this article aims to enhance the accuracy and reliability of power
load and market price predictions by integrating and optimizing deep learning
models.

Methods:We propose a deep learning framework that combines artificial neural
networks (ANNs), long short-term memory (LSTM), and transformer models
to address key challenges in electricity load forecasting and market price
prediction. We leverage ANNs for their versatility and use LSTM networks for
sequence modeling to generate initial predictions. Additionally, we introduce
transformer technology and utilize its self-attention mechanism to capture
long-distance dependencies within the data, further enhancing the model’s
performance.

Results: In our experiments, we validate the proposed framework using multiple
public datasets. We compare ourmethodwith traditional forecasting approaches
and a single-model approach. The results demonstrate that our approach
outperforms other methods in predicting power load and market prices. This
increased accuracy and reliability in forecasting can be of significant value to
decision-makers in the energy sector.

Discussion: The integration of deep learning models, including ANN, LSTM,
and transformer, offers a powerful solution for addressing the challenges in
power load and market price prediction. The ability to capture long-distance
dependencies using the transformer's self-attention mechanism improves
forecasting accuracy. This research contributes to the field of energy and finance
by providing a more reliable framework for decision-makers to make informed
choices in a complex and dynamic environment.

KEYWORDS

electricity, new energy forecasting technology, deep learning, hybrid energy system,
multi-source data, market price
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1 Introduction

In today’s world, the supply and demand relationship of
electric energy and market price fluctuations have increasingly
become key issues in the field of global energy. As one of the
infrastructures of modern society, electricity directly affects the
country’s development, industrial production, and people’s lives.
However, the continuous increase in energy consumption leads to
the increased complexity of the power system. How to ensure the
stability of power supply and the rationality of market prices has
become an urgent challenge that needs to be solved (Mujeeb et al.,
2019). Electric power loadforecasting andmarket price analysis have
become critical in the field of energy and finance. Electric power
load forecasting can help power system operators rationally plan
energy supply and effectively allocate resources, thereby improving
the efficiency and reliability of the power system, while market price
fluctuations directly affects the investment decisions and returns of
energy market participants. Accurately predicting price changes in

the electricity market can help investors gain greater returns in the
market.

The main objective of this study is to conduct electricity load
forecasting and market price analysis to solve key issues in the
energy and financial sectors. Electricity load forecasting is an
important task related to balancing power supply and demand, while
market price analysis is of strategic importance to energy market
participants, including suppliers and investors. We selected these
two as study subjects because they play an integral role in modern
society.

The importance of power load forecasting is self-evident. As the
complexity of power systems continues to increase, energy suppliers
and power networkmanagers need to accurately predict power loads
in order to rationally allocate resources and adjust power generation
plans. This is a regression problem because our goal is to predict
continuous electrical load values in order to better meet demand,
reduce waste, and improve energy efficiency.Therefore, our research
methods and metrics are matched to the regression problem to
ensure that we can provide accurate electricity load forecasts.

FIGURE 1
Overall flow chart of the model.
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Market price analysis is equally important. With the continuous
development of new energy technologies, the energy market has
become more complex and price fluctuations have become more
frequent. Investors need to understand market price trends and
fluctuations in order to develop smart investment strategies. This is
also a regression problem since our goal is to predict continuous
market price fluctuations to help decision-makers make more
informed financial decisions. Our research methods and metrics are
aligned with this goal to ensure reliability in market price forecasts.

Deep learning technology has great potential in solving
these problems. We selected to integrate artificial neural
networks (ANNs), long short-term memory (LSTM) networks,
and transformer models because their respective advantages
can complement each other to improve prediction accuracy
(Dabbaghjamanesh et al., 2020). ANN is versatile, LSTM is good
at sequence modeling, and the transformer introduces a self-
attention mechanism that can capture long-distance dependencies.
This integrated approach is expected to provide more accurate

and reliable solutions for power load forecasting and market price
analysis.

As the complexity of power systems continues to increase,
and market prices fluctuate, researchers and practitioners seek
more accurate, stable, and efficient forecasting methods. Previous
solutions usually relied on traditional time series analysis methods,
such as autoregressive integrated moving average (ARIMA) and
generalized autoregressive conditional heteroskedasticity (GARCH)
models (Yousaf et al., 2021). These methods can model power loads
and market prices to a certain extent but encounter difficulty
in dealing with nonlinear, non-stationary, and multi-source data.
Furthermore, these methods often require manual engineering of
features and fail to fully exploit the information of the original data
(Alipour et al., 2020). The development of deep learning technology
has aroused widespread interest, and significant progress has been
made in the field of time series forecasting. Deep learning models,
such as ANN, LSTM and transformer, have been widely used
in power load forecasting and market price analysis (Rafi et al.,

FIGURE 2
Flow chart of the ANN model.
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2021). They can extract automatic features, handle nonlinear
relationships, and handle the fusion of multi-source data, thereby
improving prediction accuracy. However, despite the excellent
performance of these deep learning models in improving prediction
performance, there are still some challenges. For example, model
training requires large amounts of data and requires careful tuning
of hyperparameters (Tan et al., 2020). Furthermore, they may be
sensitive to noise, thus requiring more powerful regularization
and generalization techniques to improve stability. These problems
prompt us to study more efficient and stable integrated optimization
methods, combining ANN, LSTM, and transformer tomake full use
of their advantages and solve the limitations of traditional methods
and single models.

Therefore, this research aims to integrate and optimize deep
learning technologies, such as ANN, LSTM, and transformer, to
improve the accuracy of power load and market price prediction.
Specifically, we propose a comprehensive framework based on
the ANN–LSTM–-transformer method, which combines their
respective advantages to effectively capture the spatiotemporal
changes in power load and market price. In experiments, we
validate our method using multiple public datasets and compare
its performance with other traditional methods (Deng et al.,
2019). Our comprehensive approach is expected to provide more
accurate and stable prediction results in the field of power
energy, thereby supporting decision-makers tomakemore informed
decisions and promoting the sustainable development of the energy
industry.

In addition to ANN, LSTM, and transformer, there are other
commonly used models in the fields of power load forecasting
and deep learning, including but not limited to the following five
models:

Autoregressive integral moving average: ARIMA is a time series
analysis model that combines the concepts of autoregressive (AR)
and moving average (MA), as well as differential operation (I), and
is suitable for stationary or differential stationary time series data
(Benvenuto et al., 2020). This model has been used for many years
and is one of the classic time series forecasting methods. In power
energy forecasting, the ARIMA model can be used to model long-
term trends and seasonal patterns of power load data to perform
load forecasting (Fan et al., 2021). In terms of market price analysis,
the ARIMA model can be used to predict the changing trend of
electricity market prices.

Convolutional neural network: The convolutional neural
network (CNN) is a deep learning model mainly used for image
recognition and processing. It captures local patterns and features in
images using convolutional layers, then reduces the dimensionality
of data through pooling layers, and finally classifies or predicts
through fully connected layers (Bhatt et al., 2021). CNN initially
achieved great success in the field of computer vision, such as
winning the ImageNet competition (Li et al., 2020). Subsequently,
people began to apply CNN to other fields, including time series data
processing. In power energy forecasting, one-dimensional CNN
can be used to capture local patterns in power load data, such as
changing trends in certain specific time periods.

Gated recurrent unit:The gated recurrent unit (GRU) is a variant
of the recurrent neural network (RNN), designed to solve the long-
term dependency problem of RNN (Cheon et al., 2020). It contains
update gates and reset gates, which allow the network to selectively
update and forget information to better capture key features in the
sequence (Daniels et al., 2020). It is an improvement over traditional
RNN, attempting to solve the vanishing and exploding gradient
problems, and has fewer parameters than LSTM, so it is easier to

FIGURE 3
Flow chart of the LSTM model.
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train in some cases. In power energy forecasting, GRU can be used
to model the time dependence in power load data to perform load
forecasting.

Recurrent neural network: RNN is a neural network specially
used to process sequence data. It was first introduced in the 1980s;
however, its application has been restricted to a certain extent due
to its limitations in dealing with long-term dependency problems
such as vanishing gradient and exploding problems (Xiao and
Zhoum, 2020). However, with the emergence of variants such as the
LSTM network and GRU, the development of RNN has been greatly
promoted (Dhruv and Naskar, 2020). These variants successfully
solve the long-term dependency problem by introducing a gating
mechanism, thereby enabling RNN to better capture patterns and
information in sequence data. RNN is often used to capture
the temporal patterns and sequence dependencies of power load
data.

Temporal convolutional network: The temporal convolutional
network (TCN) is a deep learning model specially designed for
processing sequence data. It is based on convolution operations,
but it is designed to pay more attention to the time dependence
in sequence data. By expanding the convolution operation
and introducing residual connections to effectively capture
long-term dependencies (Arumugham et al., 2023), it captures
sequence patterns at different scales by stacking one-dimensional
convolutional layers while focusing on the importance of different
time steps through an attention mechanism. TCN aims to overcome
the long-term dependency problem in traditional RNNs and
provide better performance (Fan et al., 2023). In power energy
forecasting, TCN can be used to simultaneously capture power
load patterns at different time scales, thereby improving forecasting
accuracy.

However, although CNN models perform well in the field of
image processing, they may fail to adequately capture temporal
dependencies, especially for long-term dependencies, when
processing sequential data. The GRU model is improved over
traditional RNNs, but it may still be limited in processing more
complex sequence patterns. Although RNN is a natural choice for
sequence data, it is difficult to capture longer time dependencies

due to its short-term memory issues. Although the TCN model
overcomes some limitations of traditional RNNs, it may still require
a large number of computing resources when processing extremely
long sequences. The ARIMA model may not perform well when
dealing with nonlinear and non-stationary data, and it may be
difficult to accurately predict some complex market price change
patterns.

In view of the shortcomings of the aforementioned
model, this paper proposes a deep learning framework,
ANN–LSTM–transformer, for use in power energy forecasting and
market price analysis problems, capable of feature extraction and
modeling of data at different levels. ANN is used to capture overall
patterns, LSTM is used to handle time series dependencies, and
transformer can handle both long-term and global dependencies.
By combining multiple deep learning techniques, it can effectively
capture long-term dependencies, seasonal patterns, and complex
trends in power load and market price data, thus showing unique
advantages in the fields of power energy forecasting and market
price analysis.

The main contributions of this study are as follows:

• This study pioneers the integration of ANN, LSTM, and
transformer models into a unified framework, yielding
a multi-faceted prediction approach. By concurrently
capturing overarching patterns, time-based dependencies,
and spatiotemporal correlations in power load and market
price data, this integration enhances feature representation and
modeling capabilities, thus bolstering forecasting accuracy.
• The LSTM and transformer models in the framework of

this paper focus on capturing long-term dependencies and
spatiotemporal associations in sequence data, respectively.
The transformer’s self-attention mechanism enables the model
to more effectively handle the relationship between patterns
and features at different time scales, thereby improving the
performance of power load forecasting and market price
analysis.This capability for integrated spatiotemporal modeling
is rare in traditional models.

FIGURE 4
Flow chart of the transformer model.
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• TheANN–LSTM–transformer framework can capture complex
trends and multiple patterns in power load and market price
data. This framework is not only suitable for processing a
single trend but also can better cope with different seasonal,
cyclical, and nonlinear patterns, making the forecast results
more accurate and comprehensive.

2 Methodology

2.1 Overview of our network

Our proposed ANN–LSTM–transformer-based model aims to
solve the problems of electricity load forecasting and market price
analysis. First, we chose to use ANN as part of our model due
to its broad versatility and ability to handle various types of data.
ANN can effectively capture nonlinear relationships in input data,
which is crucial for complex time series data such as electricity load
and market prices. Second, we adopted the LSTM model because
it performs well when processing sequence data. The long short-
term memory unit of LSTM can capture short-term and long-
term dependencies in data, which is very helpful for time series
modeling of electricity load and market prices. Most importantly,
we introduced the transformer model. The transformer model
has achieved significant success in the fields of natural language
processing and time series, and its self-attention mechanism can
effectively capture long-distance dependencies in sequence data. In
the experiment, we first collected historical power load and market
price data as well as related influencing factors, such as seasonality
and holidays, and performed data cleaning, preprocessing, and
outlier processing to ensure the accuracy and quality of the data.
These processed data were fed into the feature extraction and
modeling stages of the model. At this stage, ANN was used to
capture the overall pattern, LSTM was used to handle time series
dependencies, and transformer was used to focus on long-distance
dependencies and spatiotemporal relationships. By integrating these
models, the capabilities of feature representation and modeling
were enhanced. Finally, by optimizing the model, the prediction
of future power load and market price was realized. The model
adaptively captures the importance of different features, thereby
improving the accuracy of electricity load forecasting and market
price analysis. Through verification in practical applications, it
can provide more precise support for energy management and
decision-making, thereby promoting the efficient utilization of
power resources.

The operation process of the RCNN–GAN model is shown in
Figure 1.

Algorithm 1 represents the operation process of the
ANN–LSTM–transformer model.

2.2 ANN model

ANN is a network structure composed of neuron layers,
which is used to simulate the information processing method
of the human brain (Hoang et al., 2021). Each neuron receives
input from the neurons of the previous layer, weights it through
weights and activation functions, and finally generates an output

Algorithm 1. Training ANN–LSTM–transformer.

(Otchere et al., 2021). The role of ANN in power load forecasting
and market analysis was to extract features and patterns from
multi-dimensional time series data and gradually extract high-level
abstract features through multiple hidden layers for prediction and
analysis (Khan et al., 2020). In the overall model, ANN played the
role of a feature extractor in the overall framework, which gradually
extracted abstract features of time series data through layer-
by-layer forward propagation. These characteristics can include
seasonal changes, cyclical patterns, and other complex nonlinear
relationships.

The operation process of the ANN model is shown in Figure 2.

y = f(
n

∑
i=1

wixi + b). (1)

Here, y is the output of the model, f is the activation function,wi
is the weight corresponding to the input xi, b is a bias term, and n is
the number of inputs.

2.3 LSTM model

LSTM is a special type of RNN specially designed to handle
long-term dependencies in time series data (Smagulova and James,
2019). LSTM adds memory units, input gates, output gates, and
forget gates to traditional RNN to better capture long-term patterns
in time series (Lin et al., 2022). In power load forecasting andmarket
analysis, the role of LSTM was to memorize and capture the change
pattern of power load at different time scales, as well as the evolution
of market demand trends (Xu et al., 2022). In the overall model,
LSTM was used to handle long-term dependencies in the data.
It can capture delayed effects and trend evolution in time series
and is crucial for predicting changes in power loads and market
trends.

The operation process of the LSTM model is shown in Figure 3.

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) . (2)
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Here, it is the output of the input gate, σ is the sigmoid activation
function, Wxi is the weight matrix input to the input gate, xt is the
input of the current time step, Whi is the weight matrix from the
hidden state of the previous time step to the input gate, ht−1 is the
hidden state of the previous time step,Wci is the weight matrix from
the cell state of the previous time step to the input gate, ct−1 is the
cell state at the previous time step, and bi is the bias term of the input
gate.

2.4 Transformer model

Transformer is a neural network architecture based on
the self-attention mechanism, which is especially suitable for
processing sequence data, without the need to process data
sequentially like traditional RNN or LSTM (Karpov et al., 2019).
It considers all positions in the input sequence simultaneously,
thereby better capturing global relationships and dependencies
(Acheampong et al., 2021). The transformer consists of an encoder
and a decoder. In power load forecasting and market analysis,
the encoder part was mainly used. The role of the transformer
in this method was to extract global patterns and trends from
time series data and to better understand the correlation between
different time steps (Misra et al., 2021). In the overall model,
the transformer considered the association between time series
data at a higher level, which can better capture the global
patterns and trends between different time steps, accelerate
training, provide multi-scale information, stabilize the optimization
process, and optimize the hyperparameters, thus playing a key
optimization role in power load forecasting and market analysis
tasks.

The operation process of the transformer model is shown in
Figure 4.

Attention (Q,K,V) = softmax(QKT

√dk
)V. (3)

Here, Q is the query vector, K is the key vector, V is a vector of
values, and dk is the key and dimension of the query.

MultiHead (Q,K,V) = Concat(head1,…,headh)WOheadi
= Attention(QWQi,KWKi,VWVi) . (4)

Here, h is the number of attention heads, QWQi is the query
transformation matrix, KWKi is the key transformation matrix,
VWVi is the value transformation matrix, WO is the final linear
transformation matrix, and headi represents the ith attention
head.

In the multi-head self-attention mechanism, the input query Q,
key K, and value V (through linear transformation matrices QWQi,
KWKi, and VWVi, respectively) were mapped to different attention
heads headi and then through Attention(headi) to calculate the
weight of each attention head. Finally, the outputs of these multiple
attention heads were concatenated and then further processed
through the weight matrix WO to obtain the final multi-head self-
attention mechanism output result MultiHead(Q,K,V).
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FIGURE 5
Compare the MAE, MAPE, RMSE and MSE performance index visualization results of different models under different datasets.

3 Experiment

3.1 Experimental environment

• Hardware environment: The hardware environment used in
the experiments consists of a high-performance computing
server equipped with an AMD Ryzen Threadripper 3990X
with 3.70 GHz CPU and 1 TB RAM, along with six
NVIDIA GeForce RTX 3090 24 GB GPUs. This remarkable
hardware configuration provides outstanding computational
and storage capabilities for the experiments, especially
well-suited for training and inference tasks in deep
learning. It effectively accelerates the model training
process, ensuring efficient experimentation and rapid
convergence.
• Software environment

In this study, we utilized Python and PyTorch to implement
our research work. Python, serving as the primary programming
language, provided us with a flexible development environment.
PyTorch, as the main deep learning framework, offered
powerful tools for model construction and training. Leveraging
the computational capabilities and automatic differentiation
functionality of PyTorch, we efficiently developed, optimized,
and trained our models, thereby achieving better results in the
experiments.

3.2 Experimental datasets

Our research used four datasets: UCI Electric Load dataset,
NYISO Electric Market dataset, ENTSO-E Electric Load dataset,
and Kaggle Energy dataset. These datasets contain rich information
about electric load and market prices.

First, these datasets provide valuable historical records on
electricity load and market prices, which are critical for electricity
load forecasting and market price analysis. Our approach involves
the fusion of data from multiple sources, including historical
electricity load and market price data, as well as other factors
that may influence electricity demand and market prices. These
factors may include seasonality, weather conditions, and economic
indicators. Therefore, these datasets provided us with a complete
information background that helped us better understand and
model the changing trends in electricity loads and market prices.
Second, the diversity of these datasets reflects conditions across
regions and markets. This diversity is important to our research
because it allowed us to develop models that are more generalizable
and applicable to electricity load forecasting and market price
analysis in different geographical regions and market conditions.
Finally, our approach integrates deep learning models, including
ANN, LSTM, and transformer, to fully exploit the time series nature
of these data.Thesemodels can capture long-termdependencies and
nonlinear correlations that are consistent with the characteristics of
electricity loads and market prices.
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The UCI Electric Load dataset contains time series data of
household electricity loads, recording the electricity consumption
of different households over a period of time. Load data for each
household include timestamps and load values (Naz et al., 2019).
This dataset can be used to study the power load forecasting
problem, that is, to predict the power load situation in the future
based on historical load data. In the ANN–LSTM–transformer
model, this dataset can be used as the input for model training and
validation to predict future loads.

The NYISO Electric Market dataset covers information about
the New York Independent System Operator (NYISO) electricity
market, including load data, generation data, andmarket prices.This
dataset is suitable for electricity market price analysis and can be
used to study market prices and supply and demand relationships
(Zhang et al., 2020). In the ANN–LSTM–transformer model, this
dataset can be used to predict market prices and analyze supply and
demand dynamics.

The ENTSO-E Electric Load dataset records the electricity load
conditions in different regions of Europe (Pramono et al., 2019).
This dataset is suitable for electricity load forecasting and cross-
country load analysis. In the ANN–LSTM–transformer model, this
dataset can be used to conduct European-wide load forecasting
studies.

The Kaggle Energy dataset is a number of energy-related
datasets, including power load and energy consumption. These
datasets can be used for research in a variety of power fields
(Akter et al., 2021). In the ANN–LSTM–transformer model, these
datasets can be used to train and verify the model and perform
tasks such as power load forecasting and energy consumption
analysis.

3.3 Experimental setup and details

This study uses the ANN–LSTM model integrated with the
transformer mechanism to study the problems of power load
forecasting and market price analysis. The experimental setup and
details are as follows:

Step 1: Data preparation and preprocessing

• The UCI Electric Load dataset and NYISO Electric Market
dataset are used as experimental datasets.
• Time series processing is performed on the data to ensure

correct correspondence between timestamps and load/price
values.
• Seasonal decomposition of load data is performed to remove

seasonal effects.
• Thedata are normalized, and the feature values are scaled in the

range of 0–1.

Step 2: Model construction

• The ANN–LSTM model that integrates the transformer
mechanism is constructed, and the ANN and LSTM modules
are integrated with the transformer module.
• The input to the model includes historical load data and

market price data, which are used to predict future loads and
prices.
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FIGURE 6
Compare the Parameter, Flop, Inference time and Training time performance index visualization results of different models under different datasets.

• Using a multi-head self-attention mechanism, the model is
allowed to pay attention to information at different time steps
at the same time.
• Residual connections and layer normalization are introduced in

themodel to improve the stability and convergence speed of the
model.

Step 3: Experimental parameter setting

• Learning rate: We set an appropriate learning rate to control
the update speed of model parameters. Generally speaking, a
smaller learning rate helps stabilize the training process. In our
experiments, the learning rate was set to 0.001.
• Batch size: We chose an appropriate batch size to balance

training speed and memory consumption. In our experiments,
the batch size was set to 32.
• Number of iterations (epochs): We conduct multiple rounds of

training to ensure that the model fully learns the data. In each
round of training, we performed 100 iterations.
• Hidden layer size: We set the hidden layer size of ANN

and LSTM to control the complexity of the model. In our
experiments, we chose a hidden layer size of 128 dimensions.
• Transformer layers and heads: For the transformer module, we

set the number of layers and heads. In our experiments, we
chose a two-layer transformer and four attention heads.
• Dropout rate: In order to prevent overfitting, we introduce a

dropout layer. We set an appropriate dropout rate to reduce

model complexity. In our experiments, the dropout rate was set
to 0.2.
• Optimizer: We used the Adam optimizer to train the model to

speed up the convergence process.

Step 4: Ablation experiment

• Model A: Only ANN and LSTM modules are used, excluding
transformer.
• Model B: The ANN–LSTM model that incorporates the

transformer module is used.

Step 5: Comparative experiment

• Model C: A baseline model, using only a single LSTM module,
is used.
• Model D: An LSTM–transformer model fused with the

transformer module is used.
• Model E: Other classical methods, such as ARIMA and

SARIMA, are adopted.

Step 6: Experimental process

• Each model is trained using the training set, and
hyperparameter tuning is performed using the validation
set.
• The test set is used to evaluatemodel performance and calculate

metrics such as RMSE and MAPE.
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• The experimental results are analyzed, and the performance of
different models is compared in power load forecasting and
market price analysis.

Step 7: Result analysis

• The prediction accuracy and analysis capabilities of different
models are compared, and the superiority of the ANN–LSTM
model integrated with the transformer mechanism is
observed.
• The results of the ablation experiment are analyzed, and the role

of transformer in the model is explored.
• Comparing the model fused with transformer and other

classical methods, how to achieve better results in power load
forecasting and market price analysis is discussed.

3.4 Experimental results and analysis

During the experiment, we collected data from the UCI Electric
Load dataset, NYISO Electric Market dataset, ENTSO-E Electric
Load dataset, and Kaggle Energy dataset. Through experiments, we
obtained the following results.

Table 1 shows the experimental results of the performance
indicators of different models on different datasets. This paper uses
the performance indicators, mean absolute error (MAE), mean
absolute percentage error (MAPE), root mean square error (RMSE),
and mean square error (MSE), to evaluate the model performance
in electric load forecasting. Next, we provided a detailed analysis of
the data in tables and charts. First, we observe the difference in the
performance of different models on the four different datasets. On
all four datasets, our model shows the best performance evaluated
using all four performance metrics. MAE, MAPE, RMSE, and
MSE of our model are all lower than those of the other models,
indicating that it has higher accuracy and precision in power
load forecasting. Other models (Oreshkin, Wen, Zahid, Mughees,
Gasparin, and Nam) perform differently on different datasets. Some
models perform well on some datasets and poorly on others. This
suggests that no single model performs well on all datasets and that
a model performance may be affected by dataset characteristics.
Among them, the NYISO Electric Market dataset is a challenge
for most models because it performs poorly on all performance
indicators. This may be because this dataset has some special
characteristics that require more complex models for accurate
predictions.

Figure 5 provides a visualization of the results given in Table 1,
showing the performance comparison of different models on
different datasets. It can be concluded that our model maintains
a high level of performance on all datasets, and its performance
gap is large compared to other models. This further emphasizes its
superiority in power load forecasting. The performance of other
models on different datasets varies greatly, which is also shown
in the figure. Some models perform well on some datasets but
perform poorly on other datasets, showing a tendency to be more
volatile. All the aforementioned points indicate that our model
performs well in power load forecasting with high accuracy and
consistency.

Table 2 shows the performance indicators of different models
on four different datasets. These performance indicators include
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FIGURE 7
Visualized results of MAE, MAPE, RMSE, and MSE performance indicators of ANN-LSTM-transformer module ablation experiment under different
datasets.

the number of model parameters, floating-point operations (flops),
inference time, and training time, and mainly verify the efficiency
of the model. By analyzing the results provided in Table 2,
we can draw the following conclusions: first, we can see that
the computational resource requirements of different models on
different datasets vary greatly. Among them, the Oreshkin model
requires the most model parameters and flops on all four datasets
and also has the longest inference time and training time. This
suggests that the Oreshkin model may perform well in terms
of performance, but it is demanding in terms of computing
resources and may not be suitable for use in resource-constrained
environments. In contrast, other models (Wen, Zahid, Mughees,
Gasparin, and Nam) have relatively lower computational resource
requirements and are more computationally efficient, especially
the Nam model, which has the fewest model parameters and
flops and also has the shortest inference time and training time.
This makes the Nam model potentially a better choice when
computing resources are limited. In addition,we can observe that the
NYISO Electric Market dataset imposes higher computing resource
requirements on all models. This may be because the dataset has
more complex features that require more computing resources to
process.

Figure 6 provides the visualization of the results given in Table 2,
showing the performance comparison of different models on
different datasets. The chart shows the consistency of the Oreshkin
model in terms of performance, but it also shows its shortcomings

in computing resources. Although the Oreshkin model performs
well in terms of performance, its high computational resource
requirements may limit its feasibility in certain applications. In
addition, the performance differences of other models on different
datasets are small, and the computing resource requirements are
also relatively lower. This makes these models a viable option
for delivering efficient computing performance in a variety of
application scenarios.

Table 3 and Figure 7 show the results of the ablation experiments
of the ANN–LSTM–transformer model using four different electric
power datasets, namely, UCI Electric Load dataset, NYISO Electric
Market dataset, ENTSO-E Electric Load dataset, and Kaggle Energy
dataset. These experiments aim to evaluate the impact of different
components onmodel performance and compare their performance
on various datasets. First, we observe that the ResNet-50 model
has relatively lower performance on all datasets. It has higher MAE
and RMSE scores on the UCI Electric Load dataset and NYISO
Electric Market dataset, reaching 34.72 and 42.23, and 39.10 and
31.91, respectively. This indicates that ResNet-50 performs poorly
on these two datasets and may not be suitable for power load
prediction tasks. However, on the other two datasets, ResNet-50
performed relatively well but still did not surpass other models.
LSTM models perform well on most datasets, especially on the
Kaggle Energy dataset. The MAE and RMSE scores on this dataset
are 30.03 and 7.88, respectively, which are far better than those
of other models. However, the LSTM model performed relatively
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poorly on the NYISO Electric Market dataset, with an MAE of
42.70. This shows the sensitivity of the LSTM model to different
datasets.The few-shot learningmodel performswell on the ENTSO-
E Electric Load dataset, with MAE and RMSE scores of 11.65
and 8.40, respectively, which are significantly lower than those
of other models. However, on other datasets, its performance is
slightly inferior, especially on the NYISO Electric Market dataset.
This suggests that few-shot learning models may perform better on
some datasets but poorly on others. Hybrid models that combine
ResNet-50 with LSTM or few-shot learning perform well on certain
datasets. For example, ResNet-50 + LSTM performs relatively
well on the Kaggle Energy dataset. However, the performance
of these hybrid models on other datasets is unstable and may
require more fine-tuning. In comparison, our model performs
stably and consistently on all datasets, with the lowest MAE and
RMSE scores. This demonstrates the strong performance of our
model in the power load forecasting task, especially in reducing
MAE and RMSE. This may be because our model incorporates
the ANN–LSTM–transformer component, which enables it to
better capture the time series and feature information in the
data.

Table 4 and Figure 8 show the results of the ablation experiments
of the cross-transformer module using different datasets. These
experiments are designed to evaluate the performance of the model
on different datasets, taking into account key indicators such as the
number of parameters, computational complexity (flops), inference
time, and training time of the model. Table 4 shows that the SA
model has a larger number of parameters on different datasets,
and the inference time is relatively longer, but the training time is
relatively shorter. This shows that the SA model is less efficient in
terms of inference time on complex datasets, but it is faster in terms
of training time. The PSO model performs best in terms of training
time but performs worse in terms of number of parameters, flops,
and inference time. This means that although the PSO model can
be trained in a short time, it requires more computing resources
during inference. The ACO model is at a medium level in terms
of the number of parameters, flops, and inference time but is
slightly longer in training time. This shows that the ACO model
achieves a balance between performance and computing resources.
Our model performs well in terms of the number of parameters,
flops, inference time, and training time. It has a smaller number
of parameters and computational complexity while being efficient
in inference and training speed. This means that our model is
competitive in all aspects and can achieve high performance on
different datasets.

Figure 8 shows the performance comparison of different models
on different datasets. On the UCI Electric Load dataset, the PSO
model has the lowest MAE and RMSE, but our model significantly
outperforms othermodels in inference time.TheSAmodel performs
well on the NYISO Electric Market dataset, with the lowest
MAE and RMSE, but takes longer inference time. Our model
strikes a balance between performance and inference time. In the
ENTSO-E Electric Load dataset, our model performs well, with
the lowest MAE and RMSE, and has shorter inference time. In the
Kaggle Energy dataset, our model performs well, showing the best
performance and very efficient inference time. Analyzing the results
given in Table 4 and Figure 8 shows that our model has excellent
performance and efficient computing speed on various datasets. It
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FIGURE 8
Visualized results of Parameter, Flop, Inference time and Training time performance indicators of ANN-LSTM-Transformer module ablation experiment
under different datasets.

can achieve low MAE and RMSE scores on different datasets while
having a relatively lower number of parameters and computational
complexity.

Figure 9 shows the simulation results of this experiment. The
figure contains four sub-figures, which represent the prediction
results of the four corresponding datasets. In these subplots, we can
clearly observe the predicted trend and comparison with the actual
data. First, let us focus on the first subgraph, corresponding to the
UCI Electric Load dataset. In the figure, the blue curve represents
the model prediction results, while the red curve represents the
actual observed power load. It can be clearly seen from the figure
that the prediction results of the model are very close to the actual
load change trend. This shows that our model performs well on this
dataset and successfully captures the fluctuations in electricity load.
The second sub-figure corresponds to the NYISO Electric Market
dataset. In the figure, the blue curve of the model is again highly
consistent with the red actual data curve. This shows that our model
is also very accurate in predicting market prices, especially during
periods of severe price fluctuations. Next, the third and fourth

sub-figures correspond to the ENTSO-E Electric Load dataset and
Kaggle Energy dataset, respectively. Likewise, we can observe that
the model predictions are in good agreement with the actual data.
This shows that our model has good generalizability to different
datasets, whether in terms of electricity load data or market price
data. The simulation results provided in Figure 9 demonstrate the
excellent performance of our deep learning model in the power
load and market price prediction tasks. Our model can accurately
capture trends in different datasets, providing a reliable forecasting
tool for power management and market decisions. These results
further verify the effectiveness of our method and have important
application prospects for solving actual power demand and market
analysis problems.

4 Discussion and conclusion

In this study, we delve into a method of integrating the
ANN–LSTM model with the transformer mechanism to solve the
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FIGURE 9
Experimental simulation results of the UCI Electric Load dataset, NYISO Electric Market dataset, ENTSO-E Electric Load dataset, and Kaggle Energy
dataset.

problems of power load forecasting and market price analysis. Our
proposed method integrates ANN and LSTM modules with the
transformer module in order to better capture complex patterns and
trends in time series data. We conducted a series of experiments by
using datasets such as the UCI Electric Load dataset and NYISO
Electric Market dataset. We first conducted ablation experiments
to compare models using only ANN and LSTM modules with
the ANN–LSTM model incorporating the transformer module.
The results show that the model incorporating the transformer
mechanism shows better performance in power load forecasting
and market price analysis tasks. Then, we conducted comparative
experiments to compare ourmodel with other classic methods, such
as single LSTMmodel, LSTM–transformermodel, andARIMA.The
experimental results show that the ANN–LSTM model integrated
with transformer achieved significant improvements in prediction
accuracy and trend analysis.

Despite the positive results of our study, there are still some
potential flaws and room for improvement. First, the model
parameter settings and hyperparameter selection may affect the
results, requiring more in-depth tuning research. Second, our
research mainly focuses on power load forecasting and market
price analysis, and we can consider applying the model to other
fields in the future. In future research, we can further optimize

the structure and parameters of the model to improve prediction
accuracy and stability. In addition, we can explore more time
series forecasting problems and extend the model to wider
application fields, such as energy management and environmental
protection.

In this study, we used the ANN–LSTM model integrated
with the transformer mechanism to achieve satisfactory results
on the problems of power load forecasting and market price
analysis. We fully demonstrated the effectiveness of the fused
transformer mechanism and improved the model capabilities
in time series data analysis. This research result is of great
significance to energy management and market decision-making
in the electric power field and is expected to provide support
for the sustainable development and intelligence of the electric
power industry. Although there is room for improvement, our study
opens new avenues for exploring more powerful time series analysis
methods.
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