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Low-voltage distribution grid (LVDG) topology detection refers to detecting whether
the topology connection between distribution grid nodes is correct. Accurate
topology connection is critical for the normal operation and planning of LVDG.
However, due to the incompletemeasurement device, unknown line parameters, and
rapid growth of renewable energy, the topology detection of LVDG becomes one of
the most prominent challenges. This paper proposes an LVDG topology detection
method based on virtual impedance, utilizing measurement data from nodes in the
LVDG to achieve the detection of abnormal topological connections. Specifically, the
electrical distances between nodes are analyzed to establish a topology detection
model using virtual impedance. Then, the double hidden layer recurrent neural
network is proposed to fit the mapping relationships between variables in the
power flow constraints. The virtual impedance between nodes is solved. The value
of virtual impedance is used to determine whether the topological connection
between nodes is correct. Finally, the test results in the actual LVDG prove the
effectiveness of the proposed method.

KEYWORDS

low-voltage distribution grid, topology detection, virtual impedance, double hidden layer
recurrent neural network, power flow mapping

1 Introduction

The low-voltage distribution grid (LVDG) is an essential part of the power system, responsible
for delivering electricity to residential, commercial, and industrial end-users (Wei et al., 2022).With
the rapid growth of renewable energy and the increasing access to distributed power, the
development of LVDG is imperative (Azizivahed et al., 2020; Memmel et al., 2023). As the
complexity of LVDG increases, efficient and accurate topology detectionmethods become crucial to
ensure their reliable operation and optimal utilization (Wang et al., 2023a; Chen et al., 2023).

LVDG topology detection refers to detecting whether the nodes of the distribution grid
are connected correctly. Topology detection provides electrical grid structure data for LVDG
tasks such as power flow calculation and fault detection (Li et al., 2023), the foundation is
formed to conduct LVDG analysis. In recent years, by installing smart metering devices or
investing a lot of manpower to obtain the topology of LVDG, the economic cost of power
grid companies has greatly increased (Orlando et al., 2022). Therefore, LVDG topology
detection has gained increasing attention from scholars.
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At present, the topology detectionmethods for the distribution grid
can be broadly categorized into instrumentation method, signal
injection method, and data-driven method (Cao et al., 2023; Tang
et al., 2023). The instrumentation method requires deploying various
measuring instruments and meters in the LVDG, using real-time data
collected to analyze the topology and operational status of the LVDG
(Srinivas andWu, 2022). Similarly, the signal injectionmethod requires
the use of specific instruments to inject characteristic signals in advance,
and then identify them for completing the topology detection (Niu et al.,
2021; Alam and Payami, 2023). However, both instrumentation
method and signal injection method require the addition of
additional identification equipment and signal generators at the
terminals of LVDG. This may lead to the deployment and
maintenance of LVDG become more complex. Therefore, both
methods are not conducive to the topology detection of the entire
LVDG. They are only suitable for the detection of individual lines or
demonstration lines. With the popularity of smart meters, topology
detection is carried out by analyzing the relationship between
measurement data (Zhao et al., 2022). This method is called the
data-driven method. Based on the current balance relationship of
distribution line nodes, (Zhang et al., 2020; Liu et al., 2021), analyze
the distribution of user nodes on distribution lines. (Jorjani et al., 2021;
Wang et al., 2021) propose a data-driven method based on graph
theory, this method uses the measurement data of smart meters to infer
the topology of LVDG. However, existing research methods usually
adopt a single data feature. The accuracy of topology detection cannot
be guaranteed when faced with complex LVDG. Besides, they cannot
deal with topology detection in the case of missing terminal
measurement data and unknown line parameters (Xue et al., 2023).

Consequently, this paper proposes an LVDG topology detection
method based on virtual impedance. Firstly, based on the measurement
data from LVDG terminals, the electrical distances between
measurement nodes are analyzed. The concept of virtual impedance
is used to describe the degree of connection between nodes, then a
topology detection model based on virtual impedance is established.
Secondly, the Double Hidden Layer Recurrent Neural Network
(DHLRNN) is proposed to model the mapping relationships
between variables in the power flow constraints, aiming to calculate
the virtual impedance between nodes. Consequently, the topology of the
LVDG is deduced, enabling the detection of abnormal topology
connections. Finally, testing results in practical LVDG demonstrate
the effectiveness of the proposed approach.

The rest of the paper is arranged as follows: Section 2 introduces the
concept of virtual impedance. Section 3 proposes a topology detection
model and its solution method based on DHLRNN. Section 4 verifies
the effectiveness of the topology detection method proposed in this
paper. Section 5 gives the conclusion of this paper.

2 Virtual impedance-based LVDG
topology detection model

Based on themeasurement data of the LVDG terminals, this section
analyzes the electrical distance between the measurement nodes. The
concept of virtual impedance is used to describe the tightness of the
connection between nodes (Wang et al., 2023b). Therefore, it becomes
possible to determine whether nodes are correctly connected by

calculating virtual impedance. This is of significant importance for
monitoring and managing LVDG (Liu et al., 2022).

In LVDG, the electrical distance between nodes refers to the length
of the electrical path between two nodes. The calculation of electrical
distance involves the impedance, conductance, and other factors of the
line. Generally, a greater electrical distance between nodes indicates a
longer connection line between them. Long-distance distribution lines
will lead to increased impedance, resulting in increased line losses.
Therefore, to minimize line losses in the LVDG, the electrical distance
between nodes should be reduced as much as possible.

For the LVDG with n nodes, Ij, Xj, and Rj are defined as current,
reactance, and resistance in the cable segment. The impedance can be
expressed as Zj = Rj + jXj. cosδj represents the power factor. The
reactance can be represented as Xj = Rjtanδj. The active power loss,
reactive power loss, and total power loss of this cable segment can be
expressed as follows:

Pj � I2jRj cos δj
Qj � I2jXj sin δj � I2jRj sin δj tan δj
Sj � I2jRj + I2jXj � I2jRjsec

2δj

⎧⎪⎪⎨⎪⎪⎩ (1)

Based on the above formulas, the line losses PLOSS for the n-node
LVDG can be derived as follows:

PLOSS � P1 −∑n
j�2
Pj � ∑n

j�2
Ij⎛⎝ ⎞⎠2

R1sec
2δ1

+ ∑k
j�2
Ij⎛⎝ ⎞⎠2

R2sec
2δ2+/+∑n

j�k
I2jRjsec

2δj

(2)

Replacing the coefficient of IjIk withMjk to obtain the line losses
PLOSS:

PLOSS � P1 −∑n
j�2
Pj � M11I

2
1 +M12I1I2+/+MjkIjIk+/+MnnI

2
n

(3)
where P1 represents the active power of the smart meter outlet of the
distribution transformer node 1; Pj represents the active power at the
smart meter outlets from user node j; Ij is the output current of the
smart meter at user node j;Mjk represents the coefficient of IjIk in Eq
3; The value of Mjk depends on the topology of the LVDG and the
impedance values of transformers and lines in the grid.

When there is no connection between nodes j and k, the value of
Mjk is 0.When there is a connection, the value ofMjk equals the product
of the impedance values of each section at the upstream junction of
nodes j and k and the reciprocal square of the power factor. Therefore,
by analyzing the value ofMjk when j = 1, the virtual impedance values
between each pair of nodes are gradually derived.

3 DHLRNN-based topology detection
model solution methodology

3.1 Relationship mapping analysis of power
flow variables

In the calculation of virtual impedance, power flow variables
such as active power and voltage are involved. The mapping
relationship between these power flow variables is included in the
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power flow constraint equation. Therefore, fitting the mapping
relationship between power flow variables is essential, it
essentially reconstructs the power flow constraint equation.

In the power flow constraint equations, for an n-node LVDG,
there exists a unique, continuous, and differentiable function L such
that:

L I1, P2,/,Pn( ) � P1, I2,/,In[ ] (4)
The above analysis demonstrates the unique mapping

relationship between [I1, P2,···, Pn] and [P1, I2,···, In]. By
reconstructing the power flow constraint equations to fit the
mapping relationship between power flow variables, the
relationship between virtual impedance and power flow variables
can be derived.

3.2 Power flow mapping relationship fitting
based on DHLRNN

This paper adopts DHLRNN to fit the mapping relationship
between variables in the power flow constraints. DHLRNN consists
of a multilayer perceptron with two hidden layers. The nodes of the
hidden layer apply the activation function to the weighted sum of
their inputs, then the data is processed by a dynamic cyclic
connection. Therefore, the DHLRNN algorithm can effectively
handle non-linear fitting problems.

DHLRNN is a four-layer neural network, this neural network
comprises an input layer, an output layer, and two intermediate
hidden layers. The first hidden layer is responsible for computing the
activation function. The second hidden layer is responsible for
calculating the Gaussian function. After one round of
computation, the output signal is fed back to the input layer
through the feedback loop for the next round of calculation. The
forward propagation process of the K-layer DHLRNN algorithm is
as follows:

X � L 0( ) � I1, P2,/,Pn[ ]T
L i( ) � max 0,W i( )L i−1( ) + b i( )( ), i� 1, . . . ,K
Y � W K+1( )L K( ) � P1, I2,/,In[ ]T

⎧⎪⎨⎪⎩ (5)

where the input X is an n-dimensional vector consisting of the
injected currents at transformer nodes and the active power at other
nodes;W(i) represents the weight matrix of the i-th hidden layer; b(i)

represents the bias vector of the i-th hidden layer; The output Y is an

n-dimensional vector consisting of the active power at transformer
nodes and the injected currents at other nodes.

3.3 Topology connection detection based
on virtual impedance analysis

Based on the mapping relationship between the power flow
variables fitted by DHLRNN. The virtual impedance values between
nodes are calculated. The formula for solving the virtual impedance
is expressed as follows:

Mjk � exp
pj + pk

2
( )2

W i( ) + Ij + Ik
2

( )2

b i( )( ), i � 1,/, K (6)

where Mjk represents the virtual impedance between nodes j and k;
Pj and Pk represent the active power at the smart meter outlets from
node j and k; Ij and Ik represent the output current of the smart
meter at node j and k; W(i) represents the weight matrix of the i-th
hidden layer; b(i) represents the bias vector of the i-th hidden layer; K
represents the number of hidden layers of the DHLRNN, and the
value of K is 2.

The solved virtual impedance value is normalized. Mapping it to
the standardized range [0,1]. Assuming that the range of the virtual
impedance value is [Mmin, Mmax], the normalized formula is as
follows:

Mjk n � Mjk −M min

M max −M min
(7)

whereMjk_n represents the normalized virtual impedance value;Mjk

represents the virtual impedance value before normalization; Mmin

represents the minimum value of the virtual impedance value before
normalization; Mmax represents the maximum value of the virtual
impedance before normalization.

Then, the normalized virtual impedance value is compared with
the preset threshold. The calculation formula of threshold Mth is as
follows:

Mth � 1
n
∑n
i�1
Mi

jk g (8)

where, n represents the number of normalized virtual impedance
values; M i jk_g represents the i-th normalized virtual impedance
value.

FIGURE 1
Virtual impedance-based topological connection detection using DHLRNN.
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If the normalized virtual impedance values between nodes are
below the threshold, it indicates the existence of a topological
connection between the nodes. On the contrary, if the
normalized virtual impedance values between nodes exceed the
threshold, it indicates that there is no topological connection
between the nodes. By comparing the topological connection
detection result data obtained by this method with the

topological connection data recorded in the database. If the two
data are inconsistent, it indicates that there is an anomaly in the
topological connection between nodes.

The flow chart of virtual impedance-based topological
connection detection using DHLRNN is shown in Figure 1.

4 Case studies

In this paper, the LVDG in a practical area is tested. This LVDG
comprises 6 low-voltage distribution transformers and 358 end-
users. Data is collected at 96 time points (24 h) with intervals of
15 min each day. The proposed virtual impedance-based topology
detection method is validated on this LVDG.

Some historical active power and current amplitude data are
selected for training. Among them, 75% are training set data and
25% are test set data. Each sample includes the active power injected
by 30 user nodes and the current amplitude of the distribution
transformer node (1 × 31-dimensional vector). Each tag includes the
current amplitude of 30 user nodes and the active power injected by
the distribution transformer node (1 × 31-dimensional vector). The
number of layers in the neural network is 4, and the number of
neurons in the hidden layer is 185.

The adjacency matrix heatmap can visually illustrate the
connectivity between nodes. In the adjacency matrix heatmap,
darker colors typically represent stronger connections between
nodes. The lighter colors indicate weaker connections or the
absence of connections. The adjacency matrix heatmap obtained
using the proposed topology detection method in this paper is
shown in Figure 2.

From Figure 2, the 6 low-voltage distribution transformer areas
and 358 end-users of the LVDG are generally recognized. The user
with an abnormal topology connection is detected.

FIGURE 2
Heatmap of the adjacency matrix.

TABLE 1 Neural network comparison.

Neural network eMAPE/% emax/%

CNN 0.926 1.224

RNN 0.562 0.793

DHLRNN 0.301 0.416

FIGURE 3
The number of users with correct topological connections and the accuracy of detection.

Frontiers in Energy Research frontiersin.org04

Xuan et al. 10.3389/fenrg.2023.1292095

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1292095


In order to reflect the superiority of DHLRNN over other neural
networks in the training process. In this paper, the mean absolute
percentage error (eMAPE) and maximum percentage error (emax) are
selected as the evaluation indexes to compare the performance of
DHLRNN, CNN and RNN neural networks in the training process.
As shown in Table 1:

From Table 1 compared with other neural networks, DHLRNN
has smaller prediction error and better data fitting ability.

Using the LVDG as an example, this paper compares the proposed
topology detection method based on virtual impedance with the
following three methods: 1) Based on the multi-period MILP model
to identify the topological relationship between nodes. 2) Identify the
topological relationship between nodes based on mutual information
Bayesian network. 3)Identify the topological relationship between nodes
based on a graph convolutional network. Figure 3 shows the number of
users with normal topology connections detected by the four methods
and the accuracy of detection.

From Figure 3, the topology detection method based on the
virtual impedance proposed in this paper has higher accuracy. This
method can adapt to more topology detection scenarios.

5 Conclusion

This paper proposes a virtual impedance-based LVDG topology
detection. The aim is to address the challenges of incomplete
measurement devices and unknown line parameters in LVDG
topology detection. The main contribution of this paper is
summarized as follows:

1) A practical LVDG topology detection method is proposed to
detect the end-user of LVDG topology with incomplete
measurement devices and unknown line parameters.

2) The electrical distance between measurement nodes is analyzed.
The concept of virtual impedance is used to describe the tightness
of the connection between nodes. Then a topology detection
model based on virtual impedance is established.

3) The DHLRNN is proposed to fit the mapping relationship
between variables in power flow constraints. Then the
mapping relationship is used to solve the virtual impedance.
The value of virtual impedance is used to judge whether the
topological connection between nodes is correct.

This method demonstrates relatively high accuracy in the
majority of topology detection scenarios. However, it may not

be suitable for detecting topologies in extremely complex
LVDG. Besides, the quality of node measurement data also
significantly influences the accuracy of topology detection.
Therefore, this method requires further refinement and
optimization.
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