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Introduction:With the development of the energy market and the gradual rise of
emerging market players, the linkage of interests between energy sources and
loads in the Integrated Energy System (IES) has become increasingly complex.
Additionally, the reliability of the system has been impacted by the growing
proportion of renewable energy output.

Methods: To address the challenges posed by the above issues. This paper first
proposes an operational strategy for an integrated energy system that
incorporates the uncertainty of wind and solar output using a master-slave
game approach. To enhance system robustness and cost-effectiveness, the
paper introduces the information gap decision theory (IGDT). Second, building
on this foundation, the system operator is considered as the leader, adding a
tiered carbon trading mechanism and cloud energy storage system, and building
a system revenuemaximizationmodel. Then, the user is regarded as the follower,
and an optimization model is developed based on integrated demand response
(IDR). Finally, the two-layer model is converted into a mixed-integer linear
programming problem (MILP) to be solved by the Karush-Kuhn-Tucker
conditions (KKT) combined with the big M method.

Results: The analysis of the example shows that according to the difference of the
decision maker’s attitude towards risk, different scheduling schemes can be
obtained through the two perspectives of risk-seeking and risk-avoiding,
which can provide guidance for the dynamic operation of the system, and at
the same time, the users can be guided by the energy differentials to reasonably
use the energy under this strategy.

Discussion: Therefore, the proposed strategy in this paper can balance the
economy and robustness of the system.
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1 Introduction

As conventional fossil fuels continue to deplete, the importance of
transitioning to low-carbon alternatives has become increasingly
evident. The integrated energy system (IES), which serves as a
comprehensive system that integrates various energy sources within
a confined space, is emerging as an imperative choice for the ongoing
energy revolution and contemporary development (Canhuang et al.,
2018). The IES not only facilitates seamless integration and
optimization of various energy sources in terms of extraction,
conversion, storage, transport, and utilization but also effectively
caters to the energy demands of the load side. With its inherent
reliability, flexibility, and superior energy efficiency, the IES has
emerged as a pivotal field of study in the realm of energy research
(Yu et al., 2016). At the same time, the IES has gradually become a
research hotspot because of its great advantages in energymanagement.
Several scholars have made significant contributions to energy
management in the past. An energy management strategy using a
price-based DR program is developed for IoT-enabled residential
buildings (Hafeez et al., 2020). Saleem et al. (2022) offered the
design, deployment, implementation, and performance evaluation of
an IoT-based SEMS to manage energy on the demand side.

Research on benefit distribution and power supply reliability in the
context of the IES has gained considerable attention as a prominent
research focus. As the IES continues to evolve and the energy market
experiences significant growth, the interdependency between energy
sources and loads becomes increasingly intricate. The energy
transactions and supply–demand relationships between these sources
and loads play a fundamental role in optimizing the operation of the IES.
Coordinating the interests of multiple decision-making entities to
achieve optimal IES operation has emerged as a significant and
challenging topic. Traditional optimization theory predominantly
tackles decision problems involving a single agent. However, it faces
difficulties in capturing the complex interplay among multiple agents
and addressingmulti-agent decision problems. Consequently, the advent
of the master–slave game provides a viable solution to overcome this
obstacle (Lu et al., 2014). During the energy trading process, the system
operator establishes the energy price, while the user adjusts their demand
in response to this price. This sequential interaction between the two
parties lends itself to be effectively described using a master–slave
game framework.

Several scholars in previous studies have contributed greatly to the
study of the master–slave game aspect of IESs. Xiang et al. (2021)
simultaneously considered the initiative of supply-side and demand-
side market players and proposed an interactive framework for the IES,
which realized the interactive optimization of the system operators and
users. Based on the master–slave game framework, Sun et al. (2021)
proposed a demand responsemechanism based on price incentives and
established a user utility model and an aggregator revenue model
considering user preferences. Wang et al. (2020) proposed a distributed
co-optimized operation strategy for integrated community energy
systems based on master–slave games, aiming to enhance revenues
on the supply-side and consumer surplus on the energy-using side.
However, most of the aforementioned studies only focus on achieving
economic optimality of the system from an economic point of view and
lack consideration of uncertainty.

As the share of renewable energy generation continues to rise, the
inherent stochastic and fluctuating characteristics of these sources

introduce significant uncertainties to the system. This uncertainty
poses challenges in accurately predicting generation power and load,
which, in turn, affects the development of precise scheduling plans.
Consequently, it becomes imperative to explore the reliability
assessment and uncertainty mitigation strategies for the IES.
Extensive scholarly research has been conducted in the past to
investigate the IES and its reliability. Bao et al. (2023) and Hui et al.
(2022) presented the function of energy storage and microgrids in
energy hubs and industrial parks. Wang et al. (2023a) focused on the
operational reliability evaluation of the urban multi-energy system,
considering the incorporation of equivalent energy storage. Wang et al.
(2023b) proposed an operational reliability evaluation framework for
the IES, considering flexibilities from both the demand side and
transmission system. The aforementioned literature has refined the
modeling and methodology for energy systems.

Existing studies have produced some research results in the area of
uncertainty in IESs (Yang et al., 2022). Currently, there are two main
approaches to the uncertainty problem, one is stochastic programming
and the other is robust optimization. Stochastic optimization generally
uses probabilistic means to describe various types of random variables,
simulates the probability distribution function of the variables based on
day-ahead forecast data, and generates simulation scenarios to solve the
problem (Birge and Louveaux, 2011). For uncertainty in a system, the
method identifies it as a random parameter that can be described by a
probability function (Mavromatidis et al., 2018). A stochastic
programming model has been devised to address the wind power
uncertainty and optimize system cost minimization (Li et al., 2018).
In order to fully exploit the relationship between flexibility and
uncertainty in electrothermal energy storage, a two-stage stochastic
programming model is raised to improve the economy and reliability
of the system (Lei et al., 2019). Zhao et al. (2020) considered wind, light,
and load uncertainties and developed stochastic planning models based
on long time-scales. However, the modeling of such uncertainties is
highly demanding in terms of obtaining accurate probability density
distributions, which will be greatly limited by the maturity of the
information on the statistical probability branch of data collection
(Xuefei et al., 2022). Stochastic programming methods are
computationally intensive and time-consuming, making it difficult to
obtain accurate probability distribution models. Moreover, the
optimization results may lack robustness and pose risks to the
system’s operation. It is clear that this approach has certain
limitations when evaluated.

Another common method to overcome uncertainty is robust
optimization, which does not have a demand for the probability
distribution of uncertainty (Zhang et al., 2019). The variations in
load and the energy output under extreme conditions are
considered, and an innovative two-stage robust optimization model
for the day-ahead scheduling of IES is constructed (Zun et al., 2019).
Chen et al. (2012) combined robust optimization with interval
programming and established an interval stochastic robust
optimization method to solve carbon trading and energy system
planning problems. Considering the uncertainty of load demand,
Yang and Su (2021) proposed a two-stage robust optimization
framework for enhancing the operational efficiency of the power
station under the condition of satisfying the robustness and
economy of the power plant. Chen et al. (2021) considered the
source-load uncertainty and utilized robust optimization methods to
fulfill the optimal economic dispatch of microgrids about integrated
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energy. Zhai et al. (2022) and Chen et al. (2023) introduced more
concepts regarding the optimization methods. Wu et al. (2022)
developed an optimal RIES operation strategy based on distributing
robust games, considering demand response. However, Zou et al. (2019)
stated that the robust optimization methods generally focus on extreme
cases, requiring constraints to be satisfied in the extreme scenario, and
the resulting optimization results are often too conservative, which
results in certain economic losses and lacks applicability.

Furthermore, the majority of current research on optimizing the
IES primarily focuses on configurations involving physical energy
storage devices. However, in practical scenarios, investing in low-
capacity physical energy storage results in higher unit investment
costs. Additionally, these energy storage devices may remain idle
during peak periods of non-energy usage, leading to potential resource
wastage. In response to this challenge, the concept of cloud energy
storage (CES) has emerged in recent years, largely inspired by the rise
and expansion of the sharing economy (Liu et al., 2017). CES brings a
new solution to the above problems.

Table 1 lists some of the comparisons in the literature. It can be seen
that themajority of the current study focuses primarily on optimizing the
system from an economic standpoint while lacking consideration for the
potential effects brought about by various uncertainties within the system.
At the same time, common approaches to uncertainty resolution, such as
stochastic programming, often rely heavily on data acquisition. However,
these methods face challenges such as intensive computation and slow
solution speed. Robust optimization often leads to overly conservative
solution results due to its emphasis on extreme cases. Therefore, the above
approach has certain limitations. Moreover, most of the existing studies
usually treat uncertainty solely as a negative factor, ignoring its potential
benefits. Meanwhile, this paper introduces CES systems to replace
traditional energy storage devices and innovate the system model.
Based on the deficiencies found in the aforementioned studies, the
objective of this study is to optimize the economy and reliability of
the system within the framework of a master–slave game while taking
into account the uncertainties associated with the output of renewable
energy. The main contributions of this study are presented below.

(1) In order to better capture the mutual interests between system
operators and users, this study proposes an IES master–slave
game scheduling model considering the stepped carbon-trading
mechanism and integrated demand response, which can further
reduce carbon emissions while improving the economic benefits
of the system.

(2) The CES system is used to replace the traditional energy
storage device, and the effect of the traditional energy storage
device can be realized by paying a small amount of leasing fee,
which further reduces the system cost and improves the
consumption rate of renewable energy.

(3) The information-gap decision theory (IGDT) is introduced to
describe the uncertainty of renewable energy, which overcomes
the limitation of regarding the uncertainty purely as a negative
factor in traditional research. Different scheduling schemes are
obtained from the perspectives of risk aversion and risk pursuit,
and the system benefits are analyzed to ensure the robustness of
the system while taking into account the economy of the system.

In this paper, we prove the existence and uniqueness of the
proposed Stackelberg equilibrium under the above model and

methodology. The two-layer model proposed in this paper can be
converted to a single-layer model by the KKT condition and the Big
M method. Finally, we compare the benefits of the system under the
deterministic model, the risk-averse model, and the risk-seeking
model through an example analysis.

2 Basic framework of IES with cloud
energy storage

The depicted framework of the IES is presented in Figure 1. At
the highest level of the IES, the distribution system operator (DSO)
serves as the system operator and encompasses various components,
including a wind power and photovoltaic generation system, a gas
turbine (GT), a gas boiler (GB), and a CES system.

The role of theDSO as an intermediary between the higher grid and
the end-users is to optimize revenue generation by capitalizing on the
price difference through energy trading. Additionally, the DSO has the
advantage of offering more flexible energy prices to customers in
comparison to the grid. However, due to the limited power capacity
of individual users, they do not meet the minimum requirements for
direct market trading. To address this issue, this study introduces a load
aggregator (LA), which consolidates individual users into a lower-level
entity within the IES. The primary objective of the LA is to minimize its
own costs.

The LA assumes the responsibility of conveying the energy
prices determined by the DSO to the users. Furthermore, it
collects real-time feedback on the users’ energy demands after
implementing demand response measures and relays this
information to the upper-level operator. This iterative process
allows for the further optimization of the DSO units’ output
while simultaneously influencing the formulation of subsequent
energy prices by the operator. This dynamic interaction
continues until an equilibrium state is achieved.

FIGURE 1
Basic framework of IES with cloud energy storage.
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3 Model formulations of the IES

3.1 Upper-level operator model

3.1.1 The tiered carbon-trading mechanism
The tiered carbon-trading mechanism will be used to further

reduce the system’s carbon emissions. Here, the actual carbon
emissions minus the emission allowances are equal to the carbon
emission credits to be purchased.

EIES � ECO2 − EC, (1)

ECO2 � ∑T
t�1

a1GasGT + b1GasGB + c1Pbuy( ), (2)

where ECO2 is the carbon emission in the actual condition, the
value of which is the sum of the actual gas consumption of the units
(GT and GB) and the electricity purchased from the higher carbon
units multiplied by their respective corresponding coefficients, EC is
the carbon quota, and EIES is the portion exceeding the
carbon quota.

The carbon trading cost of this paper is divided into three
intervals; with more CO2 emissions beyond the limit, the cost of the
corresponding part will increase, and the cost model is outlined
as follows:

Cco2 �
βEIES EIES ≤ l
β 1 + α( ) EIES − l( ) + β   l≤EIES ≤ 2l
β 1 + 2α( ) EIES − 2l( ) + β 2 + α( )l  2l≤EIES ≤ 3l

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭, (3)

where Cco2 represents the tiered carbon-trading cost, β
represents the basic carbon trading price, l represents the length
of each interval, and α represents the price escalation rate.

3.1.2 Electric/thermal cloud energy storage
system model

For IES, investing in small-capacity physical energy storage
requires high investment costs. If the cloud electric energy storage
(CEES) is utilized for IES, the energy storage effect can be achieved
through leasing, which can not only reduce the high construction cost
and dependence on the power grid but also avoid the disorder of
charging and discharging of distributed energy storage. Consequently,
it facilitates the efficient utilization of energy storage resources (Guo
et al., 2020). We take the cloud power storage system as an example
and list its relevant constraints as follows:

eECEES ≤Et,CEES ≤fECEES, (4)
0≤ECEES ≤Emax ,CEES, (5)

0≤Pt,ch,CEES ≤Pch,CEES ut,ch,CEES, (6)
0≤Pch,CEES ≤Pch,max ,CEES, (7)

0≤Pt,dis,CEES ≤Pdis,CEES ut,dis,CEES, (8)
0≤Pdis,CEES ≤Pdis,max ,CEES, (9)
ut,ch,CEES + ut,dis,CEES ≤ 1, (10)

Et,CEES � Et−1,CEES 1 − δCEES( ) + ηc,CEESPt,ch,CEES − Pt,dis,CEES

ηd,CEES
, (11)

E24,CEES � E0,CEES, (12)

where Et,CEES represents the real-time storage capacity of CEES;
ECEES represents the CEES capacity leased by the system from the

distribution network; f and e denote the upper and lower bounds of
the state of charge ratio for CEES, respectively; Emax ,CEES represents
the upper bound of the leased capacity, Pt,ch,CEES and Pt,dis,CEES

signify the actual real-time power for both charging and discharging
of CEES, respectively; Pch,CEES and Pdis,CEES represent the charging
and discharging power of CEES, respectively; Pch,max ,CEES and
Pdis,max ,CEES represent the maximum values of power,
respectively; ut,ch,CEES and ut,dis,CEES are the state variables of
CEES’s charging and discharging, respectively, which are utilized
to prevent simultaneous charging and discharging within the
system; δCEES is the self-discharge coefficient of the CEES; and
ηc,CEES and ηd,CEES are the charging and discharging efficiencies,
respectively. The constraints for the cloud thermal storage system
are the same as those for this system and are not repeated here.

3.1.3 The objective function for the upper-level
decision-maker

The primary objective of the DSO is to optimize its revenue
generation by formulating prices for energy transactions with lower-
level users to achieve arbitrage. Its objective function can be defined
as follows:

minC � Cgrid + Cfuel + Ccs + Cco2 − Isell, (13)

where Isell represents the system’s electricity selling revenue,
Cgrid represents the interaction cost in the interaction among the
system and the grid, Cfuel represents the gas costs of the internal
GTs and GBs in the system, Ccs represents the cost associated with
the CEES, and Cco2 represents the carbon trading cost. The details
are as follows:

Isell � ∑T
t�1

peLe + phLh( ), (14)

Cgrid � ∑T
t�1

upbPbuy − upsPsell( ), (15)

Cfuel � θ∑T
t�1

GasGT + GasGB( ), (16)

Ccs � CCEES,om + CCEES, (17)

CCEES,om � ∑T
t�1
λCEES,om Pt,ch,CEES + Pt,dis,CEES( ), (18)

CCEES � λEECEES + λPPch,CEES + λPPdis,CEES( )/365, (19)

where pe and ph signify the price established by the DSO for
lower-level users, representing electricity and heat prices,
respectively; Le and Lh represent the actual electricity and heat
load demands after demand response at the lower level, respectively;
upb and ups represent the purchase and selling electricity prices
when the DSO interacts with the grid, respectively; Pbuy and Psell

represent the buying and selling power of electricity with the grid by
the DSO, respectively; θ represents the unit gas purchase cost;GasGT
and GasGB represent the gas consumption of GT and GB,
respectively; λCEES,om is the cost coefficient of charge and
discharge operation and maintenance of cloud storage power
system; λE and λP represent the unit capacity and unit power
leasing costs of the CES system, respectively. CCEES,om represents
the daily operational and maintenance expenses for the cloud
storage system; CCEES represents the daily leasing costs for the
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CES system. The same principles apply to the cloud thermal storage
system and will not be elaborated on here (Du et al., 2022). The
carbon trading costs are described in Section 3.1.1.

3.1.4 Constraints of DSO
The main equipment within the operator’s system includes the

following: renewable energy generation systems (wind and PV),
micro GTs, GBs, and interaction constraints with the external grid.
The specific constraints are listed below:

(1) New energy output constraints

0≤Pt
e,wd ≤Ppre,wd

max (20)
0≤Pt

e,pv ≤Ppre,pv
max (21)

where Pt
e,wd is the wind power output at moment t, P pre,wd

max is the
wind power day-ahead forecast load, Pt

e,pv is the PV output at
moment t, and P pre,pv

max is the PV day-ahead forecast load.

(2) GT and GB constraints

While the GT consumes natural gas to produce electricity, the
resulting high-temperature waste-heat gas flows through a waste-
heat recovery unit to be recovered and then passed through a heat
exchanger to produce heat.

Pt
h,GT � ηheηwhb 1 − ηmt( )

ηmt

Pt
e,GT, (22)

0≤Pt
e,GT ≤Pe,GT

max, (23)
0≤Pt

h,GB ≤Ph,GB
max, (24)

where ηhe denotes the efficiency of the heat exchanger, ηwhb
denotes the efficiency of the waste-heat recovery equipment, ηmt

denotes the power generation efficiency of the GT, Pt
e,GT and

Pt
h,GT are the electricity and the heat generated by GT,

respectively, and Pt
h,GB is the heat generated by GB, where the

outputs of GT and GB are to be less than their respective
corresponding maximum values.

(3) Energy price constraints

pemin ≤pe ≤pemax, (25)
phmin ≤ph ≤phmax. (26)

Energy prices are set by the DSO for the users as pe and ph.
Energy prices should be limited to a certain range, and in order
to avoid unreasonable pricing by leaders in pursuit of
maximizing their own interests, it is also necessary to include
the average value of the purchase and sale price constraints,
which are as follows:

∑24
t�1
pe / 24≤pe,ave, (27)

∑24
t�1
ph / 24≤ph,ave, (28)

where pe,ave and ph,ave are average value constraints on the prices
set by the DSO for the users, respectively.

(4) Electrical and thermal power balance constraints

Pt
e,GT + Pt

e,pv + Pt
e,wd + Pt

e,buy + Pt
dis � Pt

ch + Lt
e + Pt

sell, (29)
Pt
h,GT + Pt

h,GB +Ht
dis � Lt

h +Ht
ch, (30)

where Pt
e,buy and Pt

sell are the power purchased and sold by the
system to the higher grid, respectively; Pt

ch and Pt
dis are the charging

and discharging power of the CES system, respectively; andHt
ch and

Ht
dis are the heat charging and discharging power of the cloud heat

storage system, respectively.

3.2 Lower-level user model

3.2.1 The objective function for lower-level users
In IES, the LA acts as a representative of the interests of the user’s

controllable resource aggregation, enabling flexible leveling or
curtailment of load demand response under its management.
Users, on the other hand, optimize their own energy use on the
basis of the energy price set by the DSO to reduce the cost of energy
use and provide feedback on their real-time energy demand to the
DSO through the LA. The user cost can be expressed as follows:

minCLA � CL,buy + CLe + CLh, (31)

where CL,buy represents the energy purchase cost of users, which
is consistent with the upper-level energy sales revenue and is
specifically expressed as follows:

CL,buy � ∑T
t�1

peLe + phLh( ), (32)

Only considering the energy purchase cost of the users and
satisfaction loss as representation parameters for user interests lacks
a certain degree of rationality, especially for industrial and
commercial users. Energy consumption implies profit generation,
especially in the context of industry and business. Therefore,
considering the above factors, this paper expresses the user’s
energy utility as follows (Jiang et al., 2021):

CLe � ∑T
t�1

αe Le( )2 + βeLe + ce + αh Lh( )2 + βhLh + ch( ), (33)

where αe, αh, ce, βe, βh, and ch are all coefficients representing
user energy-efficiency benefits.

Previous studies have shown that the user’s comfort before the
demand response is the best. When users receive instructions from
the LA to adjust energy usage in different time periods, it may lead to
a certain degree of user satisfaction loss. Therefore, the loss of user
satisfaction in this paper can be expressed as follows (Li et al., 2021):

CLh � ∑T
t�1

νe Pe,cut( )2 + νh Ph,DR( )2( ), (34)

where CLh represents the penalty cost to the user for reduced
comfort due to heat load reduction, Pe,cut represents the
reducible electrical load, Ph,DR signifies the heat load that
users can potentially reduce, and ν represents the coefficient
of loss of user satisfaction.
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3.2.2 Constraints of the user

(1) Electrical load constraints

The effect of peak shaving and valley filling can be achieved
by adjusting the electric load of the user’s energy use time, and
the transferable electric load should ensure that the total load
before and after the demand response remains unchanged and,
at the same time, meet the upper and lower constraints. Where
αe,tran is the transferable electric load coefficient, Lte0 is the
transferable electric load of the user, and the user can
independently adjust the time of electricity consumption
within a certain range.

∑T
t�1
Pt
e,tran � 0, (35)

−αe,cutLt
h0 ≤Pt

e,cut ≤ 0, (36)
−αe,tranL

t
e0 ≤P

t
e,tran ≤ αe,tranL

t
e0, (37)

where αe,tran represents the transferable electric load factor and
αe,cut represents the curtailable electric load factor.

(2) Heat load constraints

The heat load can be reduced by a certain percentage within the
user’s energy comfort level.

0≤Pt
h,DR ≤ αh,cutL

t
h0, (38)

where Pt
h,DR represents the heat load reduction available to the

user and αh,cut represents the load reduction factor.

(3) Power balance constraints for loads

Le � Le0 + Pe,cut + Pe,tran, (39)
Lh � Lh0 − Ph,DR, (40)

where Le0 and Lh0 are the electrical and thermal loads,
respectively, prior to the demand-side response.

4 Models of IES based on IGDT

Typically, there is some error in the source load prediction of
the system, which often leads to a large deviation between the
day-ahead schedule and the actual situation, resulting in
economic losses. IGDT is an effective optimization method to
resolve the uncertainty problem (Wang et al., 2018). The IGDT
model needs to set the target of the expected cost or expected
benefit in advance and has two models, risk avoidance and risk
pursuit, so that it can achieve good results for the system to be
both robust and economical. Thus, this approach outperforms
traditional robust optimization. In this paper, IGDT is used to
model and analyze the factors of uncertainty in the day-ahead
dispatch schedule. In the following, we use λwdt and λpvt to
represent Pt

e,wd and Pt
e,pv, respectively, for the theoretical

description.
Traditional robust optimization requires consideration of

the exact upper and lower bounds on the input variables. In

contrast, the IGDT makes the input of uncertainty parameters
an imprecise set by introducing a bias factor and describes
uncertainty through the uncertainty set of some non-
probabilistic models, such as the envelope model, fractional
uncertainty model, and ellipsoid model (Mehdizadeh et al.,
2018). In this paper, we adopt a fractional uncertainty model
based on the characteristics of uncertainty, with the basic model
as follows.

U α, λ̃wdt( ) � λwdt : λwdt − λ̃wdt
∣∣∣∣∣∣

∣∣∣∣∣∣≤ αλ̃wdt{ }, α≥ 0, (41)

U α, λ̃pvt( ) � λpvt : λpvt − λ̃pvt
∣∣∣∣∣ ∣∣∣∣∣≤ αλ̃pvt{ }, α≥ 0, (42)

where α and λ̃wdt represent the fluctuation range (uncertainty)
and day-ahead forecast value of wind power, respectively, while α
represents a deterministic model when it equals zero. Through this
model, the upper and lower bounds of the uncertain factor set
(actual value of wind power) can be described as (1 + α)λ̃wdt and
(1 − α)λ̃wdt , respectively. The description of photovoltaic output
is the same.

Changes in uncertainty factors and decision-makers’ attitudes
toward risk will affect the system’s final revenue and dispatch
strategies. Therefore, according to the IGDT principle, it is
divided into the robust model (RM) of risk aversion and the
opportunity model (OM) of risk pursuit. The RM is conservative,
while the OM is speculative. The fundamental model of IGDT is
as follows.

min B X, d( )
s.t. H X, d( ) � 0

G X, d( )≥ 0

⎧⎪⎨⎪⎩ (43)

In the context provided,X represents an uncertain parameter of
the system, d is a decision variable, B(X, d) stands for the objective

FIGURE 2
Flowchart of the IGDT solving process.
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function, H(X, d) signifies an equality constraint, and G(X, d)
represents an inequality constraint.

4.1 Robust IGDT model based on
risk aversion

The RM believes that uncertainty will adversely affect the
operation schedule and typically maximizes the adverse
perturbation of uncertain parameters with respect to wind and
PV. Under risk-averse scheduling decisions, IES is expected to
achieve robust optimization while ensuring the desired economic
objectives. In other words, when there is severe uncertainty (the
maximum value of uncertain parameter fluctuations), the RM
must ensure that it is stable when fluctuating within U. It can
make the revenue target value within the expected target revenue

range. Thus, a robust IGDT dispatch model based on risk
avoidance is constructed as follows:

obj: max α

s.t.

minB≥BRM � B0 1 − δm( ),
λwdt ∈ U α, λ̃wdt( )
20( ) − 30( )

⎧⎪⎪⎨⎪⎪⎩
(44)

where δm is the robust bias factor and BRM is the robust gain
threshold, and when the renewable energy output is
λwdt � λ̃wdt (1 + α), it means that the model achieves the minimum
value when the output is at the upper limit of the uncertain output
interval, so it is converted to the following constraint:

obj: max α

s.t.
B≥BRM � B0 1 − δm( ),
λwdt � λ̃wdt 1 + α( ),
20( ) − 30( )

⎧⎪⎨⎪⎩ (45)

TABLE 1 Comparison of models, frameworks, and factors in some reference.

Reference Framework and models Factors

Master–slave
game

Cloud
energy
storage

Integrated
demand
response

Carbon trading
mechanism

Economical
efficiency

Uncertainty
of IES

Xiang et al.
(2021)

√ × √ × √ ×

Sun et al. (2021) √ × √ × √ ×

Wang et al.
(2020)

√ × √ × √ ×

Wu et al. (2022) √ × √ × √ √

Yang et al. (2022) × × × × √ √

Guo et al. (2020) × √ √ × √ ×

Du et al. (2022) × √ √ × √ √

Proposed √ √ √ √ √ √

TABLE 2 Results of the total system return changing with α under different risk strategies.

Risk strategy δm/εm Uncertainty α Total system revenue

Certainty 0 0 27,545.4532

Risk avoidance strategy 0.01 0.005736 27,505.7863

0.02 0.045913 27,227.9501

0.03 0.086065 26,950.1138

0.04 0.12617 26,672.2776

0.05 0.16621 26,394.4414

Risk pursuit strategy 0.01 0.037309 28,061.4587

0.02 0.0574 28,339.295

0.03 0.077486 28,617.1312

0.04 0.097644 28,894.9674

0.05 0.11785 29,172.8036
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Similarly, the PV output uncertainty model is considered, where
the uncertainties in wind and PV power are assumed to be equal,
each accounting for 50% of the overall uncertainty.

4.2 Opportunity IGDT model based on
risk pursuit

The OM believes that uncertainty may bring additional benefits
to the system and has the opportunity to further reduce the dispatch
cost of the system. As a result, adverse perturbations to the uncertain
parameters of wind power and PV output are usually minimized. In
the case of risk-seeking scheduling decisions, the system defaults to
the positive impact of uncertainty. In this case, it is more inclined to
maximize returns by reducing α (the minimum value of uncertainty

parameter fluctuations). OM must ensure that, within the
fluctuating range of renewable energy output, it is possible for
system revenues to be higher than the expected revenue target
value. Thus, the opportunistic IGDT scheduling model based on
risk pursuit is formulated as follows:

obj: min α

s.t.

maxB≥BOM � B0 1 + εm( ),
λwdt ∈ U α, λ̃wdt( )
20( ) − 30( )

⎧⎪⎪⎨⎪⎪⎩
(46)

where εm is the opportunity bias factor and BOM is the
opportunity revenue threshold. When the renewable energy output
is λwdt � λ̃wdt (1 − α), that is, when the output is at the lower limit of the
uncertain output range, the revenue can achieve the maximum value;
hence, it translates into the following constraint:

FIGURE 3
Change in the total system revenue and uncertainty under the
risk-averse strategy.

FIGURE 4
Change in the total system revenue and uncertainty under the
risk-pursuit strategy.

FIGURE 5
Electric power balance of deterministic system operators.

FIGURE 6
Cloud energy storage operation.
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obj: min α

s.t.
B≥BOM � B0 1 + εm( ),
λwdt � λ̃wdt 1 − α( ),
20( ) − 30( )

⎧⎪⎨⎪⎩ (47)

5 Example analysis

The two-layer Stackelberg game model for the IES introduced in
this paper uses the stagnation point approach. First, we formulate
the KKT system for the lower-follower cost-minimization problem.
The KKT system is then treated as a constraint in the upper-level
optimization problem. Utilizing the Big M method and
incorporating Boolean variables, the two-layer model is
transformed into a single-layer model for resolution. Finally, the
systematic uncertainties are modeled and analyzed. The proposed

method andmodel are modeled and solved throughMATLAB using
the YALIMP language in combination with the Gurobi solver. The
solution process can be divided into two following parts:

(1) The solution procedure for decoupling the two-tier model is
detailed in Supplementary Appendix (B).

(2) The IGDT model solution considering renewable energy
output uncertainty.

Here, the solution process for the IGDT model is as follows:

Step 1: Solve the deterministic model under the condition that the
renewable output is the predicted value λ̃wdt , obtain the optimal value
B0 of the objective function, and set it as the reference value.

Step 2: First replace the original predicted value with the actual value of
renewable output λwdt , then develop the bias factors δm and εm, and

FIGURE 7
Thermal power balance of deterministic system operators.

FIGURE 8
User power balance of deterministic system users.

FIGURE 9
Electricity price curve formulated by DSO for users.

FIGURE 10
Heat price curve formulated by DSO for users.
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finally solve for the system decision-maker’s desired target value BRM

under the RM and the desired target value BOM under the OM.

Step 3: Solve for the uncertainty α of the system, the revenue of the
system, and the unit output of the equipment in the system phase
under the conditions of risk-averse and risk-seeking strategies,
respectively.

The solution flow is shown in Figure 2.

5.1 Uncertainty and benefit analysis under
risk aversion and risk-pursuing strategies

Table 2 shows the results of the total system return changing
with α under the two risk strategies. The changing trends of

uncertainty and total system return with the bias factor are
shown in Figures 3 and 4.

Under the risk avoidance strategy, the robust bias factor is
directly proportional to the level of uncertainty and inversely
proportional to the total system revenue. This is because under
the robust model, the system decision-maker believes that in this
biased direction, the uncertainty factor will have a negative effect on
the system. The larger α is, the higher the risk posed by uncertainty.
The total revenue would be reduced accordingly. Under the
opportunity pursuit strategy, as the opportunity bias factor
grows, both the system uncertainty and the total system revenue
increase as the system decision-maker believes that in this scenario,
the uncertainty in wind and solar output will bring additional
benefits to the system. Therefore, the larger α is, the greater the
revenue brought by the uncertainty factor and the higher the total
system revenue.

5.2 Analysis of optimization results under the
deterministic model

As shown in Figure 5, under the deterministic model, the system
will reduce the amount of power purchased from the external grid and
increase the output of the CHP units to meet the demand of the
electricity load in the case of higher electricity pricing, thereby
reducing the operating costs. During 10:00–16:00, when the
renewable energy output is relatively high, the CHP units will
preferentially meet the heat load demand accordingly and reduce
some of the generation output. In other words, the CHP unit will
mainly produce heat power during this period. As shown in Figure 6,
the CES system is charged during periods of low electricity prices, such
as 5:00–6:00 and 15:00–17:00, while it is discharged during 10:00–11:
00 and 18:00–19:00. Discharging occurs during intervals characterized
by elevated electricity prices, which further reduces system costs
through this operating mode. It can be found that CES can fully

FIGURE 11
Thermal power balance of deterministic system users.

FIGURE 12
Electric power balance of the system operators under the risk-
averse strategy.

FIGURE 13
Electric power balance of the system operators under the risk-
seeking strategy.
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realize the energy storage effect of traditional physical energy storage
devices.When the wind power and photovoltaic output is large during
periods such as 7:00–8:00 and 10:00–14:00, theDSO can sell the excess
electric power to the grid, realizing the consumption of renewable
energy and improving the system revenue.

Figure 7 shows that the heat output of the CHP unit occurs
primarily during the daytime hours and is supplemented by GBs
when the output is insufficient at night. The operation mode of
CEES is also adopted in the cloud heat storage system.

Figure 8 and Figure 9 show that the DSO can formulate a more
flexible electricity price relative to the grid under the deterministic
model, and the established electricity price is consistent with the
trend of the time-of-use electricity price of the power grid, thereby
reducing the user’s energy purchase cost. Users formulate their own
energy consumption strategies on the basis of the electricity prices
set by DSO and transfer part of the electricity load to periods of
relatively low electricity prices between 12:00–15:00 and 18:00–20:
00 to minimize their own costs. From this, we can see that the
optimized user power load demand is reduced to varying degrees
throughout the day. It is evident that the load-side flexibility has
been enhanced through integrated demand response.

Figure 10 shows that due to the large thermal load demand of
users during the 12:00–15:00 noon and 20:00–22:00 evening hours,
the DSO sets relatively high thermal prices, while the prices are
relatively low during other periods. As shown in Figure 11, in
general, the user’s comfort level is the highest before the demand
response. Since the lower-load model adds a penalty cost for the
decrease in user satisfaction due to heat load reduction, users
generally do not choose to take the initiative to reduce their heat
load, or the heat load reduction is small when the system can meet
the heat load power supply.

5.3 Comparative analysis of revenue and
renewable energy output

Given the uncertain nature of wind and solar output, in this
paper, we define the fluctuation range of wind and solar output as
uncertainty and then set the bias factor to obtain decision plans for

decision-makers with different risk preferences. Taking the bias
factor δm � εm � 0.05 as an example, the power balance diagram of
the system under the RM and OM is given herein.

From Figures 5, 12, and 13, it can be seen that the moment of
maximum PV output is also the time of day when the renewable
energy output is the highest, i.e., 10:00–14:00. Table 3 compares the
total power of the renewable energy output and the power sold by
the system to the external grid during this time period. It can be
found that under the RM, the system treats the uncertainty as a
negative factor, and both the wind and PV output are reduced, while
the system’s power sales to the external grid are also reduced. In
contrast, under the OM, the system perceives that uncertainty is
expected to lead to a higher revenue, and its effect is positive. As a
result, both the wind and PV output of the system increase
compared to the case under the deterministic model, and the
electricity sales to the external grid increase accordingly.

Table 4 lists the comparison of the system benefits and costs
under the deterministic, risk-averse, and risk-seeking models,
respectively. Under the risk aversion strategy, with an uncertainty
of 0.17, the total system return is ¥ 26,394.44, which means that
when the wind and light output fluctuate within the uncertainty
range of positive 0.17 and below, the total system return can be
guaranteed to be not less than ¥ 26,394.44. Under the risk-seeking
strategy, with an uncertainty of 0.12, the total system return is ¥
29,172.80, which means that the total system return is guaranteed to
be no less than ¥ 29,172.80 when the wind and light outputs fluctuate
within an uncertainty range of negative 0.12 and above.

Since the renewable energy output is mainly reflected in the
power supply side of the system, the electric power balance diagram
of the system operator under the deterministic model, RM, and OM
is analyzed.

Figure 12 illustrates the electric power balance within the system
operator when employing the risk-averse strategy. In this operation
mode, the goal is to obtain the system revenue in the worst case, so
the output of wind and photovoltaic power experiences significant
reductions in comparison to that in the deterministic model.
Therefore, the need to make power purchases from the grid to
satisfy the power balance of the system still exists during the time
period of 9:00–16:00 when the wind and light outputs are high,

TABLE 3 Comparison of the power of the three models in the maximum period of output.

Wind power output/kW PV output/kW Electricity sales to the external grid/kW

Deterministic model 2,955 2,220 1,633.02

RM 2,709.42 2,035.51 1,198.06

OM 3,303.25 2,481.63 2,242.91

TABLE 4 Comparison of the system revenue and cost under three models.

Total system
revenue

Energy sales
revenue

CES
cost

Carbon
transaction cost

Gas
cost

Interaction cost with the
power grid

Deterministic
model

27,545.4532 44,970.2896 252.8843 4,586.4308 10,842.7128 1,742.8085

RM 26,394.4414 44,970.2846 250.8435 4,617.7446 10,840.1622 2,867.0929

OM 29,172.8036 44,970.289 252.8792 4,538.0679 10,838.504 168.0343
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which increases the cost of interacting with the external grid by ¥
1,124.2844 and decreases the total system revenue by ¥
1,151.0118 compared to the cost of interacting with the external
grid under the deterministic model.

Figure 13 shows the system operator’s electric power balance
under the risk-seeking strategy. The system goal under this
operating mode is to obtain the revenue with the least
uncertainty, so the system’s overall revenue is the largest in this
situation. Therefore, the output of renewable energy is greater in the
7:00–19:00 time period than that under the deterministic model,
and, at the same time, in the 7:00–18:00 time period, the excess
electricity generated by renewable energy is sold to the grid to obtain
more revenue, and the system requires purchasing electricity from
the grid only in part of the night time. As can be seen from Table 4,
the cost of interaction between the system and the external grid is
reduced by ¥1,574.7742, and the overall benefit of the system is
increased by ¥1,627.3504 compared to that of the
deterministic model.

Based on the above analysis, it is clear that utilizing the IGDT
approach provides the system decision-maker with the ability to
select an appropriate scheduling strategy based on varying risk
attitudes. By appropriately adjusting the bias factor, the system
can effectively achieve the desired economic benefits while
ensuring robustness.

6 Conclusion

In order to fully take into account the interplay of the interests of
the various actors in the IES and reduce the effect of uncertainties in
the renewable energy output of the system, this paper first proposes a
master–slave game model of an IES that considers the uncertainty in
wind and solar output based on the Stackelberg game. The model
treats the system operator as the leader of the upper tier, and the LA
represents the subscribers as the followers of the lower tier. The two-
layer model is transformed into a single-layer mixed-integer linear
programming problem, which is solved by the KKT condition
combined with the Big M method. The proposed method was
tested and the results showed the following:

1) The model and methodology proposed in this paper can
effectively describe the interaction of interests between the
system operators and users. The energy transaction price is set
for the lower users by the upper DSO to promote the users to
carry out the integrated demand response, which, in turn,
affects the decision-making of the upper operators and
promotes them to optimize their own unit output to
maximize their benefits. This model can greatly improve
the flexibility of the system.

2) The CES system is added to replace the traditional energy
storage equipment and devices. According to the analysis of
the example, the system can achieve the same effect as the
traditional energy storage equipment only by paying a small
amount of rental cost, that is, the CES charges, when the
energy price is low and discharges to the system when the
energy price is high, thus greatly reducing the operating cost of
the system.

3) The IGDT is introduced to describe the uncertainty of wind
and solar output. Two different models are developed
based on the difference in the attitude of decision-
makers toward risk. Under the risk-seeking strategy, the
system is able to take full advantage of favorable
uncertainty factors, which enables the system to achieve
a larger return. Under the risk-averse strategy, the system
can guarantee a certain expected return while guaranteeing
its own robustness. Thus, this approach can make the
system both robust and economical.

Future work will focus on investigating the shared energy
storage among multiple subjects and the influence of the
customer-side load uncertainty.
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