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Infrared technology holds significant importance in the detection of electrical
equipment, as it has the capability to swiftly and securely identify electrical
apparatus. To simplify the implementation of proficient detection frameworks
for electrical equipment within constrained settings (like embedded apparatus),
this study presents an enhanced, lightweight model of the single-shot multibox
detector (SSD). This model specifically addresses the detection of multiple
equipment objects within infrared imagery. The model realized the lightweight
of the model by using the network structure characteristics of squeezenet to
modify the backbone network of SSD, and compensated for the impact of the
lightweight model on the detection accuracy by adding multiple convolutional
layers and connecting branches to enhance the propagation ability and extraction
ability of features. To ensure a comprehensive evaluation of themodel’s detection
capabilities, all the models discussed in this study employed the technique of
random weight initialization. This approach was utilized to validate the optimal
structure of the model and its performance. The experimentation was conducted
on both the PASCAL VOC 2007 benchmark dataset and an infrared image dataset
encompassing five distinct categories of electrical equipment found within
substations. The experimental outcomes indicate that this model offers an
efficient approach for achieving lightweight, real-time detection of electrical
apparatus.
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1 Introduction

To address the growing need for sustainable energy, there is an accompanying
requirement for the expansion and complexity of power systems. The power system
needs continuous inspection and preventive maintenance to ensure its normal trouble-
free operation (Lu et al., 2017; Song et al., 2018). Among them, detection of substation is very
important, because the electrical problems in the substation will not only cause power system
outage, local economic losses, and may even lead to casualties. Therefore, real-time and
effective detection of substation is extremely crucial to ensure its safety and long-term
operation (Menendez et al., 2017; Usamentiaga et al., 2018; Li et al., 2019).
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Infrared thermal imaging technology has many advantages over
other types of sensors, so it has become a widely accepted condition
monitoring technology (Osornio-Rios et al., 2019; He et al., 2017).
Infrared thermal image detection is a technology to diagnose
whether the equipment is in good running state or not based on
the thermal distribution of the equipment. This technology can be
non-contact far away from the equipment to be detected, and the
temperature measuring range is wide, so technicians can quickly
scan and detect electrical equipment (Zou and Huang, 2015; Zhao
et al., 2017; Ma et al., 2021).

Due to the substantial image data produced during substation
detection, the conventional security inspection process necessitates
significant time and extensive human and material resources for
performing state assessment on electrical equipment. The extended
periods of engagement for technicians in this task can result in
fatigue and potential misdiagnosis (Jadin et al., 2015; Zhao et al.,
2016; Wang et al., 2020). To circumvent the limitations inherent to
manual analysis of infrared images, numerous intelligent methods
for detecting electrical equipment have been proposed. Compared
with the manual method, intelligent detection methods are more
flexible, saves time and resources, and can greatly improve detection
efficiency.

A summary of some methods is shown in Table 1. Wu and An
(2014) proposed a new region-based ACM algorithm for feature
extraction of non-uniform insulators. While this approach
effectively addresses the challenge of segmenting images with
significantly uneven textures, there is a need for further

enhancement in the adaptability of weight parameter selection. In
the work cited as Reddy and Mohanta (2013), an approach was
introduced to assess the condition of insulators. This method
employs a combination of support vector machines and an
adaptive neuro-fuzzy inference system. Additionally, it utilizes
features extracted from a discrete orthogonal transformation to
enhance its performance. However, the method based on color
feature was sensitive to complex background and needed to
adjust appropriate threshold parameters. A novel texture
segmentation algorithm was proposed in Wu et al. (2012), which
could divide complex aviation insulator image into subregions with
smooth contours. Nonetheless, there is room for enhancement in
refining the adaptive selection process for the weight parameters
within this algorithm.

Over the past few years, the surge in computational power has
prompted a heightened focus on deep learning (Lecun et al., 2015).
Deep learning techniques are progressively finding broader
applications in tasks such as image classification, fault detection,
and object localization (Lan et al., 2019; Peng et al., 2019; Mei et al.,
2020; Xi et al., 2020). The convolutional neural network (CNN) is a
special type of deep learning model that has achieved excellent
performance in competitions related to computer vision and image
processing (Khan et al., 2020). This deep architecture helps learn
more complex features from images. AlexNet (Krizhevsky et al.,
2012) was one of the pioneering CNN architectures that achieved a
breakthrough in image classification tasks. It introduced the concept
of using multiple GPU units for training and utilized techniques like

TABLE 1 The summary of research methods.

Detection methods Main advantages Main disadvantages

(Wu and An, 2014) A new region-based ACM algorithm
for feature extraction of non-uniform insulators

It effectively addresses the challenge of segmenting
images with significantly uneven textures

The adaptability of the weight parameter selection of this
method needs to be further enhanced

(Reddy and Mohanta, 2013) A method for evaluating
insulator conditions using a combination of support
vector machines and adaptive neuro-fuzzy inference
systems

It utilizes features extracted from a discrete orthogonal
transformation to enhance its performance

It based on color feature was sensitive to complex
background and needed to adjust appropriate threshold
parameters

(Wu et al., 2012) A novel texture segmentation
algorithm

It can divide complex aviation insulator image into
subregions with smooth contours

There is room for enhancement in refining the adaptive
selection process for the weight parameters within this
algorithm

(Ren et al., 2017) An approach for both insulator
detection and fault identification

The method achieves high accuracy in detecting surface
defects on insulators. It can be fine-tuned and improved
over time with additional data. What’s more, the
method can be scaled to handle large datasets and
leverage powerful hardware for faster training

The method is primarily designed for detecting surface
defects through visual inspection. It may not capture other
types of defects or structural issues that can occur in
insulators

(Wang et al., 2020) An innovative autokinetic diagnosis
technique centered on Mask R-CNN.

It addresses instance segmentation and temperature
analysis of infrared images containing insulators

It is specifically designed for analyzing infrared images of
insulators andmay not be suitable for other types of image
data

(He et al., 2020) An automated methodology rooted in
YOLOv3

It efficiently recognizes locations and diagnose external
power insulation equipment

It cannot achieve the same level of accuracy as more
complex detection methods, especially in scenarios where
precise insulator detection and recognition are critical

(Redmon et al, 2016) An insulator detection method
based on SSD.

It is specially tailored for aerial imagery. It achieves good
results with relatively small training datasets compared
to some other deep learning models, reducing the need
for extensive data collection and annotation

It focuses on object detection and bounding box
localization of insulators. It does not provide detailed
defect analysis or temperature-based insights, which may
be necessary for a comprehensive inspection in some
scenarios

(Liu et al, 2016) An inventive detection approach relying
on FSSD was introduced for substation insulator
infrared imagery

It cleverly integrated a unique module designed to
enhance its capability in capturing distinctive attributes
within the infrared images of substation insulators

-
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ReLU activation functions and dropout to enhance model
performance. The structure of CNN includes convolutional layer,
pooling layer, and fully connected layer. Instead of using several
convolutional layers, Visual Geometry Group (VGG) (Simonyan
and Zisserman, 2014a) repeatedly uses a series of smaller 3 ×
3 convolutional filters compared to traditional CNN, creating a
network with greater depth. There are numerous other advanced
CNN architectures beyond VGG and AlexNet, each with its own
unique features and design principles. For example, GoogLeNet
(Szegedy et al, 2017) introduced the idea of Inception modules,
which use multiple filter sizes in parallel to capture features at
various scales. Residual Network (ResNet) (He et al, 2016a)
employed residual connections to address the vanishing gradient
problem, allowing the training of very deep networks. The
traditional CNN approach serves as the foundation upon which
these advanced architectures are built. They all share the core
components of convolutional layers for feature extraction,
pooling layers for spatial reduction, and fully connected layers
for classification or regression. What distinguishes them are
innovations in network depth, architectural design, and
regularization techniques, which improve their ability to learn
and represent complex patterns in images.

Within this domain, spatial pyramid pooling networks (He et al.,
2015), Faster R-CNN (Ren et al., 2017), and Mask R-CNN (He et al.,
2020) represent prevalent instances of two-stage object detection
architectures. On the other hand, YOLO (Redmon et al, 2016), the
single-shot multibox detector (Liu et al.), and CornerNet (Law and
Deng, 2018) exemplify widely employed single-stage object detection
frameworks. Drawing from the foundations of Faster R-CNN, Kang
et al. (2019) introduced an approach for both insulator detection and
fault identification. Meanwhile, Wang et al. (2020) put forward an
innovative autokinetic diagnosis technique centered onMask R-CNN.
This technique addresses instance segmentation and temperature
analysis of infrared images containing insulators. Additionally, Liu
et al. (2020) outlined an automated methodology rooted in
YOLOv3 to efficiently recognize locations and diagnose external
power insulation equipment. The utilization of a deep learning
algorithm facilitated the extraction of isolators, thereby allowing
the examination of image attributes in the visible light spectrum.
Miao et al. (2019) proposed an insulator detection method based on
SSD, specially tailored for aerial imagery. In the study outlined by
Zheng et al. (2020), an inventive detection approach relying on FSSD
was introduced for substation insulator infrared imagery. This model
cleverly integrated a unique module designed to enhance its capability
in capturing distinctive attributes within the infrared images of
substation insulators.

Although these methods have achieved great results in terms of
detection accuracy, they have not carried out a good tradeoff study
on model size, detection speed and detection accuracy. Given the
substantial image data captured amidst complex backgrounds
during substation inspections, the pursuit of a real-time detection
model exhibiting enhanced precision within confined environments
becomes imperative. This research amalgamates the distinctive
network structure attributes of squeezenet (andola et al., 2016) to
introduce a lightweight SSD detection model. This model is tailored
for effecting object detection within infrared images portraying a
diverse range of electrical equipment categories. The attainment of a
lightweight design for this model is achieved through the

modification of the SSD’s backbone network. However, it’s
essential to note that reducing the model’s weight by lowering its
network depth could potentially result in a diminishment of the
model’s nonlinear expression capabilities. This, in turn, may lead to
a decline in the model’s efficacy in feature fitting. Hence, to
counterbalance the potential effect of the lightweight model on
detection accuracy, this approach introduces multiple
interconnected branches into the backbone network. This
augmentation serves to bolster the feature’s propagation capacity.
Additionally, following the backbone network, several convolutional
layers are incorporated to elevate the model’s feature extraction
proficiency.

This study presents a novel endeavor that conducts
comprehensive experiments and discussions involving the
utilization of squeezenet’s distinctive structure to achieve the
lightweight nature of SSD. To ensure thorough validation of this
paper’s model performance, all models adopt a randomized weight
initialization strategy, excluding transfer learning. Through
meticulous control of iteration count and training set
proportions, the optimal model is deduced based on analytical
assessment of experimental outcomes. Experiments are
performed on both the Pascal VOC 2007 benchmark dataset and
separate datasets encompassing five categories of electrical
equipment. The outcomes reveal that, compared to SSD and
other lightweight models, the model established within this paper
not only achieves lightweight status but also successfully adheres to
the prerequisites of real-time detection, yielding commendable
detection efficacy.

FIGURE 1
Flowchart of the proposed method.
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2 The lightweight detector model

Given the acquisition of numerous infrared images of electrical
equipment against intricate backgrounds during substation safety
inspections, the enhancement of SSD’s lightweight attributes is
pursued in this study. This endeavor is aimed at enabling efficient
detection of electrical equipment within constrained environments,
while concurrently fulfilling the demands of real-time detection. The
model’s configuration is illustrated in Figures 1, 2.

2.1 Improved SSD model

The detection model introduced in this study employs the
inherent squeezenet network characteristics to achieve lightweight
functionality. It additionally integrates SSD’s multi-scale detection
approach to facilitate object detection. The model workflow is
shown in Figure 2.

Firstly, conv10 and global maximum pooling layer are deleted on the
basis of squeezenet network, and fire10 is added. Then the modified
structure replaces the VGG 16 (Simonyan and Zisserman, 2014b)
structure as the backbone network of SSD. In the meantime, in order
tomake up for the impact of lightweight on detection accuracy, a number
of convolutional layers with gradually decreasing scale are added after the
backbone network, and then add multiple bypass connections in the
backbone network. Feature maps produced through a deeper convnet
network have the capacity to embody heightened semantic information
coupled with translation invariance. While this confers benefits to object
recognition, it may prove less suitable for precise object localization. Due
to its enhanced capacity for detailed information, the shallow feature layer
proves advantageous for object detection (Li and Zhou, 2017). To
optimize the utilization of insights from the model’s shallow layers,
this study integrates two feature maps within the backbone network
to enhance detection capabilities.

2.2 The lightweight detector model

2.2.1 Enhanced object detection framework
The cornerstone of this paper’s framework encompasses the

fusion of the single-stage object detection algorithm SSD and the

compacting squeezenet compression network. The SSD object
detection algorithm showcases commendable performance in
terms of both speed and accuracy, while additionally
exhibiting robust adaptability to shifts in object scale. The
SSD model consists of two distinct segments. The primary
facet entails the central VGG16 architecture network, while
the ensuing aspect entails an integrated convolutional layer
structure aimed at augmenting detection precision and
orchestrating a gradual diminution in the feature map’s
dimensions to fashion a feature pyramid structure. Propelled
by a feedforward convolutional neural network, the SSD network
enhances the algorithm’s detection prowess by embracing multi-
scale detection. In tandem, the incorporation of 4–6 default
boxes, each with distinct proportions, into the feature layers
of varying scales substantially bolsters the detection efficacy
across objects spanning diverse scales.

In contrast to the AlexNet architecture, the accuracy of
squeezenet experiences a minor reduction, albeit accompanied by
a substantially diminished parameter count in comparison to that of
AlexNet. To curtail the parameter load within squeezenet, three
distinct strategies are implemented:

(1) Substituting the 1 × 1 convolution kernel for the 3 ×
3 convolution kernel. While the 3 × 3 convolution kernel
yields enhanced feature extraction outcomes from the
network, squeezenet employs a 1 × 1 convolution kernel as a
replacement. This strategic shift is aimed at reducing the
model’s parameter count while maintaining the integrity of
feature extraction.

(2) Minimizing Input Channel Count. To maintain parameter
efficiency, the squeezenet architecture takes measures to
decrease the number of 3 × 3 convolution kernels, as well as
diminishes the input channel count associated with these 3 ×
3 convolution kernels.

(3) Delaying the Pooling Process. The pooling operation plays a
crucial role in shaping the ultimate performance of the network.
By deferring and minimizing the pooling operation, it becomes
possible to cultivate a more expansive feature map within the
initial convolution layer of the network. Under equivalent
circumstances, a larger feature map is poised to yield
enhanced detection outcomes.

FIGURE 2
Structure of the proposed model.
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2.2.2 Fire module and bypass connection
The pivotal component within squeezenet architecture is

undoubtedly the fire module. This structural element
predominantly consists of two distinct convolutional layers: the

squeeze layer and the expand layer, as visually depicted in Figure 3.
The Squeeze layer essentially operates as a convolutional layer
comprising multiple 1 × 1 convolution kernels. Conversely, the
expand layer serves as a convolutional layer that amalgamates an
equivalent quantity of 1 × 1 and 3 × 3 convolution kernels. The fire
module encapsulates the initial pair of design strategies inherent to
squeezenet. Integration of this module significantly contributes to
the substantial reduction of model parameters.

In Andola et al. (2016), for the purpose of enhancing the model’s
precision, additional structures with different bypasses are explored
by referring to the residual network (He et al, 2016b):

(1) Some fire modules have simple bypass connections.
(2) In the first case, complex bypass connections are connected to

other fire modules.

In Andola et al. (2016), only squeezenet1_0 is discussed, but not
squeezenet1_1. Three variants of squeezenet1_0 are shown in
Figure 4.

Squeezenet1_1 is further compressed on the basis of 1_0 to
achieve further reduction of parameters by advancing the maximum
pooling layer. Within this manuscript, with the focus directed
toward detecting a range of electrical apparatus, a comprehensive
experimentation was conducted for the inaugural instance, delving
into the assessment of diverse configurations of the squeezenet
network on the efficacy of detection. This endeavor sought to
ascertain the most suitable lithe, real-time detection model. As
revealed by the empirical findings presented herein, the
foundational framework of the model put forth within this
composition was formulated by drawing inspiration from the
structural attributes of squeezenet1_0, featuring intricate by-pass
pathways.

2.2.3 Object detection configuration and
optimization

To facilitate the detection of objects displaying varying
proportions, the method of feature pyramid multi-scale detection
is embraced. The corresponding anchor sizes are established based
on the receptive field dimensions of each layer. Varied quantities of

FIGURE 3
Fire module structure.

FIGURE 4
Three kinds of squeezenet1_0 network structure diagram. On
the left: squeezenet; In the center: squeezenet featuring a
straightforward bypass; On the right: squeezenet incorporating an
intricate bypass configuration.
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default boxes are generated on the feature layers of distinct scales.
Within these layers, the prior boxes affiliated with each feature unit,
present within each feature diagram, necessitate computation of
scores for C categories along with 4 positional offsets relative to the
original default box. Within every feature unit on the feature map, a
total of (C + 4) × k prior boxes are formulated. When considering
feature maps of dimensions m × n, the outcome yields m × n × (C +
4) × k a priori boxes. This process yields an extensive assemblage of
prior boxes, which, due to their redundancy, augments
computational overhead and diminishes computational efficiency.
Consequently, the employment of non-maximum suppression is
adopted to address the processing of detection outcomes.

Within the framework of this study, the formula for calculating
the default box pertaining to each feature map is depicted as follows:

sk � smin + smax − smin

m − 1
k − 1( ) k ∈ 1,m[ ] (1)

Herein, sk denotes the ratio assigned to the default box within the
kth-level feature map; smin corresponds to the proportion attributed
to the default box within the lowest-level feature map, while smax

pertains to the proportion assigned to the default box within the
highest-level feature map. These values are preconfigured as 0.2 and
0.9, respectively. The parameter m signifies the quantity of feature
maps encompassed in this manuscript. Furthermore, the default
aspect ratio of the default box for each feature map layer is
represented as aγ and takes on values within the interval (⅓, ½,
1, 2, 3).

During the detection process, each factual box present within
the feature map undergoes alignment with a corresponding
default box, thereby eliminating excessive redundancy
associated with default boxes. In scenarios where a default box
aligns with any factual box, the default box boasting the most
substantial intersection ratio is classified as a positive instance.
Furthermore, if a default box aligns with any factual box and the
intersection ratio surpasses 0.5, it also gains classification as a
positive example. Given that a considerable majority of the
generated default boxes are categorized as negative samples,
with their quantity notably exceeding that of the selected
positive samples, a course of action is warranted. To achieve
this, the default boxes linked with negative samples are arranged
in descending order based on their confidence scores.
Subsequently, the default box possessing the highest
confidence score is elected as the negative sample. This
approach is instrumental in maintaining a balanced ratio
between positive and negative samples, specifically at a 1:
3 proportion.

Amidst the training phase, varying-scale prior boxes are
acquired across distinct layers of feature maps. Subsequently,
computations are conducted to derive the localization loss and
the confidence loss. The overarching objective loss function
aggregates these losses, being a weighted amalgamation of the
localization and confidence losses. The expression for the
calculation is depicted as follows:

Loss m, n, o, p( ) � 1
Q

Lossconf m, n( ) + xLossloc m, o, p( )( ) (2)

among themm value 0 or 1 indicates the prior box whether matches
the ground truth box; n is confidence of the categories; the actual

information of the prediction box is represented by o; the actual
information of the ground truth box is represented by p; Q is
represented amount of the matched default boxes; Lossconf is
represented the confidence loss, Lossloc is represented the
localization loss, x is represented the weight of them, we set x as
1 in the experimental process. The localization loss encompasses a
Smooth L1 loss (36) applied to the estimated box (o) and the actual
ground truth box (p) parameters. As for the confidence loss, it entails
the softmax loss associated with the confidence values across a
spectrum of classes.

3 Experiment and analysis

To verify the effectiveness of the method in this paper, the
PASCAL VOC 2007 benchmark dataset and an infrared image
dataset centered on substation electrical equipment are used to
evaluate the model, analyze and compare the experimental
results.

3.1 Experimental description

For the purpose of assessing the proposed model’s performance,
all experiments were conducted using a PC running Ubuntu
16.04LTS, equipped with 64 GB of memory, CPU (Intel Xeon W-
2145 3.70 GHz × 8) and two GPUs (NVIDIA Geforce RTX 2080ti
with 11 GB memory size). Within this study, the dimensions of the
input image utilized for experimentation encompass 300 ×
300 pixels. Each batch is comprised of 16 images. An initial
learning rate of 0.001 is designated, complemented by a
momentum value of 0.9. Additionally, a weight decay factor of
0.0005 is applied. The optimization scheme employed for refining
the model involves the utilization of the stochastic gradient descent
algorithm.

The experimental datasets featured in this study encompass the
PASCAL VOC 2007 benchmark dataset and an infrared image
dataset centered on substation electrical equipment. All images
employed in these experiments adhere to the RGB format.
Notably, the infrared image dataset concerning electrical
equipment originates from the State Grid Corporation of China.
Specifically, the Pascal VOC 2007 benchmark dataset encompasses a
spectrum of 20 distinct categories. Within this dataset, the training
subset includes 5,011 images, while the testing subset comprises
4,952 images. The infrared image dataset of electrical equipment
contains 5 categories of electrical equipment, which is surge arrester,
circuit breaker, isolating switch, instrument trans-former and
insulator. The number of infrared images of these electrical
equipment is 412, 456, 1,421, 1,355, and 2,100 respectively, and
some infrared images with multiple objects. The acquired dataset of
infrared images for electrical equipment is partitioned into two
distinct categories. Within this division, a specific proportion is
designated for utilization as training samples to facilitate model
construction, while the remaining subset is allocated for
employment as testing samples. It is a well-known fact that the
ratio assigned to training sets significantly impacts the learning
process and consequently influences the outcomes of the model.
Hence, the present study delves into an examination of how distinct
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ratios of training samples influence the experimental outcomes
within the experimental process. The overarching goal is to
discern the most suitable allocation proportion. For visual
context, refer to Figure 5, which portrays a collection of infrared
images comprising various forms of electrical equipment.

Addressing the challenge of training instability stemming
from fluctuations in loss during the training phase, this study
adopts a strategy akin to the “warm-up” approach described in
Andola et al. (2016). This technique entails commencing with a
modest, incremental learning rate during the initial 5 stages.
Subsequently, following the “warm-up” stage, the learning rate
reverts to a conventional learning strategy. Additionally, the
experiment in this paper employs the strategy of random
weight initialization for the model. This decision is made to
comprehensively assess the model’s performance.

3.2 Evaluation metrics

Within this paper, the evaluation indices employed to assess
the model encompass the time taken for detecting a singular
image, the mean average precision (mAP), and the dimensions of
the model itself. These metrics serve as benchmarks for dissecting
the experimental findings and facilitating a comprehensive model
comparison. During the computation of average precision (AP)
and mean average precision (mAP), the predefined intersection
over union (IOU) threshold defaults to 0.5. Here, mAP represents
the arithmetic mean of the AP values amassed across all
categories. The AP value is calculated by determining the area
enclosed by the precision-recall (P-R) curve. The subsequent
methodology for computing AP, precision rate, and recall rate is
illustrated as follows:

AP � ∫1

0
p r( )dr

precision � TP
TP + FP

recall � TP
TP + FN

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(3)

the precision rate p signifies the ratio of accurately identified cases,
whereas the recall rate r indicates the proportion of correctly
detected actual instances. Within the set of variables, TP
represents the number of cases accurately identified, FP
corresponds to instances incorrectly categorized as positive, and
FN denotes the count of true instances wrongly labeled as false
negatives, reflecting the quantity of misclassified objects.

3.3 Outcomes from the PASCAL VOC
2007 experimentation

Due to the potential impact of the quantity of training iterations
on the outcomes of the model’s detection capabilities, this study
investigates the effect of varying training iterations on the training
results of the model through empirical investigations. This
exploration aims to determine an optimal number of training
iterations for conducting experiments involving infrared imagery
of electrical apparatus. In this study, to validate the most efficient
lightweight model, the lightweight models with different structures
proposed in this paper will be compared with SSD, Mobile-ssd,
Squeeze-ssd and Tiny-yolov3. Figure 6 displays the outcomes
obtained from distinct models across varying training iterations.
Among them, Sq1_0 and Sq1_1 represent improved models based
on squeezenet1_0 and squeezenet1_1 as the backbone of the

FIGURE 5
Some images of the dataset.
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network, respectively, and a, b and c respectively represent the
improved models with no bypass, simple by pass and complex
bypass.

Observing the data presented in Figure 6, it becomes evident that
the detection accuracy of distinct models demonstrates a general
inclination towards improvement as the number of iterations
increases. Notably, among these, Mobile-SSD, SSD, and Sq1_0_c
models stand out for their superior detection outcomes. However,
it’s worth noting that an escalation in the number of iterations
corresponds to a substantial rise in the duration of the training
process. As a result of a comprehensive deliberation, a pragmatic
decision is made, leading to the selection of 20,000 iterations as the
optimal count for experimental training iterations dedicated to
infrared images of electrical equipment.

Table 2 presents a comparative analysis of detection time and
model dimensions among various models, performed on the
PASCAL VOC 2007 benchmark dataset. Additionally, Table 3
provides an intricate breakdown of the comprehensive

experimental outcomes yielded by diverse models when subjected
to 200 k iterations on the PASCAL VOC 2007 benchmark dataset.
The findings from Figure 6 and Tables 2, 3 collectively demonstrate
that while the detection precision of Sq1_0_c is lesser com-pared to
SSD, its model dimensions are nearly a quarter of SSD’s, and its
detection velocity is enhanced by a factor of 4.4 in comparison to
SSD. The detection accuracy of Sq1_0_c is slightly less than that of
Mobile-ssd, but the model size of Sq1_0_c is 1.5 times smaller than
that of Mobile-ssd, and the speed is faster than that of Mobile-ssd.
Even though the detection duration for Sq1_0_c is marginally
extended compared to Tiny-yolo, its model proportions are
diminished in contrast to Tiny-yolo. Moreover, the detection
precision significantly surpasses that of Tiny-yolo. Compared
with the other models, Sq1_0_c has higher detection accuracy
than the others, although the model size and detection time is
slightly increased. Among them, method ①~⑩ respectively
represent the top-down models in Figure 6.

3.4 Results on infrared images of electrical
equipment

In this portion, an investigation is undertaken using a dataset
comprising infrared images of electrical equipment within
substations. The focus of this phase involves a comparative
analysis between the enhanced lightweight models and alternative
model counterparts. Insights drawn from Tables 2, 3 reveal a parity
in model sizes between models 4 and 5, yet it’s evident that the
detection accuracy of model 4 markedly lags behind that of model 5.
To optimize resource allocation, both in terms of experimental time
and costs, the evaluation of Model 4 is omitted concerning the
infrared dataset for electrical equipment. In a similar vein, the
assessment of Model 7 is likewise omitted.

As the volume of data increases, the model’s performance is
expected to improve, with the proportion of training samples
playing a pivotal role in the model’s learning process. Notably,
the dataset employed in this study is sourced from the State Grid
Corporation of China and differs from the division structure of the
Pascal VOC 2007 benchmark dataset. To forestall any inadvertent
influence of training set composition on experimental outcomes and
consequent interpretation of model efficacy, a strategy is employed
wherein various proportions (ranging from 0.3 to 0.9 in intervals of
0.1) of training samples are selected. Employing uniform
experimental protocols, this approach is used to assess the
impact of varying sample quantities on the results. In order to
mitigate the potential instability of both training and testing sets, the
dataset for this experiment is subject to randomized selection. For
instance, a ratio of 0.8 is utilized for the training set.

Initially, a random selection process is employed, where 80% of
the available infrared images for a specific category of electrical
equipment are chosen as the training set for that equipment type.
The residual 20% of images are designated as the corresponding
testing set. Subsequently, this process is replicated across various
equipment categories, culminating in the establishment of a
comprehensive 0.8 scale training set through amalgamating the
diverse training and testing sets. This overarching dataset
encompasses multiple infrared images encompassing various
types of electrical equipment objects.

FIGURE 6
Contrasting the results derived from distinct training iterations
across various models on the PASCAL VOC 2007 benchmark dataset.

TABLE 2 Detection time and model size of various models on the PASCAL VOC
2007 benchmark dataset.

Method Model size (MB) Detection time (ms/image)

① 41.2 8.517

② 22.1 6.878

③ 34.9 4.591

④ 25.8 6.417

⑤ 25.8 6.463

⑥ 27.2 6.907

⑦ 24.4 6.414

⑧ 24.4 6.461

⑨ 25.7 6.888

⑩ 105.2 30.378
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TABLE 3 The results of PASCAL VOC 2007 benchmark dataset (IOU = 0.5, training iterations = 200 k).

Method mAP Aero Bike Bird Boat Bottle Bus Car cat Chair Cow Table Dog Horse mbike Person Plant Sheep Sofa Train Tv

⑩ 0.552 0.644 0.689 0.432 0.482 0.135 0.716 0.794 0.548 0.273 0.528 0.569 0.524 0.746 0.707 0.650 0.238 0.465 0.565 0.755 0.579

① 0.487 0.514 0.677 0.313 0.331 0.080 0.655 0.628 0.567 0.278 0.352 0.581 0.560 0.711 0.648 0.561 0.193 0.334 0.551 0.701 0.501

⑥ 0.471 0.559 0.616 0.312 0.272 0.063 0.636 0.668 0.541 0.250 0.397 0.540 0.442 0.703 0.644 0.579 0.174 0.350 0.492 0.665 0.509

⑤ 0.457 0.543 0.614 0.312 0.266 0.061 0.642 0.653 0.509 0.258 0.365 0.497 0.439 0.687 0.615 0.581 0.147 0.345 0.496 0.650 0.469

⑨ 0.410 0.527 0.541 0.278 0.232 0.038 0.607 0.609 0.480 0.185 0.286 0.484 0.400 0.629 0.540 0.536 0.098 0.300 0.411 0.607 0.405

⑧ 0.370 0.485 0.496 0.222 0.199 0.034 0.571 0.581 0.416 0.155 0.239 0.425 0.318 0.598 0.505 0.505 0.082 0.259 0.354 0.585 0.379

⑦ 0.303 0.421 0.379 0.162 0.125 0.006 0.453 0.571 0.336 0.087 0.197 0.305 0.299 0.580 0.473 0.474 0.021 0.217 0.200 0.454 0.298

② 0.300 0.425 0.357 0.145 0.101 0.003 0.376 0.614 0.356 0.119 0.278 0.243 0.271 0.537 0.436 0.447 0.029 0.309 0.259 0.355 0.339

④ 0.215 0.343 0.226 0.076 0.070 0.003 0.332 0.439 0.269 0.055 0.107 0.224 0.171 0.444 0.345 0.338 0.009 0.100 0.154 0.358 0.237

③ 0.207 0.288 0.371 0.057 0.138 0.033 0.194 0.458 0.209 0.136 0.187 0.057 0.077 0.305 0.296 0.398 0.038 0.248 0.083 0.298 0.260
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Depicted in Figure 7 is a comparative analysis of detection
outcomes among diverse models across varying training set
proportions. As observed in Figure 7, a discernible trend emerges
wherein model detection efficacy escalates in tandem with the
expansion of the training set. Notably, beyond a training set

proportion of 0.3, Mobile-SSD, SSD, and Sq1_0_c consistently
exhibit superior detection outcomes. Table 4 shows the detection
time and model size of different models on the infrared image
dataset of electrical equipment. Presented in Table 5 are the
comprehensive outcomes derived from experiments involving
various models on the infrared image dataset related to electrical
equipment, with a training set ratio of 0.8. The observations drawn
from Figure 7 and Tables 4, 5 collectively underscore that the model
dimensions of Sq1_0_c are approximately one-fifth the size of SSD’s,
accompanied by a detection speed that is expedited by a factor of
3.8 in comparison to SSD. Despite exhibiting a lower accuracy than
SSD, it still attains a commendable detection precision of 87.82%
through the implementation of the model weight random
initialization strategy. Sq1_0_c features a model size
approximately 1.6 times leaner than Mobile-SSD, accompanied
by an enhanced detection speed. Moreover, Sq1_0_c boasts a
detection accuracy surpassing that of Mobile-SSD. In contrast to
alternative models, Sq1_0_c attains experimental outcomes akin to
those witnessed in the context of the PASCAL VOC
2007 benchmark dataset. Therefore, a comprehensive evaluation
positions Sq1_0_c as the most optimal performer.

Given the need to impartially assess the model’s performance
through the testing set, it becomes imperative to deliberate on the
adequacy of the testing set’s proportion. Ensuring comprehensive
generalization and representative evaluation is challenging when the
testing set is inadequately sized. To this end, a judicious decision is
made to adopt a final ratio of 0.8, ensuring a balanced compromise.

To demonstrate the advantages of the proposed method,
comparisons with the latest SSD variants are also conducted, as
shown in Table 6. These results are obtained under the optimal
dataset allocation ratios. It can be observed that the proposed
method achieves the fastest detection speed and the smallest
memory footprint, with detection accuracy only slightly lower
than that of the FSSD model.

Figure 8 shows the detection effect of Sq1_0_c on some infrared
images of electrical equipment. The anticipatory results associated
with surge arresters, circuit breakers, isolating switches, instrument
transformers, and insulators respectively correspond to the white,
cyan, yellow, green, and red bounding boxes delineated within the
illustration. The bounding box denotes the location of the object
which the model located, and the value that is above this bounding
box is the confidence of the model’s prediction category. By

FIGURE 7
Comparison of the detection results on the training set of
different proportions of the infrared images of electrical equipment.

TABLE 4 Detection time and model size of different models.

Method Model size (MB) Detection time (ms/image)

① 32.6 10.54

② 13.8 8.474

③ 34.7 2.723

⑤ 18.5 7.252

⑥ 19.8 7.459

⑧ 17.9 6.814

⑨ 19.2 7.025

⑩ 97.1 28.47

TABLE 5 Comparison of different models.

Method Arrester Breaker Switch Transformer Insulator mAP

① 0.8962 0.7988 0.9031 0.9042 0.8868 0.8778

② 0.7704 0.7777 0.8948 0.8806 0.8899 0.8427

③ 0.6848 0.6875 0.7991 0.8295 0.7976 0.7597

⑤ 0.8814 0.7880 0.8958 0.8924 0.8812 0.8678

⑥ 0.8903 0.8021 0.9050 0.9027 0.8908 0.8782

⑧ 0.4236 0.4166 0.6147 0.6588 0.7270 0.5681

⑨ 0.4516 0.4783 0.6848 0.7182 0.7823 0.6230

⑩ 0.8980 0.8886 0.9065 0.9033 0.9008 0.8994
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conducting an in-depth analysis of the experiment, this study
identifies the optimal lightweight model. This model not only
showcases enhanced performance but also demonstrates precision
in accurately pinpointing the location of equipment objects within
infrared images.

4 Discussion

We have successfully developed a lightweight model that
exhibits substantial improvements in model size and detection
speed compared to traditional SSD and other lightweight models
like Mobile-SSD and Tiny-yolov3. This achievement underscores
the efficiency of the proposed approach, which can be advantageous
in resource-constrained environments. This study demonstrates a
careful balance between model accuracy and detection speed. While
the optimal lightweight model may not match the accuracy of SSD, it
still maintains a high level of detection accuracy, making it suitable
for applications where real-time processing is critical. Due to its
compact model size, the proposed lightweight model can operate
efficiently on hardware with limited computational resources. This
makes it suitable for deployment on edge devices, drones, and other
platforms where computational power is restricted. The slightly
increased cost of the optimal model compared to other improved
models is offset by its superior detection accuracy and smaller model

size compared to SSD. This cost-efficiency is important for practical
applications where budget constraints may be a concern. The
lightweight and efficient model developed in this study has direct
applications in scenarios where computational resources are limited,
such as autonomous drones, IoT devices, and embedded systems.
Real-time object detection is crucial in security and surveillance
applications. The improved lightweight model can be deployed in
security cameras and surveillance systems for enhanced object
recognition and tracking. In industrial settings, where real-time
detection of objects or anomalies is essential, the lightweight model
can be used in robots, automated quality control systems, and
equipment monitoring within substations, as demonstrated in
this study. Lightweight models with high-speed detection
capabilities can be deployed in intelligent transportation systems
for traffic monitoring, pedestrian detection, and vehicle counting.
The lightweight model’s ability to process images efficiently can be
leveraged for environmental monitoring applications, such as
wildlife conservation, where quick and accurate detection is crucial.

Considering the promising results obtained in the physical
detection of electrical components within substations, we propose
a future research direction that extends the application of the
approach of this study to off-grid and autonomous load
scenarios, particularly in the field of power quality analysis. This
direction aims to harness the capabilities of our lightweight and
efficient model for the identification and monitoring of critical

TABLE 6 Comparison with other methods.

Method Arrester Breaker Switch Transformer Insulator mAP Detection time (ms/image) Model size (MB)

FSSD 0.8923 0.9922 0.8997 0.8967 0.8951 0.9152 32.6 130.1

Our method 0.8903 0.8021 0.9050 0.9027 0.8908 0.8782 19.8 7.46

FIGURE 8
Detection results of some infrared images of electrical equipment based on Sq1_0_c.
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power parameters in off-grid and autonomous power generation
systems (Krishna et al., 2023; Krishna et al., 2022).

5 Conclusion

In this paper, detailed experiment and discussions on the effects
of various squeezenet structures on the detection efficacy of SSD
model were carried for the first time, and an improved lightweight
model was proposed. The model improved the feature extraction
ability and model fitting ability by adding multiple different
connection branches and convolutional layers, so as to make up
for the impact of light-weight model on the detection accuracy.
According to the experimental results: 1) Concerning the PASCAL
VOC 2007 benchmark dataset, despite the optimal light-weight
model exhibiting a detection accuracy lower than that of SSD, it
boasts a model size approximately one-fourth that of SSD and a
detection speed accelerated by a factor of 4.4 compared to SSD. The
precision of the optimal model was marginally lower than that of
Mobile-ssd, however, its model dimensions were nearly 1.5 times
more compact than those of Mobile-ssd, and its detection speed
surpassed that of Mobile-ssd. The model size of the optimal model
was smaller than that of Tiny-yolov3, although the detection time of
the optimal model was slightly longer than that of Tiny-yolov3, the
detection accuracy was much greater than Tiny-yolov3; 2) The
identical experimental procedure was conducted on the infrared
image dataset related to electrical equipment within a substation.
The outcomes of these experiments revealed that the model size of
the optimal lightweight model was nearly 5 times less than that of
SSD, and the detection speed demonstrated a 3.8-fold improvement
over SSD. Although the accuracy was lower than SSD, it still achieves
a high detection accuracy of 87.82%. The model size of the optimal
model was nearly 1.6 times smaller than that of Mobile-SSD, the
detection speed was also improved, and the detection accuracy was
higher than that of Mobile-SSD. Compared with other models, the
conclusion was consistent with the experimental results on PASCAL
VOC 2007 benchmark dataset. Although the model size and
detection time of the optimal model were slightly increased
compared with other improved models, the detection accuracy
was the highest, and the model size was very small compared
with SSD, so the slightly increased cost of the optimal model
compared with the other improved models could be ignored.

Although this study has a good detection effect while meeting
the requirements of lightweight and real-time detection, there are
still some limitations. As an illustration, during the pursuit of
achieving a lightweight design, it is possible to enhance the
model’s detection accuracy while still upholding its lightweight

attributes. As a result, our focus in future research must address
subsequent tasks aimed at further optimizing the model.
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