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multi-modal data-driven
algorithm
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The home energy management system (HEMS), which utilizes multi-modal data
from multiple sensors to generate the knowledge about decision making, is
essential to the optimization of home energy management efficiency. Load
scheduling based on HEMS can improve the utilization efficiency of multi-
modal data and derived knowledge, achieve power supply-demand balance,
and reduce users’ electricity costs. This paper proposes a distributed load
optimization scheduling method for the load scheduling problem in HEMS
based on multi-modal data-driven algorithm. Additionally, a two-stage data-
driven optimization method is proposed, including a first-stage optimization
model based on minimizing electricity costs and a second-stage optimization
model based on minimizing system load fluctuations. In the first stage, cost self-
optimization is performed based on energy storage devices. In the second stage,
a load optimization instruction is issued by the control center, and each user
optimizes the load fluctuations based on the system load data. Compared to
centralized control methods, this approach reduces the computational overhead
of the control center. Finally, simulation experiments based on load scheduling
in the HEMS are conducted. The results of the first optimization stage show that
when the battery capacity integrated into the system increases from 3.68 kWh to
6.68 kWh, user costs can be reduced from 57.572 cents to 42.064 cents. It is not
only evident that the proposed method can effectively save users on electricity
costs, but the introduction of larger capacity batteries also lowers these costs.
The second stage of load fluctuation optimization results show that the proposed
method can effectively optimize the usage data of a group of users and decrease
the absolute peak-valley difference by 8.8%.
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1 Introduction

1.1 Background

The next-generation smart grid is a network composed of
digital systems and electrical infrastructure, capable of detecting
multi-modal data from multiple sensors to monitor the status
of energy usage. Additionally, the smart grid enables decision
making technologies to reason the knowledge from multi-modal
data to implement demand response and load dispatching functions,
quickly and adaptively adjusting power generation and transmission
(Mahela et al., 2022). The residential load is an essential part
of the multi-modal data in smart grids, and as the application
of residential load facilities increases, the energy consumption
of residential loads continues to grow. Therefore, residential
energy management is an urgent and crucial field that can
enable end-users to actively participate in reshaping demand
patterns.

A home energy management system (HEMS) is the product
of the combination of smart grid intelligent communication and
data-driven decision-making technology (Lin, 2021). HEMSs can
effectively monitor household energy consumption through smart
sensors and electronic devices and predict and plan home energy
usage, thereby improving electricity utilization efficiency. To guide
users to participate in demand response, power companies have
introduced real-time pricing strategies in place of traditional fixed
prices (Li et al., 2019). Real-time pricing plays an essential role in
HEMSs, dividing the day into 24 or more time periods, achieving
intelligent meter billing based on real-time prices (Wei et al., 2019).
Governments and power grids collect detailed, real-time electricity
data from customers via smart meters. This aids in balancing
power generation with consumption, thereby stabilizing power
system operations and reducing long-term production costs. Power
companies set higher prices during peak hours and lower prices
during off-peak periods, encouraging users to participate in power
system operation management through real-time pricing. Users,
aiming to reduce their energy costs, tend to use energy-saving
appliances and shift their power usage from peak periods to non-
peak periods, thereby improving energy efficiency while reducing
electricity costs (Munankarmi et al., 2022). To promote two-way
communication, advanced metering infrastructure (AMI) is an
essential part of the smart grid’s HEMS (Lu et al., 2017), consisting
of home area network (HAN), building area network (BAN),
neighborhood area network (NAN), and other grid infrastructure
(Huang et al., 2021).

Load scheduling based on HEMS can reduce energy
consumption, save resources, save electricity costs for consumers
and utilities, reduce greenhouse gas emissions, and reduce peak
electricity demand. For example, Bejoy et al. (2017) proposed a
household appliance scheduling method considering customer
preferences and satisfaction to minimize energy consumption
without causing inconvenience to users. Pal et al. (2017) used
household electric vehicles to manage user load demand and
proposed a framework including different appliance energy
consumption loads, such as basic load, movable appliances, storage
systems, and electric vehicle loads.

Although many achievements have been made in load
scheduling based on HEMSs, the main method is to optimize

the system load fluctuation by using the centralized control
method, and the modeling of electrical equipment is not
practical enough. This paper established the basic equipment
and energy storage equipment models, and implemented
user load scheduling through two-stage distributed data-
driven optimization method. The main contributions are as
follows:

• A distributed load scheduling framework for HEMS is
proposed, and detailed modeling for various devices is
conducted. In the distributed scheme, optimization control
is decentralized to individual residential buildings or even
to each household user, aiming to reduce the computational
and communication overhead of the control center. HEMS
is employed to facilitate bidirectional communication and
distributed optimization.
• A data-driven two-stage optimization method is introduced. It
aims to achieve demand response by optimizing for minimal
user costs and minimal load fluctuations, respectively. In
the first stage of distributed optimization, users’ demand
response adjustments can create new peaks in the system
load curve. users’ demand response adjustments can create
new peaks in the system load curve. Users within an area
share their optimized consumption from smart meters,
and the control center releases system load directives. This
prompts a secondary optimization where users exchange
load data and iteratively adjust schedulable loads and
battery statuses until load fluctuations remain within defined
limits.
• Load scheduling simulation experiments were conducted,
and the influence of battery parameters was analyzed.
Simulation results indicate that, using the proposed method,
users can adjust the load based on comfort levels and
the urgency of device usage. The obtained scheduling
strategy can effectively reduce user costs and decrease load
fluctuations.

1.2 Research status

Residential users are a highly important component of the
smart grid, accounting for 33% of total electricity consumption.
Load scheduling based on home energy management systems
(HEMSs) implements demand response from the resident side,
and the implementation process faces many challenges, such as
privacy leakage, randomness and management complexity of
generation and consumption equipment. Therefore, researchers
have introduced solutions based on energy storage devices
(Seal et al., 2023), distributed energy (Chen and Chang,
2023), flexible loads (Yang et al., 2020), etc. Load scheduling
based on HEMS can reduce energy consumption, save
resources, save electricity costs for consumers and utilities,
reduce greenhouse gas emissions, and reduce peak electricity
demand.

Bejoy et al. (2017) proposed a household appliance scheduling
method that considers customer preferences and satisfaction to
minimize energy consumption without causing inconvenience to
users. Pal et al. (2017) used household electric vehicles to manage
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user load demand and proposed a framework that includes different
appliance energy consumption loads, such as basic load, movable
appliances, storage systems, and electric vehicle loads. In the
optimization process, each user can arrange their devices based
on actual electricity usage. The scheme adds a bias cost to the
objective function in the user cost minimization problem to
prevent the formation of new peaks during non-peak periods,
but using centralized control methods increases the computational
burden of the system. Jiang and Wu (2020) proposed a cost-
efficient load scheduling method considering user electricity
efficiency and satisfaction, balancing user cost and preferences
through fractional programming. Kou et al. (2019) introduced
a distributed control scheme based on aggregators to achieve
residential demand response. In this scheme, the power company
provides an incentive price to drive power consumption adjustment
based on the aggregated load information exchanged between the
utility system and users. Wang et al. (2020) proposed a stochastic
optimization method to solve the residential load scheduling
problem, establishing residential load models, generation cost
prediction models, and stochastic optimal load aggregation models.
They introduced a set of uniformly distributed scalars to the load
aggregation model to avoid load bounce, and experiments proved
that this method effectively reduced the system’s load peak-average
value. Yang et al. (2018) introduced a privacy-aware scheduling
model based on rechargeable batteries, introducing coefficients to
enable users to balance privacy protection and cost. The model
uses the storage and release of energy by rechargeable batteries to
flatten the user’s electricity curve and discusses the impact of battery
capacity on privacy protection effects. Sangswang and Konghirun
(2020) integrated solar energy, energy storage, and V2G. This study
provided an optimized control method for electric vehicles and
household batteries, enhancing the effectiveness of HEMS. Joo
and Choi (2017) proposed a two-stage optimization algorithm for
energy consumption scheduling in multiple smart homes under
distributed energy. However, this study only considered the interests
of consumers and overlooked the quality of the electrical grid.
Awad et al. (2015) proposed load scheduling privacy protection
methods based on rechargeable batteries and the maximum
difference method, using the demand response component to keep
the electricity curve constant, and proved that fuzzy processing of
smart meter values does not affect user billing. Ming et al. (2016)
introduced a user-side load scheduling method that considers
user satisfaction, achieving demand response and user cost
reduction through two-stage optimization, but did not consider
the impact of distributed energy on the smart grid’s demand
response. The model presented in this paper is a nonlinear
programming problem, with variables encompassing both binary
and continuous types, and it possesses complex constraints.
While some traditional optimization algorithms, such as simulated
annealing (Li et al., 2022) and particle swarm optimization (Zhao
and Li, 2020), exhibit strong global search capabilities when dealing
with nonlinear optimization problems, they encounter challenges
when addressing mixed variables, multiple constraints, or high-
dimensional problems. Genetic algorithms, on the other hand,
can handle both discrete and continuous variables, making them
suitable for a wide range of intricate optimization challenges.
Therefore, this paper employs the genetic algorithm for model
optimization.

2 Home energy management system

2.1 Framework of HEMS

The HEMS (Duman et al., 2021), an essential component of
the smart grid, is a microgrid system composed of renewable
energy generation equipment, energy storage devices, and various
common household appliances. HEMS enables residential end-
users to actively participate in reducing peak demand and carrying
out demand response. Energy use can be shifted to non-peak
periods by scheduling household appliances, reducing excessive
energy consumption at certain times. Meanwhile, device scheduling
operations must consider customer preferences and satisfaction
to achieve the best results in energy scheduling optimization, for
example, using air conditioning to maintain the indoor temperature
within an appropriate range. To ensure the secure transmission of
electricity data and costs between users and the smart gridwithin the
HEMS, advanced metering infrastructure (AMI) is the foundation
of HEMS. AMI consists of the home area network (HAN), building
area network (BAN), neighborhood area network (NAN), and other
grid infrastructure such as smart meters (Huang et al., 2021). The
framework of the HEMS is shown in Figure 1.

The framework includes smart meters (SMs), gateways (GWs),
control center (CC) of the power company, and users connected
to the meters. Smart meters (Fekri et al., 2021) act as a home local
area network, installed at the user’s end. They are connected to
sensor devices in the home and collect user power consumption
data through smart appliances, uploading it to the local gateway.
Users can monitor and optimize energy control of electrical
devices through the homemain controller, understand energy usage
and related data through smart meters, and choose appropriate
electricity usage based on this information to enjoy high quality
service. The gateway is a powerful entity used not only for relaying
but also for data processing. The control center processes user
electricity consumption, encrypted electricity costs, and other data
sent from the gateway, and updates real-time prices based on total
user electricity consumption, carrying out demand response to keep
the load within a certain range in the area, thereby ensuring safe and
reliable electricity use. During the transmission process of electricity
consumption, for electricity cost-related privacy data, both the
gateway and control center will carry out signature authentication
to ensure data security and integrity. Users can view their billing
accounts through the client andmay choose to apply for verification.

2.2 Types of HEMS devices

Thedevices ofHEMSs can be classified as basic devices or energy
storage devices.

Basic devices are primarily focused on heating, ventilation, and
air conditioning (HVAC), as well as washingmachines, refrigerators,
rice cookers, etc. Basic devices are divided into schedulable and
non-schedulable devices. Non-schedulable devices, such as laptops
and desk lamps, must meet users’ immediate usage needs, so their
operation time cannot be controlled; therefore, non-schedulable
devices are not modeled.

Energy storage devices can stitch together intermittent
renewable energy and enhance the security and stability of the power
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FIGURE 1
Framework of HEMS.

supply system.They can also charge energy storage devices using the
grid during off-peak electricity times, store electrical energy through
certainmediums, and release the stored energy for power generation
during peak electricity periods for household appliance use. This
promotes peak shaving and valley filling in the grid, improving the
reliability of the user’s power supply. Energy storage technologies
typically include physical energy storage (flywheel energy storage,
pumped hydro storage), chemical energy storage (various types
of batteries, renewable fuel cells, supercapacitors), and electrical
energy storage (superconducting electromagnetic energy storage).
As a load balancing device and backup power source, energy storage
systems are also essential equipment for smart grids and distributed
energy systems.

3 Distributed system devices model

In the distributed scheme, optimization control is dispersed to
individual residential buildings or even individual household users,
as shown in Figure 2. Assume that there are W household users in
the region, and in a household, in addition to basic electrical devices,
energy storage devices are equipped. The home management
system is used to provide two-way communication and distributed
optimization. In the distributed load scheduling model, the control
center is responsible for the publication of real-time electricity
prices, system load instructions, and system load data; users can
adjust their electricity usage patterns according to different electrical
devices in the home, conduct electricity cost self-optimization, and
then transmit the smart meter power consumption values to the
control center. Furthermore, users transmit system load data to each
other to perform system load fluctuation optimization sequentially.
Compared to the centralized control scheme, the distributed control

scheme reduces the computational and communication overhead of
the control center and provides a scalable architecture.

3.1 Schedulable devices model

Basic devices in the home, such as computers, incandescent
lights, televisions, and other appliances that users need to use at
any time, are considered non-schedulable devices. Adjusting their
usage time would seriously affect users’ comfort, so they are not
involved in load control. Schedulable devices, such as refrigerators
and dishwashers, are referred to as having flexible loads. They can
participate in demand response, and their flexibility can alleviate the
strain on the power grid during peak electricity usage periods.

In this paper, a day is divided into H intervals, where
h = 1,2,⋯H. The length of each interval is Δhstep =

24*60
H

minutes.
a ∈ A = {1,2,⋯A} represents the numbers of the electrical devices.
Variable sa(h) represents the working status of device a: when
sa(h) = 1, the device is in the working state; when sa(h) = 0, the
device is in the off state. [αa,βa] indicates the permissible working
time range for the device, and da represents the prescribed working
duration of the device.The allowable working time length should be
greater than the device’s working duration to ensure that theworking
time of the schedulable device can be rescheduled. Device a should
meet the following time constraints:

βa
∑
h=αa

sa (h) = da (1)

sa (h) = 0, h ∈H\[αa,βa] (2)

To make the model closer to the actual situation, consideration
is given to subdividing the devices.
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FIGURE 2
Distributed optimization-based load scheduling framework.

3.1.1 Non-interruptible devices
Among the schedulable appliances, devices such as washing

machines and rice cookers are considered non-interruptible devices.
During operation, they are continuously powered by distributed
energy or the grid, and once started, they cannot be stopped, as this
would affect the normal functioning of the device. Therefore, once
turned on within the schedulable range, they must continue for the
specified working duration to complete the corresponding tasks. In
addition to satisfying Eq. 1 and Eq. 2, they must meet the following
time constraints:

h+da
∑

τ=h+1
sa (τ) ≥ da [sa (h+ 1) − sa (h)] (3)

3.1.2 Interruptible devices
Interruptible appliances require intermittent power supply from

distributed energy or the grid. Each power supply duration should
not be less than the minimum supply time (typically the minimum
interval is 30 min or 15 min). With the condition of meeting the
minimum interval, these devices can be turned on or off at any
time. Examples includemicrowaves and air conditioners. In addition
to satisfying Eq. 1 and Eq. 2, they must meet the following time
constraints:

Pc (h) =
A

∑
a=1

sa (h) ⋅ Pa (4)

3.1.3 Constant power devices
Due to the significant proportion of HAVC equipment, such as

air conditioners, in household electricity consumption, its power
varies continuously over time. In contrast, appliances such as
refrigerators generally operate at their rated power. Therefore, they
are modeled separately. Assume that when a device starts, the power

is Pa, and when idle, the power is 0. The power of a constant power
device is given by:

Pc (h) =
A

∑
a=1

sa (h) ⋅ Pa (5)

3.1.4 Power-adjustable devices
Power-adjustable devices, such as temperature-controlled

appliances like air conditioners, have power needs that vary
continuously and are related to the outdoor temperature. The
input parameter for the air conditioner is the day-ahead outdoor
temperature, and its mathematical model is represented as:

Tin (h+ 1) = εTin (h) + (1− ε) ⋅ (Tout (h) ±A
PNC (h)

η
) (6)

where Tin(h) is the indoor temperature of time slot h; ɛ is the inertia
coefficient of the indoor temperature change; Tout(h) is the outdoor
temperature of time slot h; A is the thermal capacity of the room;
PNC(h) is the rated power of the air-conditioning appliance in time
slot h; η is the thermal conductivity efficiency of the room.

When the air conditioner operates in cooling mode, the value
of ± in the formula is set to −; when the air conditioner operates in
heating mode, the value of ± in the formula is set to +. Considering
user comfort, the indoor temperature should be maintained within
the range of user demand, and air-conditioning appliances must to
satisfy the following constraints:

Tmin
in ≤ Tin (h) ≤ T

max
in (7)

whereTmin
in is theminimum indoor temperature set by the user;Tmax

in
is the maximum indoor temperature set by the user. In addition, the
power consumption during operation of air-conditioning appliances
should satisfy the following constraints:

0 ≤ PNC (h) ≤ P
max
NC (8)
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wherePmax
NC is themaximumpower consumptionwhen the appliance

is operating, determined by the nameplate value.

3.2 Energy storage devices model

Energy storage devices can store electrical energy through a
certain medium, acting as a buffer between power generation
and consumption. This enables users to charge and store energy
during off-peak periods and utilize battery-released energy during
peak periods, enhancing electricity safety and stability. The
primary energy storage device used in homes is the lithium
battery.

The main parameters affecting battery operation include:
Capacity, State of Charge (SOC) andCharging orDischarging Power
of the Battery.

3.2.1 Capacity
Capacity refers to the quantity of electrical charge a battery

can store. It is denoted by Ebatt and is measured in ampere-hours,
abbreviated as Ah. Generally, the larger the battery volume, the
higher its capacity.

The rated capacity refers to the minimum amount of electrical
energy released by the battery at 25°C when discharged at a 10-h
rate.

The actual capacity represents the energy a battery can output
under certain conditions, equivalent to the product of the current
and time.

3.2.2 SOC
The state of charge reflects the ratio of the remaining battery

charge to the battery’s capacity. To extend a battery’s lifespan, its state
of charge must be considered during operation to ensure it remains
within a certain range. When SOC = 0, the battery is depleted, and
when SOC = 1, the battery is fully charged.

SOC (h) =
EB (h)
Ebatt

(9)

where SOC(h) represents the state of charge of the battery in time
slot h; EB(h) is the remaining charge of the battery in time slot h;
Ebatt is the battery capacity.

The charge of the battery in time slot h is calculated according to
Eq. (10):

EB (h) = EB0 +
h

∑
τ=1

PB (h) (10)

where EB0 is the initial charge of the battery; PB(h) is the
charge/discharge power of the battery in time slot h.

The state of charge of the battery is influenced by its charging
and discharging, and the dynamic change process is described in
Eq. (11):

SOC (h+ 1) = SOC (h) +
(PchB (h) − P

dch
B (h)) ⋅Δhstep
Ebatt

(11)

where PchB (h) is the charging power of the battery in time slot h;
PdchB (h) is the discharging power of the battery in time slot h.

An excessively high or low SOC is detrimental to the battery’s
lifespan. Therefore, constraints on the SOC range are shown in
Eq. (12):

SOCmin ≤ SOC (h) ≤ SOCmax (12)

where SOCmin is the minimum allowable state of charge for the
battery, SOCmax is the maximum allowable state of charge for the
battery. When the battery’s state of charge falls below SOCmin, the
battery will no longer discharge; when the state of charge exceeds
SOCmax, the battery will no longer charge.

3.2.3 Charging or discharging power of the
battery

When the battery is in operation, it is either in a charging
state or in a discharging state. A 0–1 variable a is introduced to
represent the state of the battery. b indicates the battery is in a
charging state during time slot h, while c indicates the battery is in a
discharging state during time slot h. To extend the battery’s lifespan,
one cannot arbitrarily switch between charging and discharging
states. Therefore, this paper maintains that a state switch can occur
only after controlling the charging or discharging state formore than
30 min.

The constraints for the charging and discharging power of the
battery in each time slot are shown in Eq. 13 and Eq. 14:

0 ≤
PchB (h)
ηch
≤ SB (h) ⋅ P

max
ch (13)

0 ≤ PdchB (h) ⋅ ηdch ≤ (1− SB (h)) ⋅ P
max
dch (14)

where ηch is the charging efficiency of the battery; Pmax
ch is the

maximum amount of electricity allowed to be charged in one time
slot; ηdch is the discharging efficiency of the battery; Pmax

dch is the
maximumamount of electricity allowed to be discharged in one time
slot.

The charging and discharging power of the battery is:

PB (h) =
PchB (h)
ηch
− PdchB ⋅ ηdch (15)

In the equation, when the battery is in a charging state, PdchB (h)
is 0, and at this time, the battery’s charging and discharging power is
the charging power PchB (h)

ηch
. When the battery is in a discharging state,

PchB (h) is 0, and at this time, the battery’s charging and discharging
power is the discharging power PdchB ⋅ ηdch.

4 Two-stage distributed optimization
model

4.1 First-stage optimization model

Each user household engages in flexible load scheduling,
autonomously choosing their electricity consumption time.They opt
to use electricity during low tariff periods, ensuring their electricity
needs are met and thereby reducing household electricity costs. In
the model of this paper, the smart grid can exchange electricity
bidirectionally with users. That is, users can sell their excess energy
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back to the main grid. The optimization objective for minimizing
electricity costs is expressed as:

minCostelec =min{
H

∑
h=1

RTP (h) ⋅ PMETER (h)} (16)

where RTP(h) is the real-time electricity price published by the
power grid company; PMETER(h) is the power consumption value
recorded by the smart meter during time slot h.

In a Grid-Feeding HEMS, PMETER(h) can take both positive
and negative values. When PMETER(h) is positive, the household is
purchasing electricity from the grid. Conversely, when PMETER(h) is
negative, the household is feeding electricity back to the grid. Users
can obtain real-time electricity prices RTP(h) in advance from the
power grid company.

The calculation method of PMETER(h) is shown in Eq. (17):

PMETER (h) = PLOAD (h) + PB (h)

= PM (h) + PC (h) + PNC (h) + PB (h) (17)

where PLOAD(h) represents the total load of basic household
electrical appliances; PB(h) represents the battery’s charging and
discharging quantity; PM(h) is the power consumption of non-
dispatchable loads; PC(h) is the power consumption of power-
stable devices among dispatchable loads; and PNC(h) is the power
consumption of power-adjustable devices among dispatchable loads.

4.2 Second-stage optimization model

Each household user, in order to save costs, participates in
demand response and adjusts their own electricity consumption
behavior, which might introduce new peak demand for the system.
To ensure the safe and stable operation of the grid and prevent
this situation, the model takes into account the collective residential
load in a specific region and incorporates system deviation costs
into the objective function to minimize. This approach reduces the
peak-to-average-power ratio (PAR) and prevents the system from
encountering new peaks during non-peak periods.

The optimization objective for minimizing load fluctuation is
expressed as:

min{γ ⋅Costelec + (1− γ) ⋅
H

∑
h=1
[ ∑
w∈W

PMETER,w (h)

− P̄TOTAL]
2
} (18)

where Costelec represents the user’s self-optimized electricity cost;
γ is the weight factor of the deviation cost; w refers to a user
in household w. The second term of the function, denoted as
VAR(PTOTALh ), is used to evaluate the load fluctuation of the user
group.

P̄TOTAL is calculated according to Eq. (19):

PTOTALh = ∑
w∈W

PMETER,w (h) (19)

P̄TOTAL =
1
H

H

∑
h=1
(PTOTALh )

= 1
H

H

∑
h=1
( ∑
w∈W

PMETER,w (h)) (20)

PTOTALh represents the power consumption of the system in time
slot h, which is the total power consumption of W household
users. The physical significance of P̄TOTAL is the average power
consumption of W household users in the region over H time
slots. By controlling the sum of power consumption in each
time slot for each household user to be close to P̄TOTAL, the
system load fluctuation can be reduced. Different values of γ
can be chosen to strike a balance between cost and system load
fluctuation.

Final model output:

1) The (A+ 3) ×H-dimensional flexible load state matrix XChrom
represents the working status of all flexible loads over a 24-
h day after participating in load scheduling, as shown in
Eq. (21):

XChrom =

[[[[[[[[[[[[[[[[[[[[[[[

[

XS1

XS2

⋮

XSa

⋮

XSA

XSB

XPT

XPB

]]]]]]]]]]]]]]]]]]]]]]]

]

=

[[[[[[[[[[[[[[[[[[[[[[[

[

x1s1 x2s1 ⋯ xHs1
x1s2 x2s2 ⋯ xHs2
⋮ ⋮ ⋮ ⋮

x1sa x2sa ⋯ xHsa
⋮ ⋮ ⋮ ⋮

x1SA x2SA ⋯ xHSA
x1SB x2SB ⋯ xHSB
x1PT x2PT ⋯ xHPT
x1PB x2PB ⋯ xHPB

]]]]]]]]]]]]]]]]]]]]]]]

]

(21)

where XChrom is a matrix composed of XSa, XSB, XPT and XPB. Matrix
XSa (a = 1,2,⋯A) represents the working status of device a, with
0 indicating working and 1 indicating idle. Vector XSB represents
the working status of the battery. Vector XPT represents the power
of adjustable power devices. Vector XPB represents the charge and
discharge power values of the battery.

2) All flexible load working states multiplied by the rated power
of the corresponding time slot result in the power consumption
of the adjustable device for each time slot in a day. This is
referred to as the power consumptionmatrix PChrom, as shown in
Eq. (22):

PChrom = X
a
Chrom ×Pa

=

[[[[[[[[[[[[[[[[[[[

[

x1s1 ⋅ P1 x2s1 ⋅ P1 ⋯ xHs1 ⋅ P1
x1s2 ⋅ P2 x2s2 ⋅ P2 ⋯ xHs2 ⋅ P2
⋮ ⋮ ⋮ ⋮

x1sa ⋅ Pa x2sa ⋅ Pa ⋯ xHsa ⋅ Pa
⋮ ⋮ ⋮ ⋮

x1SA ⋅ PA x2SA ⋅ Pa ⋯ xHSA ⋅ PA
x1SB ⋅ x

1
PB x2SB ⋅ x

2
PB ⋯ xHSB ⋅ x

H
PB

x1PT x2PT ⋯ xHPT

]]]]]]]]]]]]]]]]]]]

]

(22)

After HEMS load scheduling, the obtained adjustable device
state matrix XChrom and power consumptionmatrix PChrom represent
the optimal working state collection that satisfies both the device’s
inherent constraints and user comfort.
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5 Load scheduling based on
two-stage distributed optimization

5.1 Scheduling process based on
two-stage distributed optimization

One commonly used method to reduce user costs and
mitigate system load fluctuations through load scheduling is
centralized control. Power company control centers process the
power consumption values collected from smart meters in a given
region, thereby decreasing system peak averages and smoothing
the system load curve. However, centralized control methods
present certain challenges. The computational burden at the control
center, coupled with the communication overhead from each user
transmitting to the center, is considerable. This is primarily because
the load statematrixXChrom of (A+ 3) ×Hdimension for each user in
the region forms a three-dimensional matrix (A+ 3) ×H×W, where
W is the number of users. All require optimization computations
through the control center. As the number of users grows, the
computational scale of the aforementioned model substantially
increases. Employing distributed optimization control methods can
circumvent the curse of dimensionality. Additionally, distributed
optimization methods offer robust user privacy protection. Users
only need to upload the post-optimization smart meter values,
with each household independently optimizing load fluctuations.
The data transmitted between users pertains to system load,
negating the need for individual household power data. In contrast,
centralized control mandates not just the uploading of smart meter
consumption data, but also the power and status of each appliance
in a household. By readjusting the power and status of appliances,
the control center minimizes system load fluctuations. In doing so,
it gains access to granular user consumption data, which inevitably
breaches user privacy.

Distributed optimization facilitates a layered, phased approach
to the optimization process. In this paper’s distributed optimization
load scheduling model, the first phase encompasses users self-
optimizing for cost. Under the premise of ensuring user comfort,
the electricity usage time of flexible loads is adjusted to minimize
each household’s electricity cost. Subsequently, the optimized smart
meter consumption values are uploaded. Some of the literature
has explored the gradual processing of smart meter consumption
values to better safeguard user privacy. The second phase focuses
on optimizing system load fluctuations.The control center processes
the collected regional smart meter consumption values to obtain
aggregate area electricity consumption and system load fluctuation
data. The power company’s control center then releases system load
optimization command minVAR(PTOTALt ) and dispatches system
load fluctuation data P̄TOTAL, initiating the HEMS optimization
process. During the regulatory process, load data are transferred
among users. Initially, User 1 undergoes electricity optimization
through Eq. (18), altering the operational status of interruptible
appliances and overall electricity consumption behavior, before
relaying the post-optimization system load data to User 2. This
sequential process continues for W users, ceasing optimization
once the results align with predetermined criteria. The data shared
among users are system load data, offering a degree of user privacy
protection.Thedistributed control procedure is depicted in Figure 3.

FIGURE 3
Distributed optimization-based load scheduling process.

5.2 Model resolution based on hybrid
coding genetic algorithm

Eq. (18) is a nonlinear programming problem. Typical
optimization model solutions can use methods such as simulated
annealing or particle swarm optimization. However, due to the
uniqueness of variables in this paper’s model, as indicated by Eq. 21
and Eq. 22, the variables to be resolved include both binary 0–1
variables and continuous variables. Moreover, it possesses stringent
constraint conditions. When using a genetic algorithm, the total
number of 1’s in a chromosome represents the equipment’s operating
duration. By controlling the positions of 1’s in the chromosome, we
can set the equipment start and stop times, thus determining its
scheduling range, which is in line with the schedulable model. The
genetic algorithm demonstrates superior performance in handling
this paper’s model, hence its selection.

The use of genetic algorithms to solve optimization problems
comprises four main steps: potential solution encoding, initial
population gene initialization, fitness function computation, and
genetic operations. These operations include selection, replication,
crossover, and mutation. In this paper’s model, apart from the
conventional upper and lower limit constraints, there are some
unconventional constraints. All electric devices must adhere to
the constraints of Eq. 1 and Eq. 2. Non-interruptible devices must
comply with the constraints of Eq. (4), which restricts the number
and position of occurrences of 0 and 1 values in genes. Traditional
genetic algorithms cannot resolve this problem. Modifications are
required for potential solution encoding, population generation, and
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crossover mutation, necessitating the use of a hybrid coding genetic
algorithm.

5.2.1 Initial population
5.2.1.1 Hybrid encoding

In the HEMS model of this paper, the operating status of
schedulable devices is a discrete variable, represented by 1 when
in operation and 0 when idle. The battery’s working state is also
a discrete variable, represented by 1 during charging and 0 during
discharging. However, the power of adjustable power devices such as
air conditioners and the charging and discharging power of batteries
are continuous variables, denoted as XPT and XPB, respectively.
Therefore, the chromosome composition of an individual is shown
in Eq. (23):

XChrom =

[[[[[[[[[[[[[[[[[[[[[[[

[

XS1

XS2

⋮

XSa

⋮

XSA

XSB

XPT

XPB

]]]]]]]]]]]]]]]]]]]]]]]

]

=

[[[[[[[[[[[[[[[[[[[[[[[

[

x1s1 x2s1 ⋯ xHs1
x1s2 x2s2 ⋯ xHs2
⋮ ⋮ ⋮ ⋮

x1sa x2sa ⋯ xHsa
⋮ ⋮ ⋮ ⋮

x1SA x2SA ⋯ xHSA
x1SB x2SB ⋯ xHSB
x1PT x2PT ⋯ xHPT
x1PB x2PB ⋯ xHPB

]]]]]]]]]]]]]]]]]]]]]]]

](A+3)×H

(23)

where XChrom is a chromosome group composed of XSa, XSB,
XPT and XPB. H represents the day divided into H time slots.
The binary encoded chromosome XSa (a = 1,2,⋯A) denotes the
working status of device a. The binary encoded chromosome XSB
indicates theworking status of the battery.The real-number encoded
chromosome XPT is the power of adjustable power devices. The
real-number encoded chromosome XPB stands for the charging and
discharging power of the battery.

Suppose the initial population size is K and that the length of
each chromosome is H. The initial population can then be depicted
using a three-dimensional matrix X with a size of (A+ 3) ×H×K.
X(:, :,k) = Xk

Chrom, k = 1,2⋯K. XChrom represents the chromosome
set of an individual, comprising XSa, XSB, XPT and XPB. The initial
population is typically generated randomly, but it must adhere to the
relevant constraints.

XSa must satisfy the constraints of Eq. 1 and Eq. 2, where
the number 1 can only appear between the αa-th and βa-th
positions in XSa, and the total count of 1s is equal to da. For non-
interruptible appliances, Eq. (3) must be satisfied, where gene 1 can
only appear continuously between the αa-th and βa-th positions.
The interruptible appliances satisfy Eq. (4), with gene 1 appearing
randomly between the αa-th and βa-th positions. The operating
power of the air conditioner XPT and the charge-discharge power of
the battery XPB must also adhere to their respective upper and lower
power limits.

5.2.1.2 Fitness function
The fitness function is used to evaluate an individual’s

adaptability to its environment, determining the probability of
its genes being passed on. This directly affects whether the
optimal solution can be found and the convergence speed of the

algorithm. The design should be as simple as possible to minimize
computational complexity. To apply the genetic algorithm for
solution finding, the problem of maximizing the objective function
should be transformed into a minimization problem. In the model
presented in this paper, the objective functions F for the two phases
of distributed optimization take non-negative values. The fitness
function is chosen as the reciprocal of the objective function. In the
first phase, where users optimize themselves, the fitness function is
taken as the reciprocal of the cost function. In the second phase of
load fluctuation optimization, the fitness function is the reciprocal
of the variance of system load data. Therefore, the fitness function f
can be represented as:

f = 1
F

(24)

5.2.2 Genetic operations
5.2.2.1 Selection

After calculating the fitness of all individuals, the selection
process determines which individuals will participate in
reproduction and pass their genes on to the next-generation.
Individuals with a high fitness value have a greater chance of being
selected, while those with a low fitness value have a lesser chance.
Roulette wheel selection is commonly used for this purpose. The
probability Pxi of individual xi being selected is calculated according
to Eq. (25):

Pxi =
fi

N

∑
j=1

fi

, i = 1,2⋯,K (25)

where fi is the fitness of the first individual; K stands for the total
number of individuals in the population.

5.2.2.2 Crossover
Crossover, or genetic recombination, involves taking two parent

individuals and swapping portions of their chromosomes to produce
two new chromosomes, thereby creating new offspring individuals.
The crossover probability Pc is typically a random number between
0 and 1. Consequently, the probability of the parent chromosomes
being directly copied to the next-generation is 1− Pc.

In the model presented in this paper, there are both binary-
encoded chromosomes and real-number encoded chromosomes.
Accordingly, the crossover method should be chosen to match the
respective encoding types.

For binary-encoded chromosomes of basic devices, one or
multiple crossover points are selected on the parent chromosomes,
followed by a swapping operation. It is crucial to ensure that after
crossover, the constraints for non-interruptible devices given by
Eq. 3 and for interruptible devices given by Eq. (4) are still satisfied.

For chromosomes corresponding to power-adjustable devices
and rechargeable battery power encoded in real numbers,
calculations are performed with a random number between 0 and
1 and the parental chromosome. If the parental chromosome is

represented by
{
{
{

X1 = (x
(1)
1 ,x
(1)
2 ,…,x

(1)
m )

X2 = (x
(2)
1 ,x
(2)
2 ,…,x

(2)
m )

, the gene value of the

offspring chromosome
{
{
{

Y1 = (y
(1)
1 ,y
(1)
2 ,…,y

(1)
m )

Y2 = (y
(2)
1 ,y
(2)
2 ,…,y

(2)
m )

obtained from
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crossover is calculated according to Eq. (26):

{
{
{

y(1)i = αix
(1)
i + (1− αi)x

(2)
i

y(2)i = (1− αi)x
(1)
i + αix

(2)
i

, i = 1,2,…,m (26)

5.2.2.3 Mutation
Mutation refers to the periodic random updating of a gene on a

chromosome to refresh the population, exploring unknown areas in
the solution space.

In the model of this paper, for binary encoded chromosomes,
when a random number is less than the mutation probability Pm,
the corresponding chromosome’s binary string is flipped. When
the original gene value at the mutation point is 0, it is flipped to
1; when the original gene value at the mutation point is 1, it is
flipped to 0. For real-number encoded chromosomes, a uniformly
distributed random number within the value range replaces it,
namely, the uniform distribution method. The calculation method
for the mutated gene is based on Eq. (27):

x′k = L
k
min + β(L

k
max − L

k
min) (27)

where x′k represents the gene value after mutation; Lkmin is the lower
limit of the corresponding variable (power of the adjustable power
device) of the chromosome; β is a random value from a 0–1 uniform
distribution; and Lkmax is the upper limit of the corresponding
variable (power of the adjustable power device) of the chromosome.

The algorithmflowof the genetic algorithm is shown in Figure 4.

6 Simulation verification

To conduct research on load optimization scheduling for
the HEMS, this study designed a distributed optimization load
scheduling simulation experiment. In the first phase, users optimize
costs for themselves, while in the second phase, the optimization
focuses on reducing the system’s load fluctuations. The study
also investigates the impact of energy storage devices on load
scheduling.

6.1 Parameter settings

Dividing the 24-h day into 48 time intervals results in
Δhstep = 30 min. Python was used for modeling and solving. The
simulation platform was equipped with an Intel(R) Core(TM) i5-
10400 CPU at 2.90 GHz, 16 GB of RAM, and ran Windows 10
Home edition as its operating system. The output variables of the
experiment are the flexible load statusmatrix, fromwhich the power
consumption matrix of various electrical devices, the consumption
values of the smart meter, and the daily electricity costs can be
deduced. The data sources and settings are described as follows.

6.1.1 Electricity prices and outdoor temperature
data

The outdoor temperature data are taken from the temperature
readings of a particular summer day in Xi’an. The electricity
prices and outdoor temperature data are shown in Figure 5A, B,
respectively.

FIGURE 4
Genetic algorithm Flowchart.

6.1.2 Parameter settings for dispatchable devices
The primary device chosen for power-adjustable research is

the air conditioner. The temperature parameters ɛ, A and η for
the air conditioner are set to 0.93, 2.5, and 0.45, respectively. In
the summer, the air conditioner operates in cooling mode, and
its maximum allowed power output per time slot is 3.6 kWh. The
indoor temperature set by the user must be maintained between
24°C and 26°C.

Power-fixed devices include 20 basic devices, of which device
number 2, the washing machine, and device number 16, the rice
cooker, are non-interruptible devices. These devices must adhere to
the respective time constraints of non-interruptible devices; once
activated, they must complete their respective tasks before they
can stop. The remaining 18 devices are interruptible. All device
tasks are numbered, and the dispatch time range, working duration,
and power of dispatchable devices are presented, as shown in
Table 1:

6.1.3 Energy storage device parameter settings
The energy storage device selected is a household lithium

battery. There are two types of batteries: Battery A has a capacity
of 3.68 kWh and a maximum charging/discharging power of
2.5 kW; Battery B has a capacity of 6.68 kWh and a maximum
charging/discharging power of 5 kW. The SOC of the battery must
be maintained between 0.3 and 0.9.
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FIGURE 5
Electricity prices and outdoor temperature data: (A) real-time electricity price; (B) outdoor temperature variation curve.

TABLE 1 Parameter settings for dispatchable devices.

Appliance ID Appliance type Schedulable area/[αa, βa] Working duration/da Power/kW

1 Range hood or Exhaust hood 10:30:00 a.m.-2:00:00 p.m. 2 0.13

2 Washing machine 12:00:00 a.m.-11:30:00 p.m. 10 1.5

3 Vacuum cleaner 12:00:00 a.m.-11:30:00p.m. 6 0.3

4 Iodine tungsten lamp 8:00:00 p.m.-11:30:00 p.m. 1 0.5

5 Oven 7:00:00 a.m.-11:00:00 a.m. 2 3

6 Water pump 8:00:00 a.m.-11:30:00 p.m. 6 2

7 Microwave oven 7:00:00 a.m.-11:00:00 a.m. 1 1

8 Oil extractor 6:00:00 p.m.-11:30:00 p.m. 5 0.5

9 Air humidifier 5:00:00 a.m.-9:00:00 a.m. 3 0.5

10 Swimming pool pump 11:00:00 a.m.-3:00:00 p.m. 1 2

11 Refrigerator 12:00:00 a.m.-11:30:00p.m. 23 0.5

12 Disinfection cabinet 8:00:00 a.m.-11:30:00 p.m. 4 0.5

13 Printer 8:00:00 a.m.-11:30:00 p.m. 4 0.3

14 Dryer 12:00:00 p.m.-4:00:00 p.m. 4 1.5

15 Electric kettle 7:00:00 p.m.-11:30:00 p.m. 4 1.5

16 Rice cooker 6:00:00 a.m.-6:00:00 p.m. 12 0.5

17 Mixer 1 6:00:00 a.m.-12:00:00 p.m. 2 0.3

18 Mixer 2 6:00:00 a.m.-12:00:00 p.m. 2 0.3

19 Water heater 5:00:00 a.m.-8:00:00 p.m. 12 1.5

20 Hairdryer 5:00:00 a.m.-10:00:00 a.m. 4 0.5
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FIGURE 6
Electricity prices and outdoor temperature data: (A)initial electricity load curve; (B)operational status diagram of electrical devices.

FIGURE 7
Simulation results without energy storage battery integration: (A) indoor temperature variation curve; (B) electricity task scheduling results; (C)
operational status diagram of electrical devices; (D) convergence curve of genetic algorithm.

6.1.4 Genetic algorithm parameter settings
In the initialization parameters of the genetic algorithm,

the population size N = 50. Thus, the initial population can be
represented by a three-dimensionalmatrixX (size: 23× 48× 50).The
crossover probability Pc = 0.8, mutation probability Pm = 0.1, and
the maximum number of iterations is 150 times.

6.2 First-stage simulation results

The original electricity load curve of a household user within 48
time slots in a day is shown in Figure 6A. At this time, the electricity
cost is 115.566 cents. As can be seen from the figure, the user’s
electricity consumption is concentrated in 6:00–10:30. A significant
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FIGURE 8
Simulation results with battery A integration: (A) electricity task scheduling results; (B) battery charging and discharging power and SOC; (C) operational
status diagram of electrical devices; (D) convergence curve of genetic algorithm.

portion of this time falls within the higher electricity price period,
such as 6:00–9:30. Therefore, the user’s electricity cost is relatively
high.

Figure 6B displays the electricity scheduling results for various
adjustable devices over the 48 time slots of a day through a heatmap.
Taking the vacuum cleaner as an example, its usage time reaches
2.5 h during the high electricity price periods of 5:30–9:30 and
14:30–20:30.

1) Scenario I: No battery storage is integrated into the system.

The electricity task scheduling simulation results without battery
storage integration are shown in Figure 7B.Thehousehold electricity
cost is 72.716 cents. Since there is no energy storage device
connected, the amount of electricity exchanged with the grid for
each time slot equals the consumption value from the smart meter.
The figure shows that the peak electricity consumption periods
are concentrated around 7:30–10:00, 12:00–12:30, and 13:30–15:00.
The real-time electricity price plays a dominant role, and to save
costs, users shift their electricity consumption to periods with
lower prices, such as 9:30–10:00, 12:00–12:30, and 13:30–14:30.
Figure 7A illustrates the indoor temperature variation curve. As
shown, the indoor temperature remains within the user-defined
range of 24°C–26°C.

Figure 7C displays the electricity scheduling results of various
dispatchable devices over the 48 time slots in a day using a heatmap.
As illustrated by the chart, the washing machine and rice cooker,

being non-interruptible devices, must complete their respective
tasks once they start before they can stop. The working hours of the
dispatchable devices have been adjusted accordingly. For instance,
the vacuum cleaner’s usage during the high electricity price periods
has been reduced to 1.5 h.

Figure 7D displays the convergence curve of the genetic
algorithm; the improved genetic algorithm converges relatively
quickly.

2) Scenario Π: System connected to Battery A or B
(1) Connection to Battery A

With the system integrated with Battery A, the electricity cost
is 57.572 cents. The load scheduling simulation result is shown in
Figure 8A.With the integration of a battery, the user can sell surplus
electricity back to the grid. Thus, the system’s feed-in capability
can enhance the overall economic benefits of the system. At this
point, the smart meter’s displayed electricity consumption includes
the electricity consumption of basic appliances and the rechargeable
battery. The chart shows that the user sells electricity to the grid
between 3:00 and 3:30.The electricity scheduling result nowdepends
not only on real-time electricity prices but also on the battery’s
charging and discharging behavior. When the battery is charging,
the power is positive, and when discharging, the power is negative.
Figure 8B reveals that through energy storage with the battery,
it charges during low-price phases such as 0:00–0:30, 1:30–2:30,
3:00–5:00, 9:30–11:00, 14:00–14:30, 20:30–21:30, and 23:00–24:00.
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FIGURE 9
Simulation results with battery B integration: (A) electricity task scheduling results; (B) battery charging and discharging power and SOC; (C) operational
status diagram of electrical devices; (D) convergence curve of genetic algorithm.

FIGURE 10
Optimization of system load curve at different stages.

During high-price periods, it discharges energy for appliances, such
as 5:30–6:30, 7:30–8:30, 14:30–16:00, and 18:00–19:30.The battery’s
SOC value always remains between 0.3 and 0.9.

Figure 8C displays a heatmap showcasing the electricity
scheduling results for various adjustable devices over a 24-h period
with 48 time slots when the system is connected to a battery.
There have been certain adjustments in the electricity usage of

the appliances. Taking the vacuum cleaner as an example, its usage
during the high electricity price intervals is reduced to 2 h. Figure 8D
illustrates the convergence curve of the genetic algorithm.

(2) Connection to Battery B

The electricity cost now stands at 42.064 cents. This implies that
the larger the capacity of the battery integrated into the system,
the more it aids in leveling the peaks and troughs through energy
storage, resulting in a lower electricity cost for the user. The energy
scheduling simulation results are depicted in Figure 9A. The task
allocation for electricity devices does not differ significantly from
that when Battery A was incorporated, and there is not a significant
difference in the frequency of battery charge-discharge cycles. Due
to the larger capacity of Battery B, excess energy is sold back to the
grid during the low-price intervals, such as 00:30–1:00, 2:30–3:00,
4:30–5:00, and 11:30–12:00, leading to even lower electricity costs.
However, load scheduling based on battery storage resulted in a
higher peak power demand. In the figure, the power demand peak is
7:00–7:30, and this peak value is even higher than the initial peak
demand of the user, posing challenges for stable operation of the
system.Therefore, subsequent optimization is required in the second
phase to reduce system load fluctuations and prevent new electricity
demand peaks.

From Figure 9B, it can be observed that the battery is used
for energy storage and is charged during the low-price intervals,
such as 0:30–2:00, 2:30–4:00, 4:30–5:30, 9:30–10:00, 11:30–12:30,
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TABLE 2 System load parameter optimization at different stages for the user group.

Optimization stage Load
Peak/kW

Load
Valley/kW

Absolute
peak-valley
difference

Peak-valley
coefficient

Peak-valley
rate

Load factor
(%)

Load
fluctuation
variance

First Stage Optimization 195.4 23.4 172.0 8.35 0.88 51.7 2071.6

Second Stage Optimization 182.0 25.1 156.9 7.25 0.86 56.2 1909.1

TABLE 3 Cost optimization for users at various stages.

User number Initial
cost/cents

First phase
optimization
cost/cents

Distributed
optimization
cost/cents

User number Initial
cost/Cents

First phase
optimization
cost/cents

Distributed
optimization
cost/Cents

1 119.163 60.902 56.732 11 111.973 57.568 63.593

2 117.366 58.425 66.104 12 110.496 58.742 77.725

3 105.606 64.075 51.527 13 104.334 62.916 72.560

4 110.654 61.150 80.581 14 109.976 58.137 69.696

5 116.923 58.220 63.762 15 120.054 62.180 59.515

6 118.215 61.038 60.143 16 111.585 56.630 57.222

7 121.014 59.715 56.525 17 111.355 61.610 66.568

8 108.976 55.953 68.141 18 113.335 64.514 64.415

9 114.595 58.906 80.490 19 109.225 65.378 56.531

10 113.464 58.962 69.918 20 130.775 64.775 63.685

13:00–13:30, 20:30–21:30, and 22:30–24:00, primarily in the early
hours of the morning. During high-price intervals, such as
5:30–6:00, 7:30–8:30, 16:00–17:00, 17:30–18:00, and 18:30–19:30,
the stored energy in the battery is released to power the devices.
Similarly, the SOC of the battery consistently remains between 0.3
and 0.9.

Figure 9C displays a heatmap illustrating the electricity
scheduling results of various schedulable devices over 24 h, divided
into 48 time slots, when Battery B is integrated into the system.
Adjustments can be observed in the usage times of devices such
as the vacuum cleaner and the disinfection cabinet. Taking the
vacuum cleaner as an example, its initial load usage during high
electricity price periods was 2.5 h, which has now been reduced
to 2 h. Figure 9D presents the convergence curve of the genetic
algorithm.

6.3 Second-stage simulation results

Demand response can reduce user costs, but it might introduce
new peak electricity demands to the system. Therefore, a second
phase of distributed optimization is conducted to minimize system
load fluctuations. Considering an area with W = 20 households,
a distributed load fluctuation optimization simulation experiment

is conducted. The energy scheduling mechanism’s impact on user
electricity consumption behavior is analyzed from the perspective
of a group of users. The energy storage system opted to integrate
Battery A. The system load command is set at minVAR(PTotalh ) ≤
0.95*VAR(PTotalh,0 ), which means optimization stops when this
condition is met. In this context, VAR(PTotalh,0 ) represents the load
fluctuation level from the user’s self-optimization in the first
phase.

Figure 10 shows the results of the system load fluctuation
optimization simulation. As evident from the figure, after
undergoing system load fluctuation optimization, compared to
the self-optimization of user costs in the first phase, there is a
significant change in the electricity consumption patterns of the
user group within the area. The system load curve becomes more
stable, with a reduction in peak values and an increase in valley
values.

Table 2 shows the electricity consumption behavior
characteristics of the user group. The quality of system electricity
consumption is assessed through indicators such as the load factor,
which is the ratio of the average load to the peak load over a specific
period. Improving the load factor can effectively reduce peaks,
elevate valleys, decrease the peak-valley difference, and ensure the
safe and stable operation of the power system. FromTable 2, it can be
observed that after the second-phase load fluctuation optimization,
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the system’s peak load decreased by 6.9%, the valley increased by
7.2%, the absolute peak-valley difference dropped by 8.8%, the peak-
valley coefficient decreased by 13.2%, and the peak-valley difference
rate reduced by 2.3%. Additionally, the load factor rose from 51.7%
to 56.2%, an increase of 4.5%, and the variance of the load fluctuation
decreased by 7.8%.

Table 3 shows the user costs before and after distributed
optimization. The average cost for users before and after distributed
optimization decreased from 113.954 cents to 65.272 cents, a
reduction of 42.7%. This shows that user costs decrease after
distributed optimization. Compared to that in the first stage of
optimization, the costs for some users increased because they made
financial sacrifices to change system load fluctuations. Users can
set the weighting factor γ as needed to balance cost and load
fluctuation. Considering real-world scenarios, power companies can
incentivize users who have increased costs, for instance, by reducing
electricity prices, to encourage them to participate in optimizing
load fluctuations.

7 Conclusion

This paper proposed a two-stage distributed optimization
method for the HEMS based on data-driven algorithm. Firstly, a
distributed load scheduling framework forHEMS is established, and
various devices are modeled. Secondly, a two-stage optimization
method is introduced, targeting both the minimization of user
cost and load fluctuations to achieve demand response. Finally,
simulation experiments of the load scheduling are conducted, and
the impact of battery parameters on energy scheduling is analyzed.
Simulation results demonstrate that users can adjust their loads
based on comfort and the urgency of device usage. The main
conclusions are as follows:

• The first optimization stage results indicate that when the
battery capacity integrated into the system increases from
3.68 kWh to 6.68 kWh, user costs can be reduced from 57.572
cents to 42.064 cents. It is evident that not only can the
proposed method effectively save electricity costs for users, but
the introduction of larger capacity batteries also significantly
reduces these costs.
• The second stage results indicate that, the system’s peak load
decreases by 6.9%, the valley increases by 7.2%, and the absolute
peak-valley difference is reduced by 8.8%. This demonstrates

that the proposed method can effectively optimize the usage
data of a group of users and decrease system load fluctuations.
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