
Spatio-temporal load migration
potential of data centers:
Evaluation and application

Lei Zhu, Shutan Wu*, Haoyu Liu, Qi Wang and Yi Tang

School of Electrical Engineering, Southeast University, Nanjing, China

The wide distribution of data centers and the delay tolerance of computing tasks
endow data center loads with adjustable characteristics in both temporal and
spatial dimensions. Due to the characteristics of abundant spatiotemporal
flexibility, data centers can participate in the optimization of power system
operation and regulation. To quantify this flexibility, this paper proposes a
spatiotemporal load migration potential evaluation model. Meanwhile, a data
center energy management strategy is combined with the characteristics of
spatiotemporal load migration, which deeply exploits the migration potential
through the spatiotemporal redistribution of delay-tolerant tasks, as well as
server ON/OFF scheduling and CPU operating frequency scaling across
different spatial locations. A case study demonstrates that adopting the
proposed approach considering an energy management strategy can
effectively improve the load migration potential of data centers. The migration
characteristics of data centers have great application prospects in reducing
carbon emissions and enhancing operational flexibility.

KEYWORDS

data centers, spatio-temporal load migration, potential evaluation, energy management
strategy, flexibility

1 Introduction

The gradual replacement of traditional thermal power sources with high-penetration
renewable energy sources poses a significant challenge to power systems in dealing with
multidimensional uncertainties. The inadequate regulation capacity on the power generation
side necessitates the participation of flexible resources on the load side in power dispatching,
thereby improving the flexibility of power systems (Han et al., 2022). For example, energy
storage systems (Ma et al., 2022) and temperature-controlled loads (Song et al., 2022) are
commonly used to adjust the temporal distribution of loads to alleviate peak power demand
and decrease the power supply pressure on the power generation side. With the continuous
advancement of digital infrastructure construction, new types of spatially distributed
resources (e.g., data centers (DCs), communication base stations, and electric vehicles)
have emerged to provide novel solutions for power load adjustment. These resources can
intercommunicate through various wide-area networks (i.e., computation networks (Chen
et al., 2021a), communication networks (Fan et al., 2021) and transportation networks (Yuan
et al., 2022)) to indirectly realize the spatial migration of power energy.

The surge in demand for data processing is prompting cloud service operators to
build more geographically distributed DCs, with the aim of achieving low-latency and
highly reliable services, which makes DCs emerge as major electricity consumers
(Martijn and Fons, 2021). According to reports, the electricity consumption of DCs
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reached approximately 3% of the total amount globally in 2016
(Danilak, 2017), and it is still doubling every 4 years (Long et al.,
2022). In some metropolises, such as Beijing in China, the power load
capacity occupied by DCs has already accounted for 8% of the total
power load capacity in 2021. Given the rapid expansion of data centers
at the spatiotemporal scale and migration level, it is of great
importance to fully exploit the adjustment potential of DC loads
in power systems.

Current research on utilizing the adjustment capability of DCs
can be primarily categorized into two levels. That is, temporal level
and spatial level. At the temporal level, the workloads of DCs with
low delay sensitivity can be shifted to alternate working hours to
alleviate the power load pressure at a specific time. This
characteristic enables DCs to be integrated into demand response
(Kwon, 2020) to improve frequency quality (Fu et al., 2020) or
smooth power fluctuation (Yang et al., 2018), similar to traditional
interruptible power loads.

What sets DCs apart is their capacity to migrate workloads
spatially, thereby reducing power loads in specific locations to
achieve regulation objectives (Wang et al., 2022). Therefore, the
spatial load migration capability of geo-distributed data centers is
more effective in power dispatch. There have been relevant studies
on the application of spatial loadmigration by DCs for power system
regulation purposes. In terms of operational stability, DCs can
flexibly adjust the spatial distribution of power loads to diminish
voltage violations (Chen et al., 2021b), relieve network congestion
(Chen et al., 2021c) and reduce peak loads (Guo et al., 2021a). In
terms of operational economy, existing studies achieved the optimal
comprehensive operation cost of power systems (Gu et al., 2015) and
renewable energy consumption (Yang et al., 2022) through spatial
scheduling in DCs. In terms of resilience enhancement, DCs can be
dispatched in pre-event prevention (Liu et al., 2022), during-event
emergency control (Yu et al., 2015) and post-event restoration (Liu
et al., 2019) to reduce power loss after extreme events. The benefits of
DCs as spatiotemporal flexible resources for participating in power
grid scheduling have been demonstrated in the abovementioned
literature. However, the differentiation of the spatiotemporal load
migration (STLM) potential of DCs in different scenarios has not
been considered. It is imperative to quantitatively evaluate the STLM
potential of DCs to devise more effective grid regulation strategies
tailored to different scenarios, but this issue remains unexplored in
current research.

The STLM potential of DCs is primarily derived from the
redistribution of workloads, which is heavily influenced by the
energy management strategies implemented within the DCs. By
employing energy management strategies, internal equipment in
data centers can effectively reduce energy consumption and thereby
enhance the STLM potential of DCs. Some energy-saving
technologies and strategies have been studied, such as dynamic
voltage/frequency scaling (DVFS) (Wang et al., 2017), dynamic
cluster server configuration (DCSC) (Li et al., 2012), and the
collaborative control method of information technology (IT)
systems and cooling systems (Fu et al., 2020; Lyu et al., 2021),
achieving the optimization goal of minimum total energy
consumption. However, there is a paucity of research that
integrates internal energy management strategies with external
migration schemes. Inadequate energy management strategies can
amplify the burden on DC task processing and increase the power

supply pressure on the power systems, ultimately resulting in a
significant reduction in the STLM potential of DCs.

This paper proposes a quantitative approach for evaluating the
STLM potential of DCs, which provides a basis for devising diverse
power scheduling strategies. Meanwhile, the DVFS-DCSC
technique, coupled with an energy management mechanism, is
adopted to further enhance the STLM potential of DCs. Then, an
application model of a day-ahead scheduling strategy considering
the STLM potential of DCs is proposed, and the flexibility and
economic efficiency of power systems are significantly improved.
The major contributions of this paper are as follows.

1) An STLM potential evaluation model is established to quantify
the migration loads of urban DCs in different scenarios, which
evaluates the STLM potential by spatiotemporal workload
redistribution.

2) An energy management strategy is applied in the proposed
potential evaluation model to further exploit the STLM
potential of DCs, and server ON/OFF scheduling and CPU
operating frequency selection are optimized to maximize the
STLM potential.

3) A workload optimization scheduling strategy considering
customer satisfaction is established to ensure the quality of
service (QoS) of DCs and avoid workload accumulation. The
STLM ability of tasks with different service-level agreements
(SLAs) is also analyzed in this case.

4) A day-ahead scheduling method that integrates the STLM of
DCs with DVFS-DCSC technology is proposed based on the
proposed evaluation model. The carbon emissions and the CPU
utilization are better optimized compared with the conventional
scheduling strategy.

The remainder of this paper is organized as follows. The
theoretical basis of DCs’ spatiotemporal flexibility is introduced
in Section 2. The DC model and STLM potential evaluation model
are established in Sections 3, 4, respectively. In Section 5, case studies
on the STLM potential evaluation of DCs and day-ahead scheduling
strategies considering energy management strategies are carried out,
and the results are displayed and discussed accordingly. Section 6
gives a brief conclusion.

2 Theoretical basis of DC STLM
potential

The coupling architecture of the computation network and power
system is shown in Figure 1. The DC load exhibits high flexibility in
both the temporal and spatial dimensions. The prioritization of
workloads and the emerging trend of cloud interconnectivity
among DCs endow them with the capability of STLM. Therefore,
the spatiotemporal workload redistribution among DCs is the basis
for them to participate in the STLM of power loads.

Many studies have been performed on temporal load migration,
which will not be discussed in detail. This section focuses on spatial
load migration, which refers to a scheduling method that involves
either shedding loads at some locations or migrating loads that
ought to exist in one center to other centers (Wang et al., 2022). The
migration potential of spatially flexible loads can be assessed

Frontiers in Energy Research frontiersin.org02

Zhu et al. 10.3389/fenrg.2023.1289275

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1289275


quantitatively from various perspectives, including the temporal
scale, spatial scale, and migration level. The temporal scale
determines the response speed of load migration, the spatial
scale determines the coverage range of load migration, and the
migration level determines the extent to which migration
scheduling can contribute to overall system performance.
Regional DCs achieve spatial interconnection via backbone
optical networks, whose extremely high transmission speeds
and minimal delay rates of merely 0.02 ms/km (Zhou et al.,
2016) enable rapid load migration across timescales ranging
from seconds to hours. In addition, the optical fiber network
also has the characteristics of high bandwidth and strong
reliability, facilitating the interconnection not only of local
distribution network DCs but also of transnational DCs. Hence,
the spatial range of data load migration can span several kilometers
to several thousand kilometers. To accommodate the ever-
increasing data business requirements, modern large-scale DCs

must be capable of sustaining loads that can measure in the tens of
megawatts, thereby necessitating migration levels spanning from
hundreds of kilowatts to tens of megawatts.

The STLM potential of DCs is related to many factors, including
the number and capacity of fiber links connected to them, their
workload processing capacity, and the number of tasks assigned to
each time period. However, the potential relying on only the
spatiotemporal redistribution of workloads is relatively limited,
and the STLM potential of DCs can be further enhanced through
optimization of their energy management strategies. DVFS is an
efficient and feasible energy management technology for DCs,
improving the utilization of a server via discrete adjustments to
CPU operating voltage or frequency, thereby reducing the power
consumption. Meanwhile, DCSC reduces total cluster power
consumption by consolidating the load on a subset of machines
and turning off the rest during low workload periods (Guo et al.,
2021b). Adopting the DVFS-DCSC energy management strategy, as
seen in Figure 2, can not only reduce the target DCs’ energy
consumption but also improve the ability of other DCs to
undertake workloads, thus further enhancing the STLM potential
of the target DC.

3 Modeling and characteristics of DCs

Considering the factors affecting the DCs’ STLM, the models of
DC power consumption, DVFS technology, DCSC technology,
optical network power consumption, workloads and QoS are
established in this section.

3.1 Power consumption model of DC

The DC is mainly composed of IT equipment, cooling
equipment and distribution equipment, and the energy
consumption of DC can be expressed as (1). Among them, the
IT equipment energy consumption accounts for the largest

FIGURE 1
Coupling architecture of the computation network and power network.

FIGURE 2
DVFS-DCSC energy management strategy.
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proportion of the total energy consumption, which has the widest
range of changes. As the core element of IT equipment, servers are
the key equipment for massive data computing and processing,
which accounts for the largest proportion of IT equipment energy
consumption. Therefore, it can be used to represent the total energy
consumption of IT equipment, as shown in (2). In the typical server
power consumption model, the part of the CPU changes the most,
and the power consumption of other components, such as memory,
hard disk and network, can be regarded as approximately constant
(Jin et al., 2020). Therefore, the power consumption model of a
single server can be represented by the superposition of fixed power
and dynamic power, which is expressed as (3).

PDC � PIT + PCO + PEL (1)
PIT � Mser · Pser (2)

pser � pser
fixed + pser

dyna (3)

where PDC denotes the power consumption of the DC; PIT denotes
the power consumption of IT equipment; PCO denotes the power
consumption of cooling equipment; and PEL denotes the power
consumption of distribution equipment. Mser is the number of
servers owned by the data center; Pser is the power consumption
of the servers. pser

fixed and pser
dyna denote the fixed power and dynamic

power of the servers, respectively.
The cooling energy consumption PCO depends on the amount

of heat generated by servers, and the heat is almost entirely
derived from the computing energy consumption (Liu et al.,
2018). In DCs, the energy consumption of cooling and
distribution systems can be estimated based on the typical
power usage effectiveness (PUE). PUE is defined as the energy
consumption ratio of the entire DC to the IT equipment, so PDC

can be expressed as (4).

PDC � PUE · PIT (4)

3.2 DVFS model of DC

For the status of DC operation, there are many DCs with
redundant server configurations and low CPU utilization in most
time periods. DVFS changes the power consumption of the DC by
discretely adjusting the CPU operating voltage or frequency. To
facilitate actual operation, this paper only considers the adjustment
of the CPU operating frequency f and sets several suitable frequencies
for selection, as shown in (5). Each operating frequency has a
corresponding server processing capacity, which is proportional to
this frequency. The dynamic power of the server is related to the third
power of the CPU operating frequency. The higher the CPU operating
frequency is, the stronger the ability to process the workloads, although
the consequence of energy consumption greatly increases. The CPU
utilization can be calculated by the ratio of the capacity needed for task
processing to the server processing capacity, as shown in (6–8).When f
is constant, pser

dyna is proportional to U, which is described in (9). For
processing the same number of tasks, the CPU consumes less energy
under a lower frequency. Therefore, the frequency can be reduced in
the period of fewer workloads to improve the CPU utilization and
decrease the DC energy consumption.

f ∈ fCPU
1 , fCPU

2 ,/, fCPU
k−1 , f

CPU
k{ } (5)

U � λ

μ
(6)

λ � L

Mser
(7)

L � ∑
task∈TASK

Mprocess
task · γtask (8)

Pser
dyna � Aser · f3 · U (9)

where f CPU denotes the working frequency of the CPU.U is the CPU
utilization rate; λ is the tasks processed by a server during unit time;
μ is the processing capacity of a server. Aser denotes the dynamic
power consumption coefficient of a server; L denotes the total load
that the DC needs to process; Mprocess

task denotes the total number of
processed tasks; γtask denotes the CPU capacity required to process
one task; TASK is a set of task types.

According to the abovementioned analysis, DVFS can be applied
to enhance the STLM potential of DCs. The DCs to which migration
terminates can increase f to undertake more tasks, while the DCs
from which migration originates can decrease f to reduce energy
consumption, which can further expand the DC migration load.
Given that DVFS can be executed within a fewmilliseconds (Li et al.,
2012), it represents a viable strategy for scheduling within temporal
scales ranging from seconds to hours.

3.3 DCSC model of DCs

On the one hand, adjusting the dynamic power of the server has a
good energy-saving effect on the DC. On the other hand, the fixed
power of the server is also a part that cannot be ignored. The spatial
migration of power loads in DCs is achieved through the
spatiotemporal redistribution of workloads. This part has limited
migration potential and cannot cope well with extreme situations
such as large power shortages in power systems. Although the fixed
power cannot freely change the spatial distribution of power loads
through data load redistribution among DCs such as the dynamic
power, local DCs can shut down the current idle servers while
simultaneously activating new servers elsewhere within the network
to tackle increased workload demand. Therefore, it can be considered
that the fixed power of servers also has the ability of spatial migration.
In other words, the ON/OFF operation of geographically distributed
servers transforms fixed power into a schedulable spatial resource.
Since the cooling energy consumption of the DC depends on the heat
generated by the IT equipment, it will also change with the regulation of
the IT equipment for a constant PUE, thereby reducing the total energy
consumption and greatly improving the STLM potential of DCs.

To prolong the service life of the servers as much as possible,
the servers should avoid frequent ON/OFF operation, thereby
setting a minimum ON/OFF time to force them to maintain at
least for a period before becoming another state, as shown in (10).
The ON/OFF operation of a server is a second-level delay process,
so DCSC is more suitable as a minute-level or hour-level
scheduling method.

It1 � 1, It2 � 0, It3 � 1
∀t1 < t2 < t3, t2 − t1 ≥MD, t3 − t2 ≥MD

(10)
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where It denotes the operating state of a server at time t, 1 represents
ON, 0 represents OFF, andMD denotes the minimumON/OFF time
of a server.

3.4 Power consumption model of optical
networks

The interconnection communication network that DCs rely on is
generally composed of backbone optical networks, which have large
transmission capacity, extremely fast transmission speed and much
lower delay. For typical optical networks, the energy consumption can
be generated by an IP layer, an optical–electric–optical layer and a
wavelength-division multiplexing layer (Zhang et al., 2015). The
networks’ energy consumption is jointly borne by the source node
and destination node (Deylamsalehi et al., 2018), assuming that the
source node and the destination node bear half of the network energy
consumption.

Referring to the power consumption model of the server, a
simplified power consumptionmodel of the optical network can also
be expressed as the superposition of fixed power and dynamic power
(Dayarathna et al., 2016). The fixed power is the elementary energy
consumption of the communication equipment, which is unrelated
to network traffic. The dynamic power is the energy consumption of
the network transmission and is related to the network traffic (Sun
et al., 2013). Furthermore, the bandwidth and traffic within optical
networks can be likened to the processing capacity and workload
demand of CPUs in servers. The power consumption of the optical
fiber link (i, j) is shown in (11), and (12) represents the power
consumption of network element (NE) node i.

Pnet
ij � pnet

fixed + lij · pnet
dyna (11)

Pnet
i � 1

2
∑

j: i,j( )∈E
Pnet
ij (12)

where Pnet
ij denotes the power consumption of link (i, j) and pnet

fixed

and pnet
dyna denote the fixed power and dynamic power of the optical

fiber network, respectively. lij is the traffic of link (i, j); E is the set of

optical fiber links. ∑
j: (i,j)∈E

Pnet
ij represents the sum of the power

consumption of all links connected to node i.

3.5 Models of workloads and QoS

When exploring the DCs’ STLMpotential, it is necessary to find an
appropriate trade-off strategy between adjusting the power
consumption of IT equipment and meeting the users’ requirements
for QoS. The workload can be divided into delay-sensitive tasks and
delay-tolerant tasks according to the SLA (Cupelli et al., 2018). Delay-
sensitive tasks, such as live broadcast, real-time payment and real-time
measurement, need to be processed immediately after the arrival of the
tasks at tar, and thus, they are not suitable to be migrated to other DCs
for processing as spatially flexible resources. In contrast, delay-tolerant
tasks, such as image processing and scientific computing, only need to
be completed before the deadline tmax. The QoS constraints are shown
in (13), where Δttr,qu denotes the queuing waiting time for migration,

Δttr denotes the needed time for task migration, Δtpro,qu denotes the
waiting time for processing in the queue, and Δtpro denotes the needed
time for task processing. As shown in Figure 3, different types of tasks
have different SLAs for the deadline of completion, which can vary
from a few minutes to several hours, so they have great spatiotemporal
flexibility. Aftermigration to other DCs at tar’, the tasks can be stored in
the hard disk without immediate processing. Consequently, the time
points tmig and tst for migration and processing can be freely selected to
achieve the optimal operation strategy.

Δttr,qu + Δttr + Δtpro,qu + Δtpro ≤ t max (13)
To avoid the backlogs being processed near tmax, a task-scheduling

optimization strategy considering customer satisfaction is established.
The variation in customer satisfaction with waiting time is not
completely linear but rather a nonlinear curve. Prolonged wait
times lead to reduced customer perception, ultimately resulting in
a diminishing marginal rate of satisfaction. Positive values denote
satisfaction, whereas negative values imply dissatisfaction. Since all
tasks need to be strictly processed before tmax according to the SLA,
the negative part of the curve is not considered. The cosine distributed
time satisfaction function is truncated from the part of the cosine
function curve, which is expressed as (14). The curve changes little
around the thresholds Li andUi, and the slope of themiddle part of the
curve is larger. LetUi be tmax, and let Li be set as a reasonable value. To
enable the tasks to be completed under the conditions of achieving
high time satisfaction, the average customer satisfaction can be set to
be greater than a certain fixed value.

S t( ) �
1, t ∈ 0, Li[ ]

0.5 + 0.5 cos
π

Ui − Li
· t − Ui + Li

2
( ) + π

2
( ), t ∈ Li, Ui[ ]

⎧⎪⎪⎨⎪⎪⎩
(14)

To clarify the completion of each batch task in each time period,
matrix A is established as shown in (15). A is a T-order sparse
matrix, and its lower-left corner and upper-right corner are
composed of zero elements. The zero elements in the lower-left
corner indicate that the tasks arriving at t cannot be processed ahead
of t, and the zero elements in the upper-right corner indicate that the
number of tasks violating SLAs is none, which meets the maximum
response time constraints of QoS. The average value of customer
satisfaction Stask can be defined as the ratio between the total
satisfaction and the total number of tasks processed, which can
be calculated in (16) and (17).

A �

Mfin
task,11 Mfin

task,12 Mfin
task,13 / Mfin

task,1tmax
task

0 0 / 0

0 Mfin
task,21 Mfin

task,22 / Mfin
task,2 tmax

task
−1( ) Mfin

task,2tmax
task

0 / 0

..

. ..
. ..

. ..
. ..

.

0 / 0 Mfin
task, T−tmax

task( )1 Mfin
task, T−tmax

task( )2 Mfin
task, T−tmax

task( )3 / Mfin
task, T−tmax

task( )tmax
task

0

0 / 0 0 Mfin
task, T−tmax

task
+1( )1 Mfin

task, T−tmax
task

+1( )2 / Mfin
task, T−tmax

task
+1( ) tmax

task
−1( ) Mfin

task, T−tmax
task

+1( )tmax
task

0 / 0 0 0 Mfin
task, T−tmax

task
+2( )1 / Mfin

task, T−tmax
task

+2( ) tmax
task

−2( ) Mfin
task, T−tmax

task
+2( ) tmax

task
−1( )

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 / 0 0 0 0 0 Mfin
task, T−1( )1 Mfin

task, T−1( )2
0 / 0 0 0 0 0 0 Mfin

task,T1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

�Stask �
∑ttask

max

t�1
Mfin

task,t · Stask t( )

∑ttask max

t�1
Mfin

task,t

(16)

Mfin
task,t � ∑T+1−t

a�1
Mfin

task,a t+a−1( ) (17)
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where Mfin
task,ab denotes the number of tasks received at time a

and finished in period (b-1, b]; ttask max denotes the deadline
of completion time for task; Stask(t) denotes the satisfaction
value of completing the task in period (t-1, t); and Mfin

task,t

denotes the number of all tasks finished in period (t-1, t].

4 Potential evaluation model of the
DCs’ STLM

The above models can be applied to the STLM potential
evaluation of DCs, and the corresponding objective functions and
constraints are set in the section.

4.1 Objective function of STLM potential
evaluation

Considering the energy management strategy, optical network
allocation, and QoS, the potential evaluation model of the DCs’
STLM is established. To obtain the maximum STLM of region i, the
minimum sum of the power consumption of the DC and NE in
region i at time T is taken as the objective function, as expressed in
(18) and (19).

min Ptotal
i � ∑T

t�1
PDC
i,t( + Pnet

i,t
⎞⎠ (18)

where

PDC
i,t � PUEi · [MON

i,t · pser
fixed

+∑
k∈K

∑
task∈TASK

Mprocess
i,k,t,task · γtask

μi,k
· Aser · f3

i,k
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pnet
i,t � 1

2
∑

j: i,j( )∈E
pnet
fixed + lij,t · pnet

dyna( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

4.2 Constraints of STLM potential evaluation

4.2.1 Constraint of power balance
(20) and (21) ensure that the regional power systems meet the

real-time balance of power, and the power supply of the grid is less
than its maximum output.

PPV
i,t + Pgrid

i,t � PLoad
i,t + PDC

i,t + Pnet
i,t (20)

Pgrid
i,t ≤Pi,grid

max (21)
where PPV

i,t and PLoad
i,t denote the predicted value of PV generation and

power load in area i at time t; PDC
i,t , P

net
i,t and Pgrid

i,t denote the power
consumption of DC/NE/grid in area i at time t, respectively; and
Pi,grid

max denotes the upper limit of output power of grid region i.

4.2.2 Constraint of DCSC in DCs
(22) and (23) indicate that the number of servers ON cannot

exceed the total number of servers owned by DCs, and to handle the
tasks beyond the plan well, maintaining a certain minimum number
of active servers is imperative. (24) and (25) calculate the number of
newly ON/OFF servers at time t. (26–29) calculate the number of
servers that can be turned ON/OFF at time t based on the minimum
ON/OFF time, thus providing (30) and (31) with the upper limit of
the number of servers that can be turned ON/OFF, avoiding the loss
of serving life of servers due to the frequent ON/OFF operation.

Mi � MON
i,t +MOFF

i,t (22)
Mi,ON

min ≤MON
i,t ≤Mi (23)

Moffon
i,t � MON

i,t −MON
i,t−1 + MON

i,t −MON
i,t−1

∣∣∣∣ ∣∣∣∣
2

(24)

Monoff
i,t � MON

i,t −MON
i,t−1

∣∣∣∣ ∣∣∣∣ −MON
i,t +MON

i,t−1
2

(25)

for 1≤ t≤MDi

Monable
i,t � Mi −MON

i,t −∑t
n�1

Monoff
i,n (26)

FIGURE 3
IT workload models with different delay tolerances.
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Moffable
i,t � Mi −MOFF

i,t −∑t
n�1

Moffon
i,n (27)

for MDi + 1≤ t≤T

Monable
i,t � Mi −MON

i,t − ∑t
n�t−MDi+1

Monoff
i,n (28)

Moffable
i,t � Mi −MOFF

i,t − ∑t
n�t−MDi+1

Moffon
i,n (29)

for 1≤ t≤T

0≤Monoff
i,t ≤Moffable

i,t (30)
0≤Moffon

i,t ≤Monable
i,t (31)

whereMON
i,t andMOFF

i,t denote the number of servers ON/OFF in DC
i at time t; Moffon

i,t and Monoff
i,t denote the number of newly ON/OFF

servers in DC i at time t; andMonable
i,t andMoffable

i,t denote the number
of servers that can be turned on/off in DC i at time t.

4.2.3 Constraint of DVFS in DCs
(32) represents the number of servers operating at each

operating frequency after adopting DVFS technology. (33) forces
the average CPU utilization of servers at each operating frequency to
be less than an upper limit, which avoids CPU saturation and is
conducive to stable hardware operation.

MON
i,t � ∑

k∈K

MON
i,k,t (32)

∑
task∈TASK

Mprocess
i,k,t,task · γtask ≤Ui,k

max ·MON
i,k,t · μi,k (33)

where Ui,k
max denotes the upper limit of the CPU utilization rate.

4.2.4 Constraint of QoS
To reduce the impact on the processing plans of other DCs, this

part only redistributes the receiving tasks of the source DC i
temporally and spatially. (34–36) enforce that all types of tasks
must be completed within a designated maximum response time
according to the SLAs while dictating the relationship between the
number of tasks received by and processed at destination DCs.

∑
k∈K

Mprocess
i,k,t,task � Mprocess

i,t,task (34)

for 1≤ t≤T − ttask max + 1, ∀task ∈ DU

∑t
n�1

Min
i,n,task ≤ ∑ttask

max+t−1

n�1
∑N
m�1

Mprocess
m,n,task ≤ ∑ttask

max+t−1

n�1
Min

i,n,task (35)

for 1≤ t≤T, ∀task ∈ DU

∑t
n�1

∑N
m�1,m ≠ i

Mprocess
m,n,task ≤∑t

n�1
∑N

m�1,m ≠ i

Mmig
m,n,task ≤∑t

n�1
Min

i,n,task −Mprocess
i,n,task( )

(36)
whereMprocess

i,t,task denotes the total number of tasks processed by DC i in
time period t; DU is the set of delay-tolerant tasks; N is the number of
DCs in the network;Min

i,n,task denotes the number of tasks allocated to
DC i by the front-end server in time period n; and Mmig

m,n,task denotes
the number of tasks that migrated to DC m in time period n.

(37) makes the average customer satisfaction of each type of task
greater than a preestablished threshold, which not only shortens the
waiting time for processing tasks but also avoids the accumulation of
unprocessed workloads.

�Stask ≥ Sc,∀task ∈ DU (37)
where Sc is the satisfaction requirement of customers.

4.2.5 Constraints of optical network transmission
(38–40) explain the condition that task migration should satisfy

for optical network traffic. (38) is the constraint of NE node traffic
conservation, which represents the number of tasks that the network
switching equipment i transmits to node j. When the tasks migrate
from DC i to DC j, if node i is the migration destination, the net
number of tasks received by DC i is Mmig

i,t,task. If node i is neither a
migration source nor a destination, no task migrates into DC i,
which is connected to NE i. If the node is a source, the number of
tasks received by DC i is equal to the negative number of tasks
migrated into other DCs. (39) and (40) calculate the occupied
bandwidth of link (i, j) at time t and limit the maximum optical
network traffic.

∑
j: i,j( )∈E

Mtask
ij,t − ∑

j: j,i( )∈E
Mtask

ji,t �
− ∑N
m�1,m ≠ i

Mmig
m,t,task s → d( ), i � s

0, i ≠ s ∩ i ≠ d
Mmig

i,t,task s → d( ), i � d

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(38)

lij,t � ∑
task∈DU

Mtask
ij,t +Mtask

ji,t( ) · βtask, i, j( ) ∈ E (39)

0≤ lij,t ≤ lij
max, i, j( ) ∈ E (40)

whereMtask
ij,t denotes the number of tasks migrated fromNE i to NE j

at time period t; βtask denotes the bandwidth required to migrate one
task; and lij max denotes the maximum bandwidth of link (i,j).

4.3 Day-ahead scheduling model
considering the STLM potential of DCs

The proposed spatiotemporal migration model of DCs
considering DVFS-DCSC technology can be applied to not only
the potential evaluation but also the day-ahead scheduling strategy
of multi-DCs. The day-ahead scheduling takes the minimum carbon
emissions of all DCs and NEs as the objective function, and the tasks
in each DC can be redistributed temporally and spatially. Therefore,
the constraint can be adjusted as (41):

minC � ∑T
t�1

e ·∑N
i�1

PDC
i,t + Pnet

i,t( ) · Δt⎡⎣ ⎤⎦ (41)

where C is the total carbon emissions of all DCs and NEs in time
period T and e is the CO2 emission density.

5 Case study

As shown in Figure 4, the urban distribution network with six
DCs is used for the case study. Region 1 is a light-industrial area,
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regions 2 and 6 are residential areas, region 3 is a heavy-
industrial area, and regions 4 and 5 are commercial areas.
The weather conditions of each region are the same, and the
loads and PV generation are shown in Figure A1 in the
Appendix. The number of tasks allocated to each DC in each
time period is shown in Figure A2 in the Appendix. The delay-
tolerant tasks handled by DCs account for 60% of the total tasks,
and there are seven types of tasks. The capacity needed for
processing, the bandwidth needed for migration, the
proportion and the maximum response time for each type of
task are shown in Figure A3 in the Appendix. Each DC adopts the
same type of server, and the relevant parameters of the DC are
presented in Table 1. Each DC must maintain the activation of a
minimum of 50% of its servers. A case study of the STLM
potential evaluation and day-ahead scheduling of DCs is
solved in MATLAB 2021a using Gurobi 9.5.1 to demonstrate
the validity of the proposed model.

5.1 STLM potential evaluation of DCs
considering the DVFS-DCSC energy
management strategy

To quantify the maximum STLM potential of the DC to deal
with certain emergency situations such as load shortages, the
proposed method is used to evaluate the STLM potential.

5.1.1 Migration results
The power spatiotemporal changes in each DC before and after

migration are shown in Figures 5A, B. Without loss of generality, the
STLM characteristics and effects of DC1 are discussed in detail, and
the following conclusions can be drawn:

1) After adopting the DVFS-DCSC STLMmethod, the migration
effect of DC1 is obvious. During the valley period of task
processing, DC1 operates with the minimum number of

needed activated servers, resulting in minimal power
variation. Conversely, during the peak period of task
processing, the migration capacity of DC1 is limited by the
optical network capacity and the processing capacity of other
DCs, resulting in small power peaks.

2) The total number of tasks processed by all DCs before and after
migration adheres to conservation. However, the power
consumption reduction of DC1 is nonconservative with the
power consumption increase of other DCs responsible for
processing the migrated tasks. This is because the server’s
dynamic power is proportional to the cube of the CPU
operating frequency. Given identical processing tasks, higher
frequencies result in greater power consumption.

The case study compares the migration effect of three
scheduling strategies: time-domain migration, STLM and
STLM considering the DVFS-DCSC energy management
strategy. Figure 6 shows the power curve of DC1 after
adopting various control strategies. The results show that the
power consumption of DC1 with the STLM mechanism is
reduced by 32.83% compared to that of only time-domain
migration. However, the DVFS-DCSC method not only
reduces the power consumption of DC1 but also improves the
ability to bear the workload of other DCs. As shown in this figure,
adopting the STLM mechanism considering the DVFS-DCSC
energy management strategy proposed in this paper, compared
with the STLM mechanism and time-domain migration
mechanism alone, the power consumption of DC1 is reduced
by 37.96% and 58.33%, respectively. Therefore, the STLM
potential of DCs can be significantly enhanced through the
proposed method.

5.1.2 Migration and processing of delay-tolerant
tasks

Figures 7A, B display the migration and processing plans of
DC1’s delay-tolerant tasks. The comparison between the two
figures reveals some incongruities in the tasks processed and
received by destination DCs during the same time period. This
difference arises due to the tasks’ inherent tolerance for delays,
whereby they may be temporarily stored in the hard disks of
servers with no immediate processing needed and subsequently
dispatched for processing at an optimal time. Figure 7A shows
that the number of tasks migrated from DC1 in each period
changes roughly according to its original plan of task arrival, but
the overall change is not large. This is because DC1 has only two
links connected to other DCs, and its migration potential is
limited by the bandwidth of links (1,2) and (1,6). For
example, at 14:50, the tasks are almost all migrated to
DC2 and DC3. At this time, links (1,2) and (1,6) have no idle
transmission capacity, with the consequence that more tasks
cannot be migrated outside. DC5 has four links connected to
other DCs, so its STLM potential is more considerable than that
of DC1.

5.1.3 Influence ofmigration on the server operating
state

For a single DC, the change in the operating state of each
server is the direct cause of the change in the power consumption.

FIGURE 4
The urban DC network with six DCs.
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The DVFS-DCSC STLM mechanism changes the CPU operating
frequency and the number of active servers in each DC to
enhance the STLM potential of DCs. The number of servers
turned on by each DC is shown in Figure 8. As exemplified by
DC1 and DC5, their server operating status and frequency are
shown in Figures 9A, B, respectively. At the peak time of task
processing, almost all servers are turned on by each DC. At the
valley of task processing, to reduce power consumption, the
servers turned on by DC1 and 5 are mostly under operating
frequency f1, and a small part is under other frequencies. During
peak hours, the migration capacity of DC1 is limited, and some
tasks that cannot be migrated outside need to be handled locally.
Therefore, more servers are turned on and operate under the

operating frequency f2. DC5 is in a heavy-load state after
receiving the tasks migrated from DC1, and many servers are
under operating frequency f5, which makes its power
consumption at a rather high level.

5.1.4 Total power consumption before and after
load migration

As shown in Figure 10, after adopting this method to maximize
the STLM potential of DC1 (as shown by the blue line), the total
power consumption of all DCs and NEs decreases compared to the
pre-migration stage without an energy management strategy,
depicted by the pink line. This reduction occurs because the
energy consumption modes of all DCs are optimized during the

TABLE 1 Parameters of DC.

Parameters Value

Base power consumption of a server pser
fixed (W) 53

CPU optional operating frequency fk (GHz) {1, 1.5, 2, 2.7, 3}

Processing capacity corresponding to each operating frequency μk {5, 7.5, 10, 13.5, 15}

Aser(W/GHz3) 6.5

Upper limit of CPU utilization Umax 0.9

PUE 1.3

Number of servers in each DC Mi {4, 5, 4, 4, 5, 4}*104

Base power consumption of an optical network link pnet
fixed (W) 1720

Dynamic power consumption of an optical network link pnet
dyna (W/Gbps) 12.8

Bandwidth of each link lmax (Gbps) 400

MD (min) 30

CO2 Emission Intensity e (t/MWh) 0.85

Customer satisfaction requirement Sc 0.6

FIGURE 5
Comparison results before and after migration.
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migration process. However, if all DCs have already adopted
the DVFS-DCSC method for energy consumption optimization
before migration (as shown by the yellow line), the total power
consumption after migration will be considerably higher than
that before migration. This implies that maximizing the STLM
potential of DCs will involve certain economic sacrifices and may
lead to increased carbon emissions within the entire DC network.
This is because in the peak period of task processing, the
destination DCs are already heavily burdened with their own
processing workloads. At this time, to continue processing tasks
from DC1, more servers must be turned on, and the CPU
operating frequency must be scaled to a higher level. The
tasks that can be processed by DC1 under a lower operating
frequency can only be completed under a higher operating
frequency in other destination DCs, which explains why the
overall energy consumption will increase after migration.
Therefore, to ensure the overall economy and low-carbon
emissions, grid operators should retain part of the STLM
potential when formulating the demand response scheme. The

remaining STLM potential can be exploited and applied in
emergency dispatching scenarios.

5.2 Day-ahead scheduling strategy for
minimum carbon emissions

5.2.1 Scheduling results
The total carbon emissions of all DCs and optical networks

before and after DVFS-DCSC & STLM scheduling are compared, as
shown in Figure 11. Compared with the time-domain migration
method and DVFS-DCSC technology alone, the total carbon
emissions are reduced by 32.92% and 10.21%, respectively, after
adopting the proposed method.

As displayed in Figure 12, after scheduling with the DVFS-
DCSC STLM, the average utilization rate of the CPU is increased
from 39.89% to 83.14%, which effectively reduces the number of
redundant servers and total power consumption. Most of the
time after migration, the average utilization rate of CPU has
reached more than 70%. For the moment of low utilization, even
if there are fewer workloads allocated for processing, the number
of servers each DC turns on must exceed the minimum
requirement.

5.2.2 Influence of migration on the server
operating state

To illustrate the impact of the proposed scheduling scheme
on the operating state of the server, we take the 7th type of task
(with the maximum response time of 8 h shown in Figure A3 in
Appendix) as an example and obtain the processing results in
each time period according to matrix An in Eq. 13, which is
shown in Figure 13. In this figure, each row represents the batch
processing plan of the incoming tasks at one point, and each
column represents the number and composition of tasks
completed at each time, which indicates that this type of task
has a great ability for temporal migration. That is, we can

FIGURE 7
The migration and processing schemes of DC1’s delay-tolerant tasks.

FIGURE 6
Comparison results under different migration methods.
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FIGURE 9
The number of servers operating under each operating frequency in DC1 and DC5.

FIGURE 10
The total power consumption of DCs and NEs before and after migration.

FIGURE 8
The number of active servers in each DC in each period.
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intuitively obtain the temporal migration results of different
delay-tolerant tasks in this scheduling scheme.

However, the delay-tolerant tasks with a long time of tmax, such
as 4 h or 8 h, account for a small proportion. That is, the overall
ability for time-domain (temporal) migration of all tasks is relatively
weak. Meanwhile, due to the unobvious spatiotemporal differences
in the task arrangement among DCs, the purpose of the STLM in
day-ahead scheduling is to spread the tasks handled by each DC
equitably, thereby minimizing the number of active servers and
maintaining low-frequency server operation as much as possible. In
each time period, the number of active servers in each DC is shown
in Figure 14. As exemplified by DC1 and DC5, in contrast to the case
study of potential evaluation, the server operating states of these two
DCs are relatively close, are shown in Figures 15A, B, respectively.
Since the task allocation plan of DC1 has more tasks than those of
other DCs and other DCs are already in heavy loads during the peak
of task processing, it is not necessary to migrate more tasks but to
process them locally.

FIGURE 11
Comparison results of total carbon emissions before and after migration.

FIGURE 12
Comparison results of the CPU average utilization rate before and after scheduling.

FIGURE 13
Processing results of the 7th type of task in each time period.
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6 Conclusion

Due to the great spatiotemporal flexibility of data loads, this
paper proposes an approach to evaluate the STLM potential of DCs.
The proposed model is further applied to the day-ahead scheduling
of urban DCs, minimizing daily carbon emissions. The case study
verifies the effectiveness of the STLM model and energy
management strategy. The following conclusions are drawn:

1) The spatiotemporal redistribution of delay-tolerant tasks, as well
as server ON/OFF scheduling and CPU operating frequency
scaling in different spatial locations, provides DCs with STLM
potential.

2) Due to the operating characteristics of the servers, the utilization
of STLM potential is often accompanied by increased energy

consumption, which comes at the cost of the economy of the
entire system. However, in an emergency, DCs need to provide
power support with maximum STLM potential, regardless of the
economy.

3) In the day-ahead scheduling of urban DCs, in contrast to
emergency control, the purpose of the STLM is to spread the
tasks handled by each DC evenly in space, reducing the number
of servers turned on and increasing the proportion of servers that
operate under low frequencies.

The STLM potential evaluation model of DCs and the proposed
day-ahead scheduling scheme provide a novel approach to exploring
spatiotemporal flexible resources. Considering the significant
differences between DCs and other forms of spatially flexible
loads, subsequent research must be undertaken to devise a

FIGURE 14
The number of active servers in each DC in each time period.

FIGURE 15
The number of servers operating under each operating frequency in DC1 and DC5.
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collaborative scheduling strategy for managing diverse spatially
flexible loads.
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Appendix

FIGURE A1
PV generation and loads of an urban power system.

FIGURE A2
Number of workloads in each DC in each time period.

FIGURE A3
Parameters of each type of task.

Frontiers in Energy Research frontiersin.org16

Zhu et al. 10.3389/fenrg.2023.1289275

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1289275


Nomenclature

Abbreviations

DC Data center

STLM Spatiotemporal load migration

DVFS Dynamic voltage/frequency scaling

DCSC Dynamic cluster server configuration

IT Information technology

PUE Power usage effectiveness

NE Network element

SLA Service-level agreement

QoS Quality of service

EMS Energy management strategy

Parameters

Aser Dynamic power consumption coefficient of a server

PUEi Power usage effectiveness of DC i

pserfixed/p
net
fixed Base power consumption of a server/fiber link

PPV
i,t /P

Load
i,t

Predicted value of PV generation and power load in area i at
time t

Mi Number of servers in DC i

Mi,ON
min Minimum number of servers required to be ON in DC i

MD Minimum ON/OFF time of a server

U CPU utilization rate

L Total load that the DC needs to process

γtask CPU capacity needed of processing one task

λ Tasks processed by a server during unit time

Mprocess
task Total number of processed tasks

fk CPU operating frequency of a server under operating status k

μk Processing capacity of a server under fk

Umax Upper limit of CPU utilization

Pi,grid
max Upper limit of output power of grid region i

ttask max Deadline of completion time for task

Sc Customer satisfaction requirement

Min
i,t,task Number of incoming tasks in DC i at time t

βtask Bandwidth needed of migrating one task

lij max Maximum bandwidth of link (i,j)

E Set of the optical fiber links

K/TASK/DU/E Set of CPU operating status/task types/delay-tolerant task
types/links

e CO2 emission intensity

Variables

PDC
i,t /P

net
i,t /P

grid
i,t

Power consumption of DC/NE/grid in area i at time t

MON
i,t /MOFF

i,t Number of servers ON/OFF in DC i at time t

pserdyna/p
net
dyna Dynamic power consumption of a server/fiber link

Ui,k,t Average CPU utilization of servers under fk in DC i at time t

Moffon
i,t /Monoff

i,t
Number of newly ON/OFF servers in DC i at time t

Monable
i,t /Moffable

i,t
Number of servers can be turned on/off in DC i at time t

MON
i,k,t Number of servers under fk in DC i at time t

Mmig
i,t,task

Number of tasks migrated to DC i at time t

Δttr,qu/Δttr/Δtpro,qu/
Δtpro

Queuing waiting time/needed time for task migration/
waiting time for processing in the queue/needed time for task
processing

Pnet
ij Power consumption of the link (i, j)

Mtask
ij,t

Number of tasks migrated from NE i to NE j at time t

Mfin
task,ab

Number of tasks finished in (b-1, b] periods coming at time a

Mfin
task,t

Number of all tasks finished in (t-1, t] periods

Stask Average customer satisfaction
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