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Pool boiling in porous media has been applied in various thermal management
systems by using latent heat and increasing the heat transfer area and thermal
conduction path to improve the heat transfer performance. In mechanical
equipment, vibration is an inevitable problem due to reasons such as engine
operation and high-speed relative motion between transmission system
components, which causes the system components to be affected by vibration
forces or vibration accelerations. This study focuses on a review of published
articles about the effects of mechanical vibration on the characteristics of boiling
process in porous media by two aspects: heat transfer performance and bubble
dynamics. Heat transfer coefficient (HTC) and critical heat flux are two main
parameters used to measure the boiling heat transfer characteristics of porous
media. For bubble dynamics investigations, properties such as migration,
fragment, coalescence, departure diameter and frequency are the focus of
research attention. Different mechanical vibration parameters, i.e., direction,
frequency, and amplitude, will have different effects on the above
characteristics. It is worth mentioning that the greatest influence occurs under
resonance conditions, and this has been verified through experimental and
simulation calculations. This review highlights the importance of considering
mechanical vibrations in the design and optimization of porous media systems
for efficient heat transfer applications. Further research is warranted to explore the
detailed mechanisms and optimize the vibration parameters for enhanced heat
transfer performance in thermal management systems using porous media.
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1 Introduction

Thermal management system plays an important role in various fields such as solar
collectors, smart phones, electric vehicle power batteries, high-power LEDs, notebook
computers, etc. Compared with single phase heat transfer on smooth surfaces, pool
boiling in porous material increases the heat transfer area and uses the latent heat of
working fluid, thereby greatly improving the heat transfer performance, which is mainly
reflected in the increase of the heat transfer coefficient (HTC), the enhancement of the critical
heat flux (CHF), and the reduction of wall superheat (Habibishandiz and Saghir, 2022). The
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enhancement relevant studies mainly include the enhanced heat
transfer effect of different porous structures and parameters (Zhou
et al., 2022), the pressure drop characteristics and boiling heat transfer
ability of two-phase flow (Zhang et al., 2021), and the distribution law
of two-phase inside the porous structure (Liao et al., 2021). During the
pool boiling process, the timely detachment and removal of bubbles
from the heating surface are important conditions to ensure the
normal operation of the system. Porous materials rely on the pores to
generate capillary forces that drive the circulation of working fluid,
allowing liquid to flow to the heating zone to replenish the gasified
working medium. Increasing the capillary forces allows liquid to
return more quickly, while reducing the flow resistance enables the
bubbles to detach and be expelled as soon as possible. Therefore, in the
study of pool boiling in porous media, one key problem is to reduce
pore sizes while minimizing the flow resistance as much as possible.

Mechanical vibration is a common phenomenon in many
industrial applications, such as vehicle radiator (Li et al., 2020),
chemical battery (Joshy et al., 2020; Zuo et al., 2022), high-voltage
overhead transmission (Meng et al., 2018), and aircraft engine
(ElSaid et al., 2018). Based on related reference (Energy Institute
Great Britain, 2008; Haym et al., 2022-09; Stewart and Shaw, 2015),
we have summarized several mechanical vibrations in different
engineering applications, as shown in Figure 1. Excessive
vibration can reduce the performance and shorten the lifespan of
mechanical and electronic equipment. Therefore, the adaptability to
vibration environment is often considered as one of the important
factors for the mechanical performance and is commonly used in the
design and research of anti-vibration systems. Vibrations also
subject system components to additional vibration forces,
resulting in certain vibration displacements and accelerations.
This has a significant impact on the heat transfer mechanisms of
boiling processes in porous media, thus affecting the operating
characteristics of the entire thermal management system.

Some studies showed that vibration could destroy the flow and
heat transfer boundary layer under certain conditions (Majeed
Mohammed et al., 2021), increase the convective heat transfer
coefficient (Hosseinian et al., 2018), and enhance the heat
transfer effect. Vibration may cause the separation, backflow, and
vortex formation of fluid layers, thereby altering the flow pattern and
velocity distribution of fluid, which affects the heat transfer
efficiency. In boiling processes, vibration can induce changes in
the shape, merging, or separation of bubbles, influencing the
morphology, motion, and distribution of bubbles and
consequently impacting the boiling heat transfer characteristics.

The main objective of this review is to summarize and analyze the
existing literature about effect of mechanical vibration on pool boiling
process in porous media in two aspects: 1) heat transfer performance
and 2) bubble dynamics; specifically focusing on the reported progress
about HTC, onset of thermo-vibrational convection, resonant effect,
and bubble dynamics under mechanical vibration. Firstly, the review of
published studies with respect to boiling performance undermechanical
vibration is reported, covering boiling curve, non-resonant effect,
resonant effect, and thermo-vibrational convection mechanisms.
Then, published studies on the bubble behaviors in porous media
are reviewed, including stable state and unstable state. Finally,
conclusions and research focuses are given. This review can provide
a systematic reference for the design of thermal management system in
the future.

2 Effect of vibration on the heat transfer
performance

2.1 Pool boiling in porous media

Porous materials currently used in thermal management
systems mainly include sintered metal powder, screen/wire mesh
and metal foam, as shown in Figure 2. With the maturation of
porous structure preparation technology, to meet the needs of
different heat exchangers, porous media are made into different
structural forms such as porous coating surfaces (Starodubtseva
et al., 2021), porous channels (He et al., 2023), porous fins (Jain et al.,
2023), porous membrane (Li et al., 2023) and so on. With the
increase of heating power, the formation process of vapor in porous
media can be roughly divided into four stages: conduction-
convection stage, liquid layer recession stage, nucleate boiling
stage, and film boiling stage, which ultimately leads to the
occurrence of dry out (Weibel et al., 2010a). CHF determines the
maximum heat dissipation capacity of the system, which mainly
depends on the liquid reflux in the heating zone. The reflux process
is largely affected by the resistance of vapor-liquid flow inside the
porous structure (Liang et al., 2020).

Particularly, in electronic devices, as the structures become
increasingly compact, various ultra-thin heat dissipation devices,
such as flat heat pipe or vapor chamber in Figure 3 (Weibel and
Garimella, 2013), have become a hot research topic. Because of the
size difference, boiling in ultra-thin porous media, also called
capillary-fed boiling (Weibel et al., 2010b), is quite different from
the submerged pool boiling. Figure 4 shows the primary differences
in heat transfer regimes between capillary-fed and pool boiling
(Weibel and Garimella, 2013). In the submerged pool boiling,
when the heat flux was low, heat was initially transported by
natural convection, followed by nucleate boiling until reaching
CHF. However, in the ultra-thin porous media, there was a
liquid-vapor free surface boundary at the top layer, and heat
transport first occurred in an evaporation regime prior to boiling
incipience.

In the research of Justin A. Weibel and Suresh V. Garimella
(Weibel and Garimella, 2012), capillary-fed boiling of water from
porous sintered powder wicks with thickness of 1 mm was
investigated and the boiling curve comparison between porous
surface and carbon nanotube (CNT) coating was obtained, as
shown in Figure 5. With the increase of heating power, the
curves were divided into four regions: regime 1—evaporation,
regime 2—localized nucleate boiling, regime 3—uniform nucleate
boiling and regime 4—receded boiling. Compared with the bare
porous surface, addition of a CNT-coating caused transition to a
localized nucleate boiling regime and the occurrence of CHF at
lower heat fluxes.

Yousaf Shah et al. (Shah et al., 2023) conducted pool boiling
experiment using multistage cross-flow porous structure (MCPS)
and saturated FC-72 as the working fluid. Figure 6 gives the boiling
curves comparison between MCPS and plane surface. It was clear
that HTC and CHF were significantly increased for the MCPS at all
directions. At low heat flux, the performance of MCPS was almost
identical. However, with the increase of heat flux, due to boiling
mechanism in different orientations, this enhancement performance
gradually became different.
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FIGURE 2
Actual image and schematic diagram of (A) Metal foam, (B) Screen/wire mesh, and (C) Sintered power.

FIGURE 1
Several vibration situations in different mechanical engineering applications.
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Porous media has found extensive applications in the field of
heat transfer. Previous research regarding the utilization of porous
mesh on the surface for heat dissipation has demonstrated

numerous advantages such as efficient heat transfer mechanisms
(Yang et al., 2022), an abundance of active nucleation sites
(Krittacom et al., 2022), fragmentation of large vapor bubbles

FIGURE 4
Schematic representation of the vapor formation characteristics for (A) submerged pool boiling and (B) capillary-fed boiling conditions (Weibel and
Garimella, 2013).

FIGURE 3
Schematic diagram of the operation and form factor of a flat heat pipe or vapor chamber heat spreader (scale in the thickness directionmagnified to
show details of operation) (Weibel and Garimella, 2013).
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(Waramit et al., 2021), and the segregation of vapor and liquid
pathways to improve the replenishment of the surface (Khatri et al.,
2020).Wong et al. (Wong and Leong, 2018) conducted experimental
research of pool boiling heat transfer of saturated FC-72 for porous
lattice structures fabricated using the Selective Laser Melting (SLM)
technique. The best performing substrate with the 3-mm unit cell
size and 5-mm structure height had an average nucleate boiling heat

transfer coefficient of 1.35 W/cm2·K, which was 2.81 times that of
the plain surface at 0.48 W/cm2·K. In the study of Jiang et al. (Jiang
et al., 2022), two types of microporous coating surfaces, including
sintered spherical copper powder and wire mesh microporous
surfaces, were fabricated. Results showed that the wire mesh
surface demonstrated the best performance which presented an
outstanding CHF of 48.95 W/cm2 with a corresponding HTC of
2.2 W/cm2·K, increasing by up to 81.50% and 144.44% compared to
the polished copper surface, respectively.

Recently, porous foam has attracted much attention due to its
lightweight and heat transfer enhancement (Tao et al., 2023). Yuan
et al. (Yuan et al., 2023) investigated a unique design of copper foam
with a wettability gradient for pool boiling enhancement. They
found that the super-hydrophilic top with superhydrophobic
bottom copper foam structure and super-hydrophobic top with
super-hydrophilic bottom copper foam structure could achieve the
CHF of 113.3 and 108.3 W/cm2, corresponding to the maximum
HTC of 5.93 and 5.28 W/cm2·K, respectively. In the research of Lv
et al. (Lv et al., 2023), metalized diamond was added in copper
porous structures to increase the structure thermal conductivity, and
good pool boiling performance was observed, with an increasement
by 25% compared with the tablets without treatment.

2.2 Non-resonant effect

The current research on the impact of mechanical vibrations on
heat transfer in porous media primarily focuses on convective heat
transfer, while studies on the influence of vibrations on boiling are

FIGURE 5
Schematic diagram of typical vapor formation regimes along the boiling curve for homogeneous sintered powder wicks. Expected modifications to
the curve and regimes induced by CNT-coating are shown as dashed lines (Weibel and Garimella, 2012).

FIGURE 6
Boiling curves for MCPS and plain surface at horizontal and
vertical orientations (Shah et al., 2023).
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limited. We can draw references from studies on the effects of
mechanical vibrations on other modes of heat transfer to understand
their potential impact.

Mechanical vibration can induce alterations in the flow
boundary layer and thermal boundary layer near the wall,
resulting in the formation of vortices that can impact the overall
fluid dynamics of the working medium and, in turn, influence the
heat transfer process. We can divide the vibration into three
categories: wall vibration (Leal et al., 2013), local vibration in the
tube (Sun et al., 2019), and overall vibration (Arasavelli et al., 2021).
Scholars have carried out relevant research about the influence of
vibration parameters (frequency, amplitude, direction) on different

heat exchangers [metallic line (Lemlich, 1955), pipe (Liu et al., 2017),
plate (Blankenship and Clark, 1964), microgrooves (Guo et al.,
2013)] and different heat transfer methods [natural convection
(EshghyArpaciClark and Clark, 1965), forced convection
(Takahashi and Endoh, 1990)]. It is found that in most cases the
heat transfer process can be enhanced by vibration, but there are also
a few cases where the vibration has no effect (Sreenivasan and
Ramachandran, 1961) or even weakens the heat transfer process
(Klaczak, 1997). We have summarized the relevant literature on the
effect of vibration on heat transfer in the past decade, as shown in
Table 1. The literature is sorted according to the heat transfer type such
as pool boiling, flow boiling, forced convection and natural convection.

TABLE 1 The effect of vibration on different heat transfer types.

Authors Fluid
medium

Direction Amplitude Frequency
(Hz)

Heat transfer
type

Effect of vibration

Atashi et al. (2014) water vertical —— 10, 15,20 25 Pool boiling Enhancement ratio improved 116.6% at f =
25 Hz

Zheng et al. (2017) liquid hydrogen vertical 0.01–0.07 mm 20–80 Flow boiling h positively correlated with f and A, and
inversely correlated with Vinlet

Abadi et al. (2019) water vertical 0.2–0.5 m/s 0.25–1 Pool boiling heat transfer rate increased up to 90%

Sun et al. (2021) air vertical —— 0.05–1.0 Forced convection Nu increased up to 28.3%

Li et al. (2018) air vertical —— 51 Forced convection h increased up to 70%

Xie and Zhang (2021) air vertical —— 0—67 Forced convection h increased up to 14.69%

Khan et al. (2023) air vertical,
transverse

—— —— Forced convection maximum Nu at α = 45°

Liu et al. (2017) water vertical 1–5 g 158–3000 Forced convection Nu increased by 14.94% at resonance
frequency

Tian and Barigou (2015) water horizontal 2 mm 50 Forced convection a large enhancement of wall heat transfer

Arasavelli et al. (2021) water horizontal 1–3 m/s2 20–100 Forced convection maximum enhancement of 33% at f = 40 Hz,
g = 3 m/s2

Li et al. (2020) air, water vertical 1–6 mm 25 Forced convection the max heat flux increased by 51.5%

Mishra et al. (2019) water horizontal 2 mm 50 Forced convection the vibrational effects reduce in significance
as Re increase

Amer and Wang (2020) air horizontal —— 28k Natural
convection

frost area decreased by 13%

Talebi et al. (2017) air vertical 0.1 μm 20k Natural
convection

h increased up to 175%

Hu et al. (2022) air horizontal 29.2–27.3 mm 50 Natural
convection

Tmax increased by 2.5 °C

Ghalambaz et al. (2017) air vertical 0.001–0.1 mm 1–100 Natural
convection

Nu increased up to 2.6%

Sudhakara Rao and Ravi
Babu (2019)

water vertical —— 100–109 Natural
convection

h increased up to 25%

Sarhan et al. (2019) air vertical 1.5–7.5 mm 0–16 Natural
convection

Nu decreased up to 14%

Hsu et al. (2016) water vertical —— 1, 2 Natural
convection

heat transfer was enhanced by 30%

Tian et al. (2017) water rolling 5°–20° 0.05–0.17 Natural
convection

h enhanced in the transition regime

Ciocănea and Bureţea
(2017)

water vertical 0–0.5 mm 0–12 Natural
convection

heat transfer maximization is obtained at the
resonance frequency
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It should be mentioned that the mechanical vibration generated by
the engine or the transmission of mechanical components are passive
vibrations for the thermal management systems. Since vibration can
greatly improve the heat transfer performance, it is gradually utilized as
an active heat transfer enhancement method. Acoustic wave generated
by high frequency oscillations of a membrane is one of the main
techniques and it attracted research interests at the early 1960s.
According to ultrasound is defined as acoustic waves whose
frequency exceeds the highest threshold that the human can hear by
16 or 20 kHz. For boiling process under acoustic vibration,
configurations such as wall superheat, HTC and CHF, are reviewed
in the study of Legay et al. (Legay et al., 2011) and L Léal et al. (Léal et al.,
2013), where readers can find further details and analysis.

2.3 Resonant effect

The resonance problem in mechanical vibration refers to the
situation where the self-vibration of a system or structure at a
specific frequency is the same as or close to the external
excitation frequency, leading to a sharp increase in amplitude. In
general, resonance is harmful and can cause significant deformation
and dynamic stress in mechanical and structural systems, even
leading to destructive accidents.

Some resonance phenomena have been observed in the study of
heat transfer process under vibration conditions (Paolucci and
Chenoweth, 1989; Ishida et al., 2010). Compared with the situation
without vibration, HTC was increased 50% when the vibration
frequency was close to the resonant natural frequency (Forbes et al.,
1970; Gershuni and Zhukhovitskii, 1986). Yurkov (Yurkov, 1981a;
Yurkov, 1981b) studied a 2D square cavity with different wall
temperatures and linear temperature distribution on top and bottom
surfaces, under vertical vibrations. He calculated the average Nusselt
number over a frequency range including the resonant region, and
found that heat transfer rates increased significantly in the resonant
region. In a similar study of Fu and Shieh (Fu and Shieh, 1992),
vibration was set to be parallel to gravity in the form of g(t) = g + bωsin
(ωt). In deriving the relationship for the resonant frequency, the inertial
terms were comparable to the buoyancy terms, or

dv

dt
~ bω2βΔT sinωt + gβΔT (1)

They thought that the resonant frequency was only slightly
affected by the static gravitational term and ignored the second term
on the right side of the formula. At resonant state, the flow frequency
is equal to the vibration frequency. Then the resonant vibration
frequency ωr is obtained:

ωr �
���������
2Gr( ) · Pr√

(2)
Where Gr is the vibration Grashof number and Pr is the Prandtl

number of the fluid. Ferguson and Lilleleht (Ferguson and Lilleleht,
1996) confirmed this method and furtherly modified the predictive
model equation by including the effect of the static gravitational
component, which meant the second term on the right side of Eq. 1
was considered. The predicted resonant frequency was:

ωr �
�������
2GrvPr2

√ + ����������������
2GrvPr2 + 2π2RaPr

√
2

(3)

With this solution, the numerical resonant frequency value was
closer to the experimental value when Ra and Gr were roughly
comparable in magnitude.

It is worth mentioning that currently there is relatively little
analysis and experimentation regarding the mechanism of the
impact of on the pool boiling process in porous media under the
condition of mechanical resonance. In future designs of thermal
management systems, attention should be paid to research in this
aspect.

2.4 Thermo-vibrational convection in
porous media

Mechanical vibration, recognized as a source of pattern
generating mechanism on the surface of a liquid-filled container
by Faraday in 1831, was firstly investigated to increase the stability
threshold of thermos-fluid system. Then the thermo-vibrational
convection was gradually developed, mainly concerning the form
of a mean flow in a confined cavity filled with a fluid presenting
temperature non-homogeneities (Pedramrazi et al., 2008). The study
of thermo-vibrational convection in porous media can be divided
into two groups: porous media saturated by a pure fluid
(Kolchanova, 2020) or by a binary-mixture (Elhajjar et al.,
2009a). Since the main background of this article is mechanical
vibration, we mainly focus on high-frequency and small-amplitude
vibration.

2.4.1 Pure fluid
For thermo-vibrational convection of pure fluid in porous

media, the linear stability analysis is the primary focus. The most
common geometric model is a closed square cavity. Then the study
extends to different shapes, such as wavy walls (Misirlioglu et al.,
2005), square enclosure (Basak et al., 2006), Γ-shape cavity (Dehnavi
and Rezvani, 2012), L-shape cavity (Mohebbi and Rashidi, 2017),
triangular cavity (Triveni and Panua, 2016), rectangular form (Al-
Farhany and Turan, 2012), and even τ-shaped channel (Ma et al.,
2019). Figure 7 shows the schematic diagram of two common
structures in the study of thermo-vibrational convection of in
porous media, namely, closed cavity and infinite horizontal plate,
where a layer of pure fluid is on top of a layer of porous material. The
fluid can be heated from below or above. H is the height and L is the
length of the cavity. The direction of vibration is defined as:

e � cos α( )i + sin α( )j (4)
Where α is the angle between the vibration direction and the
horizontal direction. Vertical vibration is obtained with α = π/
2 and horizontal vibration is obtained with α = 0.

Research has found that when a fluid layer superposed on a
porous layer is heated from below, the linear stability theory
predicts that there is a critical depth ratio, the ratio of the
thickness of the fluid layer to that of the porous layer. For
depth ratios less than the critical value, onset of thermal
convection is in the form of large convection cells in the
porous layer with wavelength comparable to the depth of the
porous layer. For depth ratios larger than the critical value, the
onset of thermal convection is confined within the fluid layer. At
the critical depth ratio there is a dramatic increase in the critical
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wave number by one order of magnitude (CHEN and CHEN,
1992). A decrease in the fluid layer thickness leads to an increase of
the critical Rayleigh number (Sun, 1973). Here we define two
parameters, RaT as the thermal Rayleigh number, Rav as the
vibrational Rayleigh number. By this method, the amplitude
and frequency of vibrations are combined into a non-
dimensional parameter referred to as the Rav.

RaT � KgβTΔTH
va*

(5)

Rav � R2Ra2T � εva*
2K

bω

gH
( )2

Ra2T (6)

To investigate the onset of convection, the Darcy model
(Zen’kovskaya, 1992) is used in the momentum equation. There
are two approaches of stability analysis, namely, the time-averaged
method and the direct method (Pedramrazi et al., 2002).

In the time-averaged method, two different time scales are
adopted to subdivide the temperature, velocity, and pressure
fields into two different parts: one varying lowly with time and
the other one varying rapidly with period τ = 2π/ω. The scale
analysis method (Bejan, 2000) is used to resolve the closure problem
lying in establishing relations between oscillatory velocity and
temperature fields in terms of the averaged ones. Then two
coupled systems of equations are obtained, one for the mean
flow and the other one for oscillatory flow. The mechanical
stability can be achieved when the direction of vibration is
parallel to gravitational acceleration, which means the vibration
should be vertical (Zen’Kovskaya and Rogovenko, 1999). It should
be mentioned that the time-averaged method can be used only when
the vibration frequency is high enough so that the vibration period is
smaller than the response time of fluid. Otherwise, the full transient
equations must be solved.

In the direct formulation method, the field variables are
infinitesimally perturbed around the motionless equilibrium state.
The perturbed equations are similar to a mechanical pendulum with
oscillation support. We define B as the transient coefficient and ωp as
the dimensionless pulsation. When Bωp <<1, with the presence of
vibration, the stability depends on the position of heating section: if

it is above the porous layer, the system will be stable; if it is below the
porous media, vibration has no effect on stability threshold. When
Bωp >>1, there are two modes of convection onset, namely,
harmonic and sub-harmonic. For heating from below, vibration
has a stabilizing effect on harmonic mode and a destabilizing effect
on sub-harmonic mode. The thermal Rayleigh number RaT in the
two modes also performs oppositely (Aniss et al., 2000). For the
vertical vibration, vibration has a stabilizing effect; it increases the
critical value of RaT for the onset of convection. For the horizontal
vibration, with the increase of RaT, the gravitational effect gets more
important than the vibrational effect.

2.4.2 Binary mixture
The effect of transversal vibration on the convection instability

of a mixture layer was first studied in 1981 (Zen’kovskaya, 1981).
Then, thermal diffusion is considered together with the longitudinal
vibration in the research of stability mechanical quasi-equilibrium
or mechanical equilibrium of a binary mixture horizontal layer
subjected to a vertical temperature gradient (Gershuni et al., 1997;
Gershuni et al., 1999).

For the study of thermo-vibrational problem in porous media
filled with a binary mixture, the interaction between Soret-driven
convection and thermo-vibrational convection is considered
(Mojtabi et al., 2004). Under the Soret effect, a concentration
gradient is formed because of the temperature gradient. The
following expression is used to elaborate the equation for
concentration taking into account the Soret effect:

j � −�ρD ∇C + α∇T( ) (7)
Where D is the diffusion coefficient and α is the thermos-

diffusional ratio (α > 0 and α < 0 correspond to the anomalous
and normal Soret effect respectively).

Some interesting instability mechanisms and pattern generating
phenomena have been observed in the research of binary mixture. In
the research of Bilal Elhajjar et al. (Elhajjar et al., 2009b), a cavity
filled with porous media and a binary mixture (90%-water and 10%-
isopropanol) was utilized for the simulation. The gravitational field g
is replaced by g + bω2sin (ωt)e to simulate the oscillating system.

FIGURE 7
Two common structures in the study of thermo-vibrational convection in porous media: (A) Closed cavity; (B) Infinite horizontal structure.
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Results in Figure 8 were the comparison of streamlines and
isoconcentrations without and with vibration. It is very clear that
vibrations modify the structure of the flow from multicellular to
monocellular, leading to the stratification of the concentration field
and the separation of the binary mixture components. This means
the vertical vibration can be utilized for the species separation.

Ouadhani et al. (Ouadhani et al., 2017) conducted an investigation
on the effect of vibration on the separation of a binary mixture
saturating a porous cavity by both direct numerical simulation and
analytical model. The direction of the vibration was vertical. In their
mathematical model, the density of the binary fluid was set to depend
linearly on the local temperature and mass fraction:

ρ � ρr 1 − βT T′ − Tr( ) − βC C′ − Cr( )[ ] (8)
where ρr is the fluid mixture density at temperature Tr and mass
fraction Cr. βT and βC are the thermal and concentration expansion
coefficients respectively. In the numerical results, they also found
that vibration modified the structure of the flow from multicellular
to unicellular. But unicellular flow could lose its stability via
oscillatory bifurcation. In another of their research (Ouadhani
et al., 2018), the porous layer was subjected to a vertical heat flux
and vertical vibrations. They found that the vibrations had no effect
on the critical Rayleigh number Rac and critical wavenumber (kc = 0)
when φ > −1/(1 + Le). But the vibrations had an effect on the Hopf
bifurcation threshold (positive Rac and φ < −1/(1+Le)) and on the
steady bifurcation when Rac < 0 and φ < −1/(1 + Le).

In the research of Kumar et al. (Kumar et al., 2023), they
investigated Darcy-Brinkman thermal convection in the stratified
porous saturated suspension of active particles subjected to vertical
oscillation. They found that the layer became unstable due to the
thermal-oscillational connection of the thermal vibration parameter
and porosity had a destabilizing effect that considerably lessened the
ability of vertical vibration to stabilize. This conclusion was different
from that of Lyubimova et al. (Lyubimova and Kolchanova, 2018),
where vibration significantly stabilized the fluid equilibrium state and
led to an increase in the wavelength of its perturbations. Different from
the mechanical vibration, in the study of Srivastava et al. (Srivastava
et al., 2018), the gravitymodulation was adopted to investigate the effect
on temperature dependent viscous fluid. The amplitude and of gravity
modulation was found significant and more effective for the low values
of frequency of modulation.

It is worth mentioning that in the above studies, only the
convective process is involved (Kushwaha et al., 2021), without
considering the phase transition process. It is well known that the
study of heat transfer performance in mixed fluids is a focal point,
such as water and ethanol (Hu et al., 2018), 2-propanol aqueous
mixtures and alcohol (Sakashita et al., 2010), FC-72 and FC-75
(Yokouchi et al., 1987), Novec 7300 and 1-butanol (Chen et al.,
2020), HFE-7100 and HFE-7200 (Arik and Bar-Cohen, 2002). In the
follow-up studies, it is suggested that the phase change model be
considered to explore whether the binary mixture in the porous
media will also produce separation phenomenon during the boiling
process under mechanical vibration. At the same time, it is
important to focus on studying the variations of CHF and HTC
during boiling processes under vibration conditions.

3 Effect of vibration on bubble dynamic
characteristics

In addition to the impact on heat transfer performance,
mechanical vibrations can also significantly affect the of bubble
behaviors within the porous media. These bubbles can have a
significant impact on the heat transfer process, as they can act as
barriers to fluid flow and reduce the effective heat transfer area. The
flow of bubbles within porous media is a typical vapor-liquid two-
phase flow problem at the pore scale, which is a nonlinear and
unstable dynamic process (SHI et al., 2019). Under the influence of
mechanical vibrations, the behavior of these bubbles can become
even more complex. Vibration can cause the bubbles to move and
merge with others, leading to changes in their size, shape, and
position within the porous media.

3.1 Stable state

During the pool boiling process, there is relative flow between
liquid and vapor. Therefore, due to the influence of liquid turbulence,
bubbles will also be subjected to transverse turbulent drag and the
shear lift forces caused by the difference in velocity between the
vapor-liquid two-phase flow (Nahra and Kamotani, 2000; Bai and
Thomas, 2001; Nahra and Kamotani, 2003; Liu et al., 2010).

FIGURE 8
Streamlines and isoconcentrations for Le = 30, RaT = 13.5 (A) Rav = 0 (without vibration) (B) Rav = 10. A multicellular flow is obtained at the transition
from the equilibrium solution for Rav = 0, whereas a monocellular flow is obtained for Rav = 10 (Elhajjar et al., 2009b).
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Liquid turbulence makes bubbles more easily detach from the wall
and makes bubbles more dispersed and less likely to coalesce. Zhou
et al. (Zhou et al., 2018) pointed out that for cases where there was an
external heat source, the Marangoni effect should be considered. The
bubbles were drawn towards the heated surface due to the
temperature gradient of the superheated liquid layer near the
heated surface.

3.1.1 Experiments
Experiments for observing the dynamic characteristics of bubbles in

porous media can be divided into two-dimensional and three-
dimensional ones. Due to the complexity of the porous media
structure, sophisticated instruments, such as CT scan (Minde et al.,
2018) and nuclearmagnetic resonance (Liu et al., 2018), are required for
three-dimensional experiments to clearly measure macroscopic
physical parameters and to provide a clear depiction of the micro-
fluid characteristics. In comparison, it is easier to observe the motion
characteristics of the fluid through two-dimensional experiments, in
which glass beads (Di Federico et al., 2017) are one of the best choices
due to the easy availability, high transparency, good chemical stability,
and corrosion resistance. In the experiment of Liu et al. (Liu et al., 2019),
transparent glass beads with the diameter of 4 mm were chosen and
fixed on a test bench that can change the tilt angle. Dynamic
performance of bubbles was observed, as illustrated in Figure 9. The
coalescence and fragment of single bubble occurred frequently.
Decreases of inclination angles and porosities of the glass beads

porous media could result in the decrease of buoyancy and increase
of flow resistance, increasing of volume of trapped bubbles.

Through the study of flow boiling phenomena and bubble
behavior in microscale two-dimensional porous media channels
(Hu et al., 2021), it has been found that under the combined
action of capillary force, viscous force, and inertial force, there
were phenomena such as local bubble blockage, coalescence,
liquid film evaporation, and rewetting, which were different from
those in straight channels. Then, Huang et al. (Huang et al., 2018)
used gradient foam metals to study the bubble behaviors in pool
boiling. They observed two common types of bubble escape, as
shown in Figure 10. In “A-type bubble,” the metal skeletons resisted
the escaping bubble but eventually the bubble shifted to the upper
side of the metal skeleton without cracking. In “B-type bubble,” a
bubble was separated into two smaller bubbles and then departed
from the skeletons due to a strong shear force formation between the
upper and lower parts of the copper foam.

3.1.2 Numerical simulations
Due to the opacity of porous media, it is difficult to directly

observe the movement of bubbles inside through experiments. The
method of numerical simulation is a good choice to solve this
problem. The complexity of the solid structure leads to highly
irregular phase interfaces within the porous media, making
boundary treatment issues very difficult. To avoid this problem,
the method of representative elementary volume (REV) is adopted

FIGURE 9
Bubble migration, fragment, coalescence, and trapping mechanism in porous media (Liu et al., 2019).
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in many numerical studies (Yuki et al., 2008; Lu and Zhao, 2009; Li
and Leong, 2011), averaging the fluid parameters around a certain
point inside the porous media at a macroscopic level, and using the
averaged values over a certain range to replace the local true values.
The local thermal equilibrium (LTE) (Bénard et al., 2005) and the
local thermal non-equilibrium (LTNE) (Xin et al., 2014) are also
considered when dealing with the problem of fluid-solid
temperature difference.

The development of Lattice Boltzmann method (LBM) (Fang
et al., 2017; Zhou et al., 2019) makes it possible to investigate the
pore-scale boiling phenomena, with the pseudopotential model
being the most commonly employed multiphase model. In 1993,
Shan and Chen (Shan and Chen, 1993) developed a model to
simulate flows containing multiple phases and components.
Then, Hazi and Markus (Hazi and Markus, 2009) extended the
model and studied the bubble departure diameter and release
frequency of heterogeneous boiling on a horizontal plate in
stagnant and slowly flowing fluid. Furtherly, Gong and Cheng
(Gong and Cheng, 2013; Gong and Cheng, 2015a; Gong and

Cheng, 2015b) improved this method and proposed a liquid-
vapor phase change LB model with a new source term, where the
bubble nucleation process, surface wettability effect and boiling
curves were investigated. Gong and Cheng’s model was adopted
by Xu et al. (Yue and Xu, 2023) to investigate the pore-scale boiling
mechanism with complex geometry such as uniform and gradient
(Qin et al., 2018) and the V-shaped grooved (Xu et al., 2022) porous
structures, as shown in Figure 11.

Bubble growth is affected by many factors, such as liquid
wettability (Allred et al., 2019; Cha et al., 2023), surface
properties (Godinez et al., 2019; Zakšek et al., 2019) and working
conditions (Collini and MatthewJackson, 2022). The effect of
horizontal wettability on bubble behaviors with gradient contact
angle of 65° (in the central zone) and 105° (in the lateral zones) is
shown in Figure 12. Due to the promoting effect of hydrophobic
surface on the nucleation and departure of bubbles, the bubbles on
lateral zones nucleated before the middle bubbles. The growth rate of
the middle bubbles also slowed down, and the two nucleation sites
on the heating substrate outside the detached bubbles were activated.

FIGURE 10
Bubble escaping types in porous media (Huang et al., 2018). (A) A-type bubble escaping from resistance without breaking. (B) B-type bubble
escaping from resistance being split by skeletons.
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3.2 Unstable state

Due to external mechanical vibrations, the geometric shape and
dynamic characteristics of bubbles are inevitably influenced by the
driving effect of vibration forces. The influence of vibration frequency
(Zhou et al., 2005), vibration direction and vibration amplitude on the
bubble size and rising velocity (Mawatari et al., 2002) is mainly
investigated. In the research of Zhang et al. (Zhang et al., 2022), the
vibration energy effectively decreased the size and number of bubbles
with the vibration frequency of 20 Hz and an amplitude of 2 mm.

In the chemical industry for carrying out liquid phase reactions,
vibration can be utilized as a bubble controlling method, in which
single bubble can be held stationary in the column when the
downward force due to vibrations balances the buoyancy force
(Ellenberger and Krishna, 2007). In the study of O’Hern et al.
(O’Hern et al., 2012), experiments were performed in a thin,
quasi-two-dimensional rectangular acrylic test cell subjected to
sinusoidal vertical vibrations, as shown in Figure 13A. The liquid
was polydimethylsiloxane (PDMS) silicone oil, and the gas was air.
The vertical vibration caused violent fluctuations in the liquid
surface, generating many small liquid droplets and bubbles. The
small bubbles moved downward against the direction of buoyancy,
and eventually merged into a larger bubble, which remained stable
under the liquid-vapor interface, as shown in Figure 13B.

Furtherly, a much higher vibration frequency, up to 10k Hz, was
achieved by Dongjun Kim et al. (Kim et al., 2013). Similarly, liquid
jets were also observed in the bubble surface, which had a critical
effect on the bubble departure. The nonlinear growth of surface
waves generated by parametric instability led to the jet formation. As
the amplitude increased, the surface of the bubble oscillated more
violently, as shown in Figure 14.

Based on the research above, vibration causes pressure
fluctuation, generating gas or vapor bubbles in the liquid. In
recent years, equations specifically developed for the application
of studying bubbles in porous media have been utilized to estimate
the gas content and size of bubbles (Cheng et al., 2023). Kim et al.
(Kim et al., 2012) effectively explained the impact of gas bubbles on
the attenuation and compressibility of a medium. By understanding
this phenomenon, it became possible to calculate the gas void
fraction within the medium. They also presented a non-linear
acoustic method that utilized a piezoelectric transducer to
determine the gas void fraction. This method involved generating
pressure signals at different frequencies and amplitudes, specifically
58 kPa at 28 kHz and 53 kPa at 33 kHz. By analyzing the resulting
signals, the gas void fraction of the porous medium could be
accurately determined.

Different from the visual observation technology, in the
research of Lehmann et al. (Lehmann et al., 2019), the

FIGURE 11
Porous metal models with (A) gradient (Qin et al., 2018) and (B) V-shaped groove (Xu et al., 2022) structures.
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capacitance probe measurement technique was utilized. If particles
pass the field lines of a capacitor in air, the dielectric constant Ke,
and thereby the capacitance, will be affected. They found that
vibration led to significant increase in bed expansion and a
reduction of bubble volume fraction, leading to the conclusion
that gas which would in the non-vibrated case be part of the bubble
phase was forced into the suspension phase by mechanical
vibration.

Mechanical vibrations in porous media can trigger convective
instabilities. The concept of modulated force plays a crucial role
in various domains, including petroleum fabrication,
solidification of molten alloys, and space research laboratories.
In the research of Purusothaman et al. (Purusothamana et al.,
2019), a study of thermos-vibrational convective instability in a
porous module was investigated, focusing on the small amplitude
mechanical vibration. Results showed that in the case of isotropic
and mechanically anisotropic, raising the parameters Γ and ξ
favored the convective instability, thereby influencing the system
to destabilize and hence dynamically activate the heat flow.

Under static conditions on the ground, Fritz (Fritz and Ende,
1935) used the principle of fluid static equilibrium to suggest that
the buoyancy force acting on a bubble at the moment of
detachment from a heating surface was equal to the surface
tension. However, the bubble growth and detachment are not
a static state but a dynamic process, with upward motion and
radial expansion due to volume expansion. The rate of bubble
expansion depends on the resonant frequency, which is
determined by factors such as the shape, size, wall properties,
surrounding medium, and amplitude and frequency of external
vibrations (Lyubimov et al., 2021; Sojahrood et al., 2021).
Generally, when the frequency of external vibration gets close
to the natural frequency of the bubble, the resonant effect of the
bubble is most significant, and the wave formed on the surface of
the bubble is also the largest (Wu et al., 2019; Haghi and
MichaelKolios, 2022), leading to generation of instability.
Therefore, when the frequency of vibration matches the
natural frequency of the bubble, the rate of expansion of the
bubble may increase significantly.

FIGURE 12
Horizontal wettability effect on bubble behaviors at contact angle = 105°-65°-105°: (A) t = 65000; (B) t = 70000; (C) t = 85000.

FIGURE 13
(A) Experiment (B)Gas cavity stably levitated by vibration. Free-surface breakup generates small bubbles that descend and coalesce to form the gas
cavity, which then rises to reach position of stable levitation. Liquid is 20-cSt PDMS silicone oil; gas is air. Vibration conditions are 280 Hz, 15-g peak
acceleration, and 94-μm peak-to-peak displacement (O’Hern et al., 2012).
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Currently, through visualization experiments without vibration,
it has been observed that in the initial stage of boiling, when the
superheat was small, small bubbles that were generated adhered to
the pores of the porous structure and did not detach (Zu et al., 2021).
Only when the degree of superheat increases, the amount of steam
generated and the volume of bubbles increase, causing an increase in
buoyancy, will the bubbles detach from the solid structure. However,
based on the existing research about vibration, we can predict that
the vapor-liquid interface inside a porous medium will also
experience severe fluctuations and fragmentation under the
influence of mechanical vibration. The additional force from
vibration can act as a driving force on small bubbles in the
appropriate direction, causing them to detach from the skeleton
even at low degrees of superheat, thereby affecting liquid backflow
and the heat transfer characteristics of the system.

Based on the relevant research about bubble behaviors in porous
medina under vibrations, it can be concluded that: 1) Mechanical
vibrations can help overcome the surface tension force, leading to
easier detachment of bubbles from the heated surface. This can
result in more frequent bubble formation and a higher HTC. 2) The
vibrations can promote bubble growth by assisting in the removal of
vapor from the heated surface. Additionally, when the vibrations

stop or change direction, the collapsing bubbles create micro-jets
and induce fluid motion within the porous media, enhancing overall
heat transfer. 3) Mechanical vibrations can induce motion in the
liquid within the porous media, causing bubbles to move and
distribute more evenly. This can prevent bubble coalescence and
improve liquid replenishment on the heated surface, enhancing heat
transfer efficiency.

4 Conclusion

In thermal management systems, compared with single-phase
heat transfer on smooth surfaces, pool boiling on porous structured
surfaces can greatly improve the heat transfer efficiency. Mechanical
vibrations cannot be avoided in engineering applications, which
have a significant impact on the boiling heat transfer characteristics
and bubble behavior in porous media. The literature review has
shown that mechanical vibrations can enhance heat transfer in some
cases, but also have a detrimental effect in others. The effects of
vibrations on HTC have been found to be influenced by various
factors, such as the amplitude, frequency, and direction of vibration.
The maximum effect of vibrations is observed under resonance

FIGURE 14
Observation of a 10-μL bubble surface oscillation and the inner part of it. The amplitude of the vibrating chamber is increased from (A) to (C) at
2,400 Hz. (A) Regular shapemode oscillation stage. (B)Chaotic oscillation stage. (C) Jet and chaotic oscillation stage. The bubble was placed in a 1.5-mm
gap between two vertical acrylic sheets. Arrows indicate locations of jet generation where curvatures collapse after the surface began to bulge due to the
growth of instability. Themoment at which jets start to penetrate was designated as 0 s. Vibrating accelerations of (A–C) are 480 m/s2, 765 m/s2, and
1795 m/s2, respectively (Kim et al., 2013).
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conditions. Based on the analysis of this review, the main
conclusions are drawn as follows:

1) In most cases, such as natural convection, forced convection and
boiling, HTC can be increased to varying degrees under different
mechanical vibration conditions. But there are also a few cases
where the vibration has no effect or even weakens the heat
transfer process. It is necessary to conduct in-depth research on
the impact of different vibration parameters within the range of
system vibrations on heat transfer, in order to improve structural
design (such as increasing or reducing anti-vibration measures)
and achieve optimal heat transfer efficiency.

2) Based on existing research, although resonance is not
desirable from the perspective of mechanical strength
stability of the system, it significantly improves the heat
transfer efficiency when resonance occurs. However, there
is currently limited analysis and experimentation on the
mechanism of the impact of mechanical resonance on the
pool boiling process in porous media. Therefore, in future
designs of thermal management systems, it is important to
focus on research in this aspect, aiming to find the optimal
range of mechanical vibration that achieves both efficient heat
transfer and mechanical stability.

3) In the thermo-vibrational convection study, binary mixture can
be separated by mechanical vibration. But only the convective
process is involved in the investigations, and the phase transition
process is not considered. In follow-up studies, it is suggested
that the phase change model be added to the calculation equation
to explore whether the mixed working fluid in the porous
medium will also produce separation phenomenon during the
boiling process under mechanical vibration.

4) The behavior of bubbles in porous media is complex and
nonlinear, and is affected by the interfacial forces, flow
resistance, and pore structure. Mechanical vibrations can
cause the bubbles to move and merge with other bubbles,

leading to changes in their size, shape, and position within
the porous media.
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